Properties

Label 459.2.l.a.325.7
Level $459$
Weight $2$
Character 459.325
Analytic conductor $3.665$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [459,2,Mod(298,459)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("459.298"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 459.l (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0,0,0,-16,0,0,0,0,0,-48,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.66513345278\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 325.7
Character \(\chi\) \(=\) 459.325
Dual form 459.2.l.a.298.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.221411 + 0.221411i) q^{2} -1.90195i q^{4} +(-0.0227939 - 0.0550294i) q^{5} +(1.02440 - 2.47313i) q^{7} +(0.863936 - 0.863936i) q^{8} +(0.00713730 - 0.0172310i) q^{10} +(-5.01504 - 2.07730i) q^{11} +0.468997i q^{13} +(0.774391 - 0.320763i) q^{14} -3.42134 q^{16} +(1.35164 + 3.89526i) q^{17} +(-4.85739 - 4.85739i) q^{19} +(-0.104663 + 0.0433530i) q^{20} +(-0.650449 - 1.57032i) q^{22} +(4.86066 + 2.01335i) q^{23} +(3.53303 - 3.53303i) q^{25} +(-0.103841 + 0.103841i) q^{26} +(-4.70377 - 1.94837i) q^{28} +(-0.921784 - 2.22538i) q^{29} +(2.91521 - 1.20752i) q^{31} +(-2.48539 - 2.48539i) q^{32} +(-0.563186 + 1.16172i) q^{34} -0.159445 q^{35} +(6.93112 - 2.87096i) q^{37} -2.15096i q^{38} +(-0.0672344 - 0.0278494i) q^{40} +(0.852281 - 2.05759i) q^{41} +(-3.19320 + 3.19320i) q^{43} +(-3.95093 + 9.53839i) q^{44} +(0.630426 + 1.52198i) q^{46} -9.24764i q^{47} +(-0.117205 - 0.117205i) q^{49} +1.56450 q^{50} +0.892011 q^{52} +(9.14029 + 9.14029i) q^{53} +0.323325i q^{55} +(-1.25160 - 3.02164i) q^{56} +(0.288631 - 0.696818i) q^{58} +(-6.66815 + 6.66815i) q^{59} +(0.696537 - 1.68159i) q^{61} +(0.912817 + 0.378101i) q^{62} +5.74209i q^{64} +(0.0258086 - 0.0106903i) q^{65} +3.18673 q^{67} +(7.40861 - 2.57076i) q^{68} +(-0.0353029 - 0.0353029i) q^{70} +(3.99130 - 1.65325i) q^{71} +(4.56957 + 11.0319i) q^{73} +(2.17029 + 0.898963i) q^{74} +(-9.23854 + 9.23854i) q^{76} +(-10.2748 + 10.2748i) q^{77} +(9.86201 + 4.08498i) q^{79} +(0.0779858 + 0.188274i) q^{80} +(0.644277 - 0.266868i) q^{82} +(-6.15847 - 6.15847i) q^{83} +(0.183545 - 0.163168i) q^{85} -1.41402 q^{86} +(-6.12733 + 2.53802i) q^{88} -15.9437i q^{89} +(1.15989 + 0.480442i) q^{91} +(3.82930 - 9.24476i) q^{92} +(2.04753 - 2.04753i) q^{94} +(-0.156580 + 0.378019i) q^{95} +(1.33512 + 3.22326i) q^{97} -0.0519011i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 16 q^{10} - 48 q^{16} - 16 q^{19} - 24 q^{22} + 16 q^{25} + 24 q^{28} - 40 q^{31} + 64 q^{34} + 48 q^{37} - 48 q^{40} - 8 q^{43} + 24 q^{46} - 16 q^{49} + 32 q^{52} + 64 q^{58} - 24 q^{61} - 32 q^{67}+ \cdots - 88 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.221411 + 0.221411i 0.156561 + 0.156561i 0.781041 0.624480i \(-0.214689\pi\)
−0.624480 + 0.781041i \(0.714689\pi\)
\(3\) 0 0
\(4\) 1.90195i 0.950977i
\(5\) −0.0227939 0.0550294i −0.0101938 0.0246099i 0.918701 0.394954i \(-0.129240\pi\)
−0.928894 + 0.370345i \(0.879240\pi\)
\(6\) 0 0
\(7\) 1.02440 2.47313i 0.387188 0.934754i −0.603345 0.797480i \(-0.706166\pi\)
0.990533 0.137274i \(-0.0438340\pi\)
\(8\) 0.863936 0.863936i 0.305447 0.305447i
\(9\) 0 0
\(10\) 0.00713730 0.0172310i 0.00225701 0.00544891i
\(11\) −5.01504 2.07730i −1.51209 0.626329i −0.536104 0.844152i \(-0.680105\pi\)
−0.975988 + 0.217822i \(0.930105\pi\)
\(12\) 0 0
\(13\) 0.468997i 0.130076i 0.997883 + 0.0650382i \(0.0207169\pi\)
−0.997883 + 0.0650382i \(0.979283\pi\)
\(14\) 0.774391 0.320763i 0.206965 0.0857276i
\(15\) 0 0
\(16\) −3.42134 −0.855335
\(17\) 1.35164 + 3.89526i 0.327821 + 0.944740i
\(18\) 0 0
\(19\) −4.85739 4.85739i −1.11436 1.11436i −0.992554 0.121808i \(-0.961131\pi\)
−0.121808 0.992554i \(-0.538869\pi\)
\(20\) −0.104663 + 0.0433530i −0.0234035 + 0.00969403i
\(21\) 0 0
\(22\) −0.650449 1.57032i −0.138676 0.334794i
\(23\) 4.86066 + 2.01335i 1.01352 + 0.419813i 0.826737 0.562589i \(-0.190194\pi\)
0.186781 + 0.982402i \(0.440194\pi\)
\(24\) 0 0
\(25\) 3.53303 3.53303i 0.706605 0.706605i
\(26\) −0.103841 + 0.103841i −0.0203649 + 0.0203649i
\(27\) 0 0
\(28\) −4.70377 1.94837i −0.888930 0.368207i
\(29\) −0.921784 2.22538i −0.171171 0.413243i 0.814893 0.579612i \(-0.196796\pi\)
−0.986064 + 0.166369i \(0.946796\pi\)
\(30\) 0 0
\(31\) 2.91521 1.20752i 0.523587 0.216877i −0.105205 0.994451i \(-0.533550\pi\)
0.628792 + 0.777574i \(0.283550\pi\)
\(32\) −2.48539 2.48539i −0.439360 0.439360i
\(33\) 0 0
\(34\) −0.563186 + 1.16172i −0.0965856 + 0.199234i
\(35\) −0.159445 −0.0269511
\(36\) 0 0
\(37\) 6.93112 2.87096i 1.13947 0.471983i 0.268479 0.963285i \(-0.413479\pi\)
0.870989 + 0.491302i \(0.163479\pi\)
\(38\) 2.15096i 0.348932i
\(39\) 0 0
\(40\) −0.0672344 0.0278494i −0.0106307 0.00440338i
\(41\) 0.852281 2.05759i 0.133104 0.321341i −0.843249 0.537523i \(-0.819360\pi\)
0.976353 + 0.216181i \(0.0693603\pi\)
\(42\) 0 0
\(43\) −3.19320 + 3.19320i −0.486959 + 0.486959i −0.907345 0.420386i \(-0.861895\pi\)
0.420386 + 0.907345i \(0.361895\pi\)
\(44\) −3.95093 + 9.53839i −0.595625 + 1.43797i
\(45\) 0 0
\(46\) 0.630426 + 1.52198i 0.0929512 + 0.224404i
\(47\) 9.24764i 1.34891i −0.738317 0.674453i \(-0.764379\pi\)
0.738317 0.674453i \(-0.235621\pi\)
\(48\) 0 0
\(49\) −0.117205 0.117205i −0.0167436 0.0167436i
\(50\) 1.56450 0.221254
\(51\) 0 0
\(52\) 0.892011 0.123700
\(53\) 9.14029 + 9.14029i 1.25552 + 1.25552i 0.953211 + 0.302305i \(0.0977560\pi\)
0.302305 + 0.953211i \(0.402244\pi\)
\(54\) 0 0
\(55\) 0.323325i 0.0435971i
\(56\) −1.25160 3.02164i −0.167253 0.403784i
\(57\) 0 0
\(58\) 0.288631 0.696818i 0.0378992 0.0914967i
\(59\) −6.66815 + 6.66815i −0.868119 + 0.868119i −0.992264 0.124145i \(-0.960381\pi\)
0.124145 + 0.992264i \(0.460381\pi\)
\(60\) 0 0
\(61\) 0.696537 1.68159i 0.0891824 0.215305i −0.872995 0.487729i \(-0.837825\pi\)
0.962177 + 0.272424i \(0.0878253\pi\)
\(62\) 0.912817 + 0.378101i 0.115928 + 0.0480189i
\(63\) 0 0
\(64\) 5.74209i 0.717761i
\(65\) 0.0258086 0.0106903i 0.00320117 0.00132597i
\(66\) 0 0
\(67\) 3.18673 0.389321 0.194661 0.980871i \(-0.437639\pi\)
0.194661 + 0.980871i \(0.437639\pi\)
\(68\) 7.40861 2.57076i 0.898426 0.311750i
\(69\) 0 0
\(70\) −0.0353029 0.0353029i −0.00421950 0.00421950i
\(71\) 3.99130 1.65325i 0.473681 0.196205i −0.133055 0.991109i \(-0.542479\pi\)
0.606736 + 0.794904i \(0.292479\pi\)
\(72\) 0 0
\(73\) 4.56957 + 11.0319i 0.534827 + 1.29119i 0.928293 + 0.371848i \(0.121276\pi\)
−0.393466 + 0.919339i \(0.628724\pi\)
\(74\) 2.17029 + 0.898963i 0.252291 + 0.104502i
\(75\) 0 0
\(76\) −9.23854 + 9.23854i −1.05973 + 1.05973i
\(77\) −10.2748 + 10.2748i −1.17093 + 1.17093i
\(78\) 0 0
\(79\) 9.86201 + 4.08498i 1.10956 + 0.459596i 0.860787 0.508965i \(-0.169972\pi\)
0.248776 + 0.968561i \(0.419972\pi\)
\(80\) 0.0779858 + 0.188274i 0.00871908 + 0.0210497i
\(81\) 0 0
\(82\) 0.644277 0.266868i 0.0711485 0.0294707i
\(83\) −6.15847 6.15847i −0.675980 0.675980i 0.283108 0.959088i \(-0.408635\pi\)
−0.959088 + 0.283108i \(0.908635\pi\)
\(84\) 0 0
\(85\) 0.183545 0.163168i 0.0199082 0.0176981i
\(86\) −1.41402 −0.152478
\(87\) 0 0
\(88\) −6.12733 + 2.53802i −0.653176 + 0.270554i
\(89\) 15.9437i 1.69003i −0.534740 0.845017i \(-0.679590\pi\)
0.534740 0.845017i \(-0.320410\pi\)
\(90\) 0 0
\(91\) 1.15989 + 0.480442i 0.121589 + 0.0503640i
\(92\) 3.82930 9.24476i 0.399233 0.963833i
\(93\) 0 0
\(94\) 2.04753 2.04753i 0.211187 0.211187i
\(95\) −0.156580 + 0.378019i −0.0160648 + 0.0387839i
\(96\) 0 0
\(97\) 1.33512 + 3.22326i 0.135561 + 0.327273i 0.977053 0.212997i \(-0.0683223\pi\)
−0.841492 + 0.540269i \(0.818322\pi\)
\(98\) 0.0519011i 0.00524280i
\(99\) 0 0
\(100\) −6.71965 6.71965i −0.671965 0.671965i
\(101\) −4.40807 −0.438619 −0.219310 0.975655i \(-0.570380\pi\)
−0.219310 + 0.975655i \(0.570380\pi\)
\(102\) 0 0
\(103\) 0.977534 0.0963192 0.0481596 0.998840i \(-0.484664\pi\)
0.0481596 + 0.998840i \(0.484664\pi\)
\(104\) 0.405183 + 0.405183i 0.0397315 + 0.0397315i
\(105\) 0 0
\(106\) 4.04752i 0.393130i
\(107\) 6.71232 + 16.2050i 0.648904 + 1.56659i 0.814350 + 0.580375i \(0.197094\pi\)
−0.165445 + 0.986219i \(0.552906\pi\)
\(108\) 0 0
\(109\) −4.41765 + 10.6651i −0.423134 + 1.02154i 0.558283 + 0.829650i \(0.311460\pi\)
−0.981417 + 0.191886i \(0.938540\pi\)
\(110\) −0.0715877 + 0.0715877i −0.00682562 + 0.00682562i
\(111\) 0 0
\(112\) −3.50483 + 8.46140i −0.331175 + 0.799527i
\(113\) −4.20973 1.74373i −0.396018 0.164036i 0.175782 0.984429i \(-0.443755\pi\)
−0.571800 + 0.820393i \(0.693755\pi\)
\(114\) 0 0
\(115\) 0.313372i 0.0292221i
\(116\) −4.23258 + 1.75319i −0.392985 + 0.162780i
\(117\) 0 0
\(118\) −2.95280 −0.271828
\(119\) 11.0181 + 0.647539i 1.01003 + 0.0593598i
\(120\) 0 0
\(121\) 13.0573 + 13.0573i 1.18703 + 1.18703i
\(122\) 0.526543 0.218101i 0.0476710 0.0197460i
\(123\) 0 0
\(124\) −2.29665 5.54459i −0.206245 0.497919i
\(125\) −0.550099 0.227859i −0.0492024 0.0203803i
\(126\) 0 0
\(127\) 3.92206 3.92206i 0.348027 0.348027i −0.511347 0.859374i \(-0.670853\pi\)
0.859374 + 0.511347i \(0.170853\pi\)
\(128\) −6.24215 + 6.24215i −0.551733 + 0.551733i
\(129\) 0 0
\(130\) 0.00808127 + 0.00334737i 0.000708774 + 0.000293584i
\(131\) 2.40754 + 5.81231i 0.210348 + 0.507824i 0.993477 0.114035i \(-0.0363776\pi\)
−0.783129 + 0.621859i \(0.786378\pi\)
\(132\) 0 0
\(133\) −16.9889 + 7.03702i −1.47312 + 0.610187i
\(134\) 0.705577 + 0.705577i 0.0609526 + 0.0609526i
\(135\) 0 0
\(136\) 4.53299 + 2.19753i 0.388700 + 0.188436i
\(137\) −8.44606 −0.721595 −0.360798 0.932644i \(-0.617495\pi\)
−0.360798 + 0.932644i \(0.617495\pi\)
\(138\) 0 0
\(139\) −5.11432 + 2.11842i −0.433791 + 0.179682i −0.588884 0.808218i \(-0.700432\pi\)
0.155093 + 0.987900i \(0.450432\pi\)
\(140\) 0.303257i 0.0256299i
\(141\) 0 0
\(142\) 1.24977 + 0.517670i 0.104878 + 0.0434419i
\(143\) 0.974247 2.35204i 0.0814707 0.196688i
\(144\) 0 0
\(145\) −0.101451 + 0.101451i −0.00842501 + 0.00842501i
\(146\) −1.43083 + 3.45434i −0.118417 + 0.285883i
\(147\) 0 0
\(148\) −5.46044 13.1827i −0.448845 1.08361i
\(149\) 22.6720i 1.85736i −0.370882 0.928680i \(-0.620945\pi\)
0.370882 0.928680i \(-0.379055\pi\)
\(150\) 0 0
\(151\) 8.99660 + 8.99660i 0.732133 + 0.732133i 0.971042 0.238909i \(-0.0767898\pi\)
−0.238909 + 0.971042i \(0.576790\pi\)
\(152\) −8.39295 −0.680758
\(153\) 0 0
\(154\) −4.54993 −0.366644
\(155\) −0.132898 0.132898i −0.0106746 0.0106746i
\(156\) 0 0
\(157\) 2.50104i 0.199605i 0.995007 + 0.0998023i \(0.0318210\pi\)
−0.995007 + 0.0998023i \(0.968179\pi\)
\(158\) 1.27910 + 3.08802i 0.101760 + 0.245670i
\(159\) 0 0
\(160\) −0.0801179 + 0.193422i −0.00633388 + 0.0152913i
\(161\) 9.95855 9.95855i 0.784844 0.784844i
\(162\) 0 0
\(163\) 4.11319 9.93011i 0.322170 0.777786i −0.676958 0.736022i \(-0.736702\pi\)
0.999127 0.0417646i \(-0.0132980\pi\)
\(164\) −3.91344 1.62100i −0.305588 0.126579i
\(165\) 0 0
\(166\) 2.72711i 0.211665i
\(167\) 8.52287 3.53029i 0.659519 0.273182i −0.0277171 0.999616i \(-0.508824\pi\)
0.687236 + 0.726434i \(0.258824\pi\)
\(168\) 0 0
\(169\) 12.7800 0.983080
\(170\) 0.0767662 + 0.00451159i 0.00588770 + 0.000346023i
\(171\) 0 0
\(172\) 6.07333 + 6.07333i 0.463087 + 0.463087i
\(173\) −1.46148 + 0.605364i −0.111114 + 0.0460250i −0.437548 0.899195i \(-0.644153\pi\)
0.326434 + 0.945220i \(0.394153\pi\)
\(174\) 0 0
\(175\) −5.11838 12.3569i −0.386913 0.934091i
\(176\) 17.1582 + 7.10715i 1.29335 + 0.535721i
\(177\) 0 0
\(178\) 3.53012 3.53012i 0.264594 0.264594i
\(179\) −4.70314 + 4.70314i −0.351529 + 0.351529i −0.860678 0.509149i \(-0.829960\pi\)
0.509149 + 0.860678i \(0.329960\pi\)
\(180\) 0 0
\(181\) 15.7739 + 6.53377i 1.17247 + 0.485652i 0.882007 0.471236i \(-0.156192\pi\)
0.290459 + 0.956887i \(0.406192\pi\)
\(182\) 0.150437 + 0.363187i 0.0111511 + 0.0269212i
\(183\) 0 0
\(184\) 5.93871 2.45989i 0.437807 0.181346i
\(185\) −0.315975 0.315975i −0.0232309 0.0232309i
\(186\) 0 0
\(187\) 1.31309 22.3427i 0.0960227 1.63386i
\(188\) −17.5886 −1.28278
\(189\) 0 0
\(190\) −0.118366 + 0.0490289i −0.00858718 + 0.00355693i
\(191\) 4.76822i 0.345016i 0.985008 + 0.172508i \(0.0551871\pi\)
−0.985008 + 0.172508i \(0.944813\pi\)
\(192\) 0 0
\(193\) −7.14171 2.95820i −0.514072 0.212936i 0.110539 0.993872i \(-0.464742\pi\)
−0.624611 + 0.780936i \(0.714742\pi\)
\(194\) −0.418056 + 1.00928i −0.0300147 + 0.0724618i
\(195\) 0 0
\(196\) −0.222919 + 0.222919i −0.0159228 + 0.0159228i
\(197\) −0.727234 + 1.75570i −0.0518132 + 0.125088i −0.947667 0.319261i \(-0.896565\pi\)
0.895853 + 0.444350i \(0.146565\pi\)
\(198\) 0 0
\(199\) −3.28003 7.91870i −0.232515 0.561342i 0.763957 0.645268i \(-0.223254\pi\)
−0.996472 + 0.0839259i \(0.973254\pi\)
\(200\) 6.10461i 0.431661i
\(201\) 0 0
\(202\) −0.975995 0.975995i −0.0686708 0.0686708i
\(203\) −6.44793 −0.452556
\(204\) 0 0
\(205\) −0.132655 −0.00926501
\(206\) 0.216437 + 0.216437i 0.0150799 + 0.0150799i
\(207\) 0 0
\(208\) 1.60460i 0.111259i
\(209\) 14.2698 + 34.4503i 0.987061 + 2.38298i
\(210\) 0 0
\(211\) 7.53937 18.2016i 0.519032 1.25305i −0.419467 0.907771i \(-0.637783\pi\)
0.938499 0.345283i \(-0.112217\pi\)
\(212\) 17.3844 17.3844i 1.19397 1.19397i
\(213\) 0 0
\(214\) −2.10178 + 5.07414i −0.143675 + 0.346861i
\(215\) 0.248506 + 0.102935i 0.0169480 + 0.00702008i
\(216\) 0 0
\(217\) 8.44666i 0.573397i
\(218\) −3.33950 + 1.38327i −0.226179 + 0.0936865i
\(219\) 0 0
\(220\) 0.614949 0.0414599
\(221\) −1.82687 + 0.633915i −0.122888 + 0.0426418i
\(222\) 0 0
\(223\) −15.1388 15.1388i −1.01377 1.01377i −0.999904 0.0138641i \(-0.995587\pi\)
−0.0138641 0.999904i \(-0.504413\pi\)
\(224\) −8.69274 + 3.60065i −0.580808 + 0.240578i
\(225\) 0 0
\(226\) −0.546000 1.31816i −0.0363194 0.0876827i
\(227\) 7.55429 + 3.12909i 0.501396 + 0.207685i 0.619023 0.785373i \(-0.287529\pi\)
−0.117627 + 0.993058i \(0.537529\pi\)
\(228\) 0 0
\(229\) −14.4527 + 14.4527i −0.955059 + 0.955059i −0.999033 0.0439732i \(-0.985998\pi\)
0.0439732 + 0.999033i \(0.485998\pi\)
\(230\) 0.0693840 0.0693840i 0.00457504 0.00457504i
\(231\) 0 0
\(232\) −2.71895 1.12623i −0.178508 0.0739404i
\(233\) −5.69335 13.7450i −0.372983 0.900462i −0.993242 0.116064i \(-0.962972\pi\)
0.620258 0.784398i \(-0.287028\pi\)
\(234\) 0 0
\(235\) −0.508892 + 0.210790i −0.0331965 + 0.0137504i
\(236\) 12.6825 + 12.6825i 0.825561 + 0.825561i
\(237\) 0 0
\(238\) 2.29616 + 2.58290i 0.148838 + 0.167425i
\(239\) −21.0979 −1.36471 −0.682356 0.731020i \(-0.739045\pi\)
−0.682356 + 0.731020i \(0.739045\pi\)
\(240\) 0 0
\(241\) −10.7508 + 4.45313i −0.692521 + 0.286852i −0.701050 0.713112i \(-0.747285\pi\)
0.00852904 + 0.999964i \(0.497285\pi\)
\(242\) 5.78207i 0.371686i
\(243\) 0 0
\(244\) −3.19830 1.32478i −0.204750 0.0848104i
\(245\) −0.00377817 + 0.00912132i −0.000241379 + 0.000582740i
\(246\) 0 0
\(247\) 2.27810 2.27810i 0.144952 0.144952i
\(248\) 1.47533 3.56177i 0.0936838 0.226173i
\(249\) 0 0
\(250\) −0.0713476 0.172248i −0.00451242 0.0108939i
\(251\) 25.8214i 1.62983i −0.579580 0.814915i \(-0.696784\pi\)
0.579580 0.814915i \(-0.303216\pi\)
\(252\) 0 0
\(253\) −20.1941 20.1941i −1.26959 1.26959i
\(254\) 1.73678 0.108975
\(255\) 0 0
\(256\) 8.72002 0.545001
\(257\) 8.88366 + 8.88366i 0.554148 + 0.554148i 0.927635 0.373488i \(-0.121838\pi\)
−0.373488 + 0.927635i \(0.621838\pi\)
\(258\) 0 0
\(259\) 20.0825i 1.24787i
\(260\) −0.0203324 0.0490869i −0.00126096 0.00304424i
\(261\) 0 0
\(262\) −0.753855 + 1.81997i −0.0465733 + 0.112438i
\(263\) 4.54105 4.54105i 0.280013 0.280013i −0.553101 0.833114i \(-0.686556\pi\)
0.833114 + 0.553101i \(0.186556\pi\)
\(264\) 0 0
\(265\) 0.294642 0.711329i 0.0180997 0.0436966i
\(266\) −5.31960 2.20345i −0.326165 0.135102i
\(267\) 0 0
\(268\) 6.06102i 0.370236i
\(269\) 23.0379 9.54260i 1.40464 0.581823i 0.453692 0.891159i \(-0.350107\pi\)
0.950953 + 0.309336i \(0.100107\pi\)
\(270\) 0 0
\(271\) −8.88651 −0.539817 −0.269909 0.962886i \(-0.586993\pi\)
−0.269909 + 0.962886i \(0.586993\pi\)
\(272\) −4.62442 13.3270i −0.280397 0.808069i
\(273\) 0 0
\(274\) −1.87005 1.87005i −0.112974 0.112974i
\(275\) −25.0574 + 10.3791i −1.51102 + 0.625885i
\(276\) 0 0
\(277\) 5.29180 + 12.7755i 0.317954 + 0.767608i 0.999362 + 0.0357049i \(0.0113676\pi\)
−0.681409 + 0.731903i \(0.738632\pi\)
\(278\) −1.60141 0.663326i −0.0960462 0.0397836i
\(279\) 0 0
\(280\) −0.137750 + 0.137750i −0.00823215 + 0.00823215i
\(281\) −11.9649 + 11.9649i −0.713764 + 0.713764i −0.967321 0.253556i \(-0.918400\pi\)
0.253556 + 0.967321i \(0.418400\pi\)
\(282\) 0 0
\(283\) −23.3011 9.65163i −1.38511 0.573730i −0.439264 0.898358i \(-0.644761\pi\)
−0.945842 + 0.324628i \(0.894761\pi\)
\(284\) −3.14441 7.59128i −0.186586 0.450459i
\(285\) 0 0
\(286\) 0.736477 0.305059i 0.0435488 0.0180385i
\(287\) −4.21560 4.21560i −0.248839 0.248839i
\(288\) 0 0
\(289\) −13.3461 + 10.5300i −0.785067 + 0.619411i
\(290\) −0.0449246 −0.00263806
\(291\) 0 0
\(292\) 20.9822 8.69111i 1.22789 0.508609i
\(293\) 1.93377i 0.112972i 0.998403 + 0.0564859i \(0.0179896\pi\)
−0.998403 + 0.0564859i \(0.982010\pi\)
\(294\) 0 0
\(295\) 0.518938 + 0.214951i 0.0302137 + 0.0125149i
\(296\) 3.50771 8.46837i 0.203882 0.492214i
\(297\) 0 0
\(298\) 5.01982 5.01982i 0.290791 0.290791i
\(299\) −0.944256 + 2.27964i −0.0546078 + 0.131835i
\(300\) 0 0
\(301\) 4.62607 + 11.1683i 0.266642 + 0.643732i
\(302\) 3.98389i 0.229247i
\(303\) 0 0
\(304\) 16.6188 + 16.6188i 0.953152 + 0.953152i
\(305\) −0.108414 −0.00620775
\(306\) 0 0
\(307\) −0.791215 −0.0451570 −0.0225785 0.999745i \(-0.507188\pi\)
−0.0225785 + 0.999745i \(0.507188\pi\)
\(308\) 19.5423 + 19.5423i 1.11353 + 1.11353i
\(309\) 0 0
\(310\) 0.0588503i 0.00334247i
\(311\) 11.8767 + 28.6728i 0.673464 + 1.62589i 0.775682 + 0.631124i \(0.217406\pi\)
−0.102217 + 0.994762i \(0.532594\pi\)
\(312\) 0 0
\(313\) 3.51406 8.48369i 0.198626 0.479527i −0.792913 0.609335i \(-0.791436\pi\)
0.991539 + 0.129809i \(0.0414363\pi\)
\(314\) −0.553758 + 0.553758i −0.0312504 + 0.0312504i
\(315\) 0 0
\(316\) 7.76944 18.7571i 0.437065 1.05517i
\(317\) 18.4989 + 7.66249i 1.03900 + 0.430368i 0.835953 0.548801i \(-0.184915\pi\)
0.203048 + 0.979169i \(0.434915\pi\)
\(318\) 0 0
\(319\) 13.0752i 0.732072i
\(320\) 0.315984 0.130885i 0.0176640 0.00731669i
\(321\) 0 0
\(322\) 4.40987 0.245752
\(323\) 12.3554 25.4863i 0.687471 1.41809i
\(324\) 0 0
\(325\) 1.65698 + 1.65698i 0.0919126 + 0.0919126i
\(326\) 3.10934 1.28793i 0.172211 0.0713319i
\(327\) 0 0
\(328\) −1.04131 2.51394i −0.0574966 0.138809i
\(329\) −22.8706 9.47330i −1.26090 0.522280i
\(330\) 0 0
\(331\) 17.4538 17.4538i 0.959350 0.959350i −0.0398555 0.999205i \(-0.512690\pi\)
0.999205 + 0.0398555i \(0.0126898\pi\)
\(332\) −11.7131 + 11.7131i −0.642842 + 0.642842i
\(333\) 0 0
\(334\) 2.66870 + 1.10541i 0.146025 + 0.0604855i
\(335\) −0.0726382 0.175364i −0.00396865 0.00958116i
\(336\) 0 0
\(337\) 25.4443 10.5394i 1.38604 0.574117i 0.439952 0.898021i \(-0.354995\pi\)
0.946090 + 0.323904i \(0.104995\pi\)
\(338\) 2.82964 + 2.82964i 0.153912 + 0.153912i
\(339\) 0 0
\(340\) −0.310339 0.349094i −0.0168305 0.0189323i
\(341\) −17.1283 −0.927548
\(342\) 0 0
\(343\) 16.9020 7.00102i 0.912620 0.378019i
\(344\) 5.51745i 0.297481i
\(345\) 0 0
\(346\) −0.457621 0.189553i −0.0246019 0.0101904i
\(347\) 8.81253 21.2753i 0.473082 1.14212i −0.489713 0.871884i \(-0.662898\pi\)
0.962794 0.270236i \(-0.0871017\pi\)
\(348\) 0 0
\(349\) −13.4894 + 13.4894i −0.722069 + 0.722069i −0.969026 0.246957i \(-0.920569\pi\)
0.246957 + 0.969026i \(0.420569\pi\)
\(350\) 1.60268 3.86921i 0.0856668 0.206818i
\(351\) 0 0
\(352\) 7.30145 + 17.6273i 0.389169 + 0.939537i
\(353\) 7.27281i 0.387093i 0.981091 + 0.193546i \(0.0619990\pi\)
−0.981091 + 0.193546i \(0.938001\pi\)
\(354\) 0 0
\(355\) −0.181955 0.181955i −0.00965717 0.00965717i
\(356\) −30.3243 −1.60718
\(357\) 0 0
\(358\) −2.08265 −0.110072
\(359\) −18.7916 18.7916i −0.991783 0.991783i 0.00818396 0.999967i \(-0.497395\pi\)
−0.999967 + 0.00818396i \(0.997395\pi\)
\(360\) 0 0
\(361\) 28.1885i 1.48361i
\(362\) 2.04587 + 4.93917i 0.107529 + 0.259597i
\(363\) 0 0
\(364\) 0.913778 2.20606i 0.0478950 0.115629i
\(365\) 0.502922 0.502922i 0.0263241 0.0263241i
\(366\) 0 0
\(367\) −11.1747 + 26.9782i −0.583316 + 1.40825i 0.306475 + 0.951879i \(0.400851\pi\)
−0.889790 + 0.456370i \(0.849149\pi\)
\(368\) −16.6300 6.88836i −0.866897 0.359081i
\(369\) 0 0
\(370\) 0.139921i 0.00727413i
\(371\) 31.9684 13.2418i 1.65972 0.687478i
\(372\) 0 0
\(373\) −16.7965 −0.869689 −0.434844 0.900506i \(-0.643197\pi\)
−0.434844 + 0.900506i \(0.643197\pi\)
\(374\) 5.23765 4.65618i 0.270832 0.240765i
\(375\) 0 0
\(376\) −7.98937 7.98937i −0.412020 0.412020i
\(377\) 1.04370 0.432314i 0.0537532 0.0222653i
\(378\) 0 0
\(379\) 3.70421 + 8.94276i 0.190273 + 0.459359i 0.990011 0.140990i \(-0.0450285\pi\)
−0.799738 + 0.600349i \(0.795028\pi\)
\(380\) 0.718974 + 0.297809i 0.0368826 + 0.0152773i
\(381\) 0 0
\(382\) −1.05574 + 1.05574i −0.0540162 + 0.0540162i
\(383\) −3.69319 + 3.69319i −0.188713 + 0.188713i −0.795140 0.606427i \(-0.792602\pi\)
0.606427 + 0.795140i \(0.292602\pi\)
\(384\) 0 0
\(385\) 0.799623 + 0.331215i 0.0407526 + 0.0168803i
\(386\) −0.926277 2.23623i −0.0471463 0.113821i
\(387\) 0 0
\(388\) 6.13050 2.53934i 0.311229 0.128915i
\(389\) 0.947715 + 0.947715i 0.0480511 + 0.0480511i 0.730724 0.682673i \(-0.239183\pi\)
−0.682673 + 0.730724i \(0.739183\pi\)
\(390\) 0 0
\(391\) −1.27267 + 21.6549i −0.0643616 + 1.09513i
\(392\) −0.202516 −0.0102286
\(393\) 0 0
\(394\) −0.549748 + 0.227713i −0.0276959 + 0.0114720i
\(395\) 0.635814i 0.0319913i
\(396\) 0 0
\(397\) −11.9156 4.93561i −0.598028 0.247711i 0.0630721 0.998009i \(-0.479910\pi\)
−0.661100 + 0.750298i \(0.729910\pi\)
\(398\) 1.02705 2.47952i 0.0514815 0.124287i
\(399\) 0 0
\(400\) −12.0877 + 12.0877i −0.604384 + 0.604384i
\(401\) −4.79470 + 11.5754i −0.239436 + 0.578049i −0.997225 0.0744507i \(-0.976280\pi\)
0.757789 + 0.652500i \(0.226280\pi\)
\(402\) 0 0
\(403\) 0.566323 + 1.36722i 0.0282105 + 0.0681063i
\(404\) 8.38395i 0.417117i
\(405\) 0 0
\(406\) −1.42764 1.42764i −0.0708528 0.0708528i
\(407\) −40.7237 −2.01860
\(408\) 0 0
\(409\) −0.156286 −0.00772787 −0.00386393 0.999993i \(-0.501230\pi\)
−0.00386393 + 0.999993i \(0.501230\pi\)
\(410\) −0.0293712 0.0293712i −0.00145054 0.00145054i
\(411\) 0 0
\(412\) 1.85922i 0.0915974i
\(413\) 9.66030 + 23.3220i 0.475353 + 1.14760i
\(414\) 0 0
\(415\) −0.198522 + 0.479273i −0.00974504 + 0.0235266i
\(416\) 1.16564 1.16564i 0.0571503 0.0571503i
\(417\) 0 0
\(418\) −4.46819 + 10.7872i −0.218546 + 0.527617i
\(419\) 24.5021 + 10.1491i 1.19700 + 0.495815i 0.890030 0.455902i \(-0.150683\pi\)
0.306974 + 0.951718i \(0.400683\pi\)
\(420\) 0 0
\(421\) 26.6269i 1.29772i 0.760909 + 0.648859i \(0.224753\pi\)
−0.760909 + 0.648859i \(0.775247\pi\)
\(422\) 5.69935 2.36075i 0.277440 0.114919i
\(423\) 0 0
\(424\) 15.7933 0.766988
\(425\) 18.5374 + 8.98668i 0.899198 + 0.435918i
\(426\) 0 0
\(427\) −3.44525 3.44525i −0.166727 0.166727i
\(428\) 30.8211 12.7665i 1.48979 0.617093i
\(429\) 0 0
\(430\) 0.0322311 + 0.0778128i 0.00155432 + 0.00375247i
\(431\) 29.4298 + 12.1902i 1.41758 + 0.587182i 0.954252 0.299003i \(-0.0966541\pi\)
0.463331 + 0.886185i \(0.346654\pi\)
\(432\) 0 0
\(433\) −24.1537 + 24.1537i −1.16075 + 1.16075i −0.176442 + 0.984311i \(0.556459\pi\)
−0.984311 + 0.176442i \(0.943541\pi\)
\(434\) 1.87018 1.87018i 0.0897717 0.0897717i
\(435\) 0 0
\(436\) 20.2846 + 8.40217i 0.971457 + 0.402391i
\(437\) −13.8305 33.3898i −0.661603 1.59725i
\(438\) 0 0
\(439\) −27.4308 + 11.3622i −1.30920 + 0.542288i −0.924651 0.380816i \(-0.875643\pi\)
−0.384549 + 0.923105i \(0.625643\pi\)
\(440\) 0.279332 + 0.279332i 0.0133166 + 0.0133166i
\(441\) 0 0
\(442\) −0.544844 0.264133i −0.0259156 0.0125635i
\(443\) −15.6384 −0.743002 −0.371501 0.928432i \(-0.621157\pi\)
−0.371501 + 0.928432i \(0.621157\pi\)
\(444\) 0 0
\(445\) −0.877375 + 0.363421i −0.0415916 + 0.0172278i
\(446\) 6.70379i 0.317434i
\(447\) 0 0
\(448\) 14.2009 + 5.88221i 0.670930 + 0.277908i
\(449\) −3.22717 + 7.79108i −0.152300 + 0.367684i −0.981553 0.191188i \(-0.938766\pi\)
0.829254 + 0.558872i \(0.188766\pi\)
\(450\) 0 0
\(451\) −8.54845 + 8.54845i −0.402531 + 0.402531i
\(452\) −3.31649 + 8.00671i −0.155994 + 0.376604i
\(453\) 0 0
\(454\) 0.979788 + 2.36542i 0.0459837 + 0.111015i
\(455\) 0.0747792i 0.00350570i
\(456\) 0 0
\(457\) 16.8560 + 16.8560i 0.788491 + 0.788491i 0.981247 0.192756i \(-0.0617425\pi\)
−0.192756 + 0.981247i \(0.561743\pi\)
\(458\) −6.39996 −0.299051
\(459\) 0 0
\(460\) −0.596019 −0.0277895
\(461\) −2.57453 2.57453i −0.119908 0.119908i 0.644607 0.764515i \(-0.277021\pi\)
−0.764515 + 0.644607i \(0.777021\pi\)
\(462\) 0 0
\(463\) 20.7505i 0.964359i −0.876072 0.482180i \(-0.839845\pi\)
0.876072 0.482180i \(-0.160155\pi\)
\(464\) 3.15374 + 7.61379i 0.146409 + 0.353461i
\(465\) 0 0
\(466\) 1.78271 4.30385i 0.0825827 0.199372i
\(467\) −25.6578 + 25.6578i −1.18730 + 1.18730i −0.209491 + 0.977811i \(0.567181\pi\)
−0.977811 + 0.209491i \(0.932819\pi\)
\(468\) 0 0
\(469\) 3.26449 7.88119i 0.150740 0.363919i
\(470\) −0.159346 0.0660031i −0.00735007 0.00304450i
\(471\) 0 0
\(472\) 11.5217i 0.530329i
\(473\) 22.6473 9.38082i 1.04132 0.431331i
\(474\) 0 0
\(475\) −34.3226 −1.57483
\(476\) 1.23159 20.9559i 0.0564498 0.960513i
\(477\) 0 0
\(478\) −4.67132 4.67132i −0.213661 0.213661i
\(479\) −23.3776 + 9.68333i −1.06815 + 0.442443i −0.846338 0.532646i \(-0.821198\pi\)
−0.221813 + 0.975089i \(0.571198\pi\)
\(480\) 0 0
\(481\) 1.34647 + 3.25067i 0.0613939 + 0.148218i
\(482\) −3.36632 1.39438i −0.153332 0.0635121i
\(483\) 0 0
\(484\) 24.8344 24.8344i 1.12884 1.12884i
\(485\) 0.146942 0.146942i 0.00667228 0.00667228i
\(486\) 0 0
\(487\) −19.1193 7.91949i −0.866380 0.358866i −0.0951805 0.995460i \(-0.530343\pi\)
−0.771199 + 0.636594i \(0.780343\pi\)
\(488\) −0.851021 2.05455i −0.0385239 0.0930050i
\(489\) 0 0
\(490\) −0.00285609 + 0.00118303i −0.000129025 + 5.34439e-5i
\(491\) 11.7349 + 11.7349i 0.529587 + 0.529587i 0.920449 0.390862i \(-0.127823\pi\)
−0.390862 + 0.920449i \(0.627823\pi\)
\(492\) 0 0
\(493\) 7.42253 6.59851i 0.334294 0.297182i
\(494\) 1.00879 0.0453878
\(495\) 0 0
\(496\) −9.97391 + 4.13133i −0.447842 + 0.185502i
\(497\) 11.5646i 0.518743i
\(498\) 0 0
\(499\) 26.3968 + 10.9339i 1.18168 + 0.489470i 0.885039 0.465518i \(-0.154132\pi\)
0.296646 + 0.954987i \(0.404132\pi\)
\(500\) −0.433377 + 1.04626i −0.0193812 + 0.0467903i
\(501\) 0 0
\(502\) 5.71714 5.71714i 0.255168 0.255168i
\(503\) 4.58354 11.0656i 0.204370 0.493392i −0.788149 0.615484i \(-0.788960\pi\)
0.992519 + 0.122092i \(0.0389604\pi\)
\(504\) 0 0
\(505\) 0.100477 + 0.242574i 0.00447118 + 0.0107944i
\(506\) 8.94240i 0.397538i
\(507\) 0 0
\(508\) −7.45959 7.45959i −0.330966 0.330966i
\(509\) −24.8636 −1.10206 −0.551031 0.834485i \(-0.685765\pi\)
−0.551031 + 0.834485i \(0.685765\pi\)
\(510\) 0 0
\(511\) 31.9644 1.41402
\(512\) 14.4150 + 14.4150i 0.637059 + 0.637059i
\(513\) 0 0
\(514\) 3.93388i 0.173516i
\(515\) −0.0222818 0.0537931i −0.000981855 0.00237041i
\(516\) 0 0
\(517\) −19.2101 + 46.3773i −0.844860 + 2.03967i
\(518\) 4.44650 4.44650i 0.195368 0.195368i
\(519\) 0 0
\(520\) 0.0130613 0.0315327i 0.000572775 0.00138280i
\(521\) −23.6260 9.78620i −1.03507 0.428741i −0.200532 0.979687i \(-0.564267\pi\)
−0.834541 + 0.550946i \(0.814267\pi\)
\(522\) 0 0
\(523\) 15.9637i 0.698043i −0.937115 0.349022i \(-0.886514\pi\)
0.937115 0.349022i \(-0.113486\pi\)
\(524\) 11.0548 4.57903i 0.482929 0.200036i
\(525\) 0 0
\(526\) 2.01088 0.0876784
\(527\) 8.64391 + 9.72337i 0.376535 + 0.423557i
\(528\) 0 0
\(529\) 3.30900 + 3.30900i 0.143869 + 0.143869i
\(530\) 0.222733 0.0922590i 0.00967491 0.00400748i
\(531\) 0 0
\(532\) 13.3841 + 32.3120i 0.580274 + 1.40090i
\(533\) 0.965003 + 0.399717i 0.0417989 + 0.0173137i
\(534\) 0 0
\(535\) 0.738750 0.738750i 0.0319390 0.0319390i
\(536\) 2.75313 2.75313i 0.118917 0.118917i
\(537\) 0 0
\(538\) 7.21368 + 2.98800i 0.311004 + 0.128822i
\(539\) 0.344319 + 0.831261i 0.0148309 + 0.0358049i
\(540\) 0 0
\(541\) 22.6178 9.36862i 0.972417 0.402788i 0.160806 0.986986i \(-0.448591\pi\)
0.811611 + 0.584198i \(0.198591\pi\)
\(542\) −1.96757 1.96757i −0.0845145 0.0845145i
\(543\) 0 0
\(544\) 6.32190 13.0406i 0.271049 0.559112i
\(545\) 0.687593 0.0294532
\(546\) 0 0
\(547\) −34.4829 + 14.2833i −1.47438 + 0.610708i −0.967853 0.251516i \(-0.919071\pi\)
−0.506527 + 0.862224i \(0.669071\pi\)
\(548\) 16.0640i 0.686221i
\(549\) 0 0
\(550\) −7.84605 3.24994i −0.334556 0.138578i
\(551\) −6.33209 + 15.2870i −0.269756 + 0.651249i
\(552\) 0 0
\(553\) 20.2053 20.2053i 0.859218 0.859218i
\(554\) −1.65698 + 4.00031i −0.0703985 + 0.169957i
\(555\) 0 0
\(556\) 4.02914 + 9.72721i 0.170874 + 0.412526i
\(557\) 13.6266i 0.577378i −0.957423 0.288689i \(-0.906781\pi\)
0.957423 0.288689i \(-0.0932193\pi\)
\(558\) 0 0
\(559\) −1.49760 1.49760i −0.0633419 0.0633419i
\(560\) 0.545515 0.0230522
\(561\) 0 0
\(562\) −5.29831 −0.223496
\(563\) 27.3487 + 27.3487i 1.15261 + 1.15261i 0.986028 + 0.166581i \(0.0532726\pi\)
0.166581 + 0.986028i \(0.446727\pi\)
\(564\) 0 0
\(565\) 0.271405i 0.0114181i
\(566\) −3.02214 7.29609i −0.127030 0.306678i
\(567\) 0 0
\(568\) 2.01993 4.87653i 0.0847542 0.204615i
\(569\) 8.31984 8.31984i 0.348786 0.348786i −0.510871 0.859657i \(-0.670677\pi\)
0.859657 + 0.510871i \(0.170677\pi\)
\(570\) 0 0
\(571\) 4.90353 11.8382i 0.205206 0.495411i −0.787450 0.616378i \(-0.788599\pi\)
0.992657 + 0.120967i \(0.0385994\pi\)
\(572\) −4.47347 1.85297i −0.187045 0.0774767i
\(573\) 0 0
\(574\) 1.86676i 0.0779170i
\(575\) 24.2861 10.0596i 1.01280 0.419515i
\(576\) 0 0
\(577\) 30.7966 1.28208 0.641040 0.767508i \(-0.278503\pi\)
0.641040 + 0.767508i \(0.278503\pi\)
\(578\) −5.28644 0.623527i −0.219887 0.0259353i
\(579\) 0 0
\(580\) 0.192954 + 0.192954i 0.00801199 + 0.00801199i
\(581\) −21.5394 + 8.92193i −0.893607 + 0.370144i
\(582\) 0 0
\(583\) −26.8519 64.8261i −1.11209 2.68482i
\(584\) 13.4787 + 5.58305i 0.557752 + 0.231028i
\(585\) 0 0
\(586\) −0.428157 + 0.428157i −0.0176870 + 0.0176870i
\(587\) 13.3240 13.3240i 0.549939 0.549939i −0.376484 0.926423i \(-0.622867\pi\)
0.926423 + 0.376484i \(0.122867\pi\)
\(588\) 0 0
\(589\) −20.0257 8.29492i −0.825144 0.341786i
\(590\) 0.0673060 + 0.162491i 0.00277095 + 0.00668965i
\(591\) 0 0
\(592\) −23.7137 + 9.82253i −0.974627 + 0.403704i
\(593\) 20.0409 + 20.0409i 0.822982 + 0.822982i 0.986535 0.163553i \(-0.0522955\pi\)
−0.163553 + 0.986535i \(0.552295\pi\)
\(594\) 0 0
\(595\) −0.215512 0.621080i −0.00883514 0.0254618i
\(596\) −43.1210 −1.76631
\(597\) 0 0
\(598\) −0.713805 + 0.295668i −0.0291897 + 0.0120908i
\(599\) 20.3955i 0.833339i −0.909058 0.416669i \(-0.863197\pi\)
0.909058 0.416669i \(-0.136803\pi\)
\(600\) 0 0
\(601\) 24.8984 + 10.3132i 1.01563 + 0.420686i 0.827504 0.561460i \(-0.189760\pi\)
0.188122 + 0.982146i \(0.439760\pi\)
\(602\) −1.44853 + 3.49705i −0.0590376 + 0.142529i
\(603\) 0 0
\(604\) 17.1111 17.1111i 0.696241 0.696241i
\(605\) 0.420909 1.01617i 0.0171124 0.0413130i
\(606\) 0 0
\(607\) −14.2003 34.2826i −0.576372 1.39149i −0.896047 0.443959i \(-0.853574\pi\)
0.319675 0.947527i \(-0.396426\pi\)
\(608\) 24.1451i 0.979211i
\(609\) 0 0
\(610\) −0.0240040 0.0240040i −0.000971893 0.000971893i
\(611\) 4.33711 0.175461
\(612\) 0 0
\(613\) −43.2999 −1.74887 −0.874433 0.485147i \(-0.838766\pi\)
−0.874433 + 0.485147i \(0.838766\pi\)
\(614\) −0.175184 0.175184i −0.00706984 0.00706984i
\(615\) 0 0
\(616\) 17.7536i 0.715314i
\(617\) −2.23750 5.40179i −0.0900782 0.217468i 0.872420 0.488758i \(-0.162550\pi\)
−0.962498 + 0.271290i \(0.912550\pi\)
\(618\) 0 0
\(619\) 1.75427 4.23518i 0.0705101 0.170226i −0.884696 0.466169i \(-0.845634\pi\)
0.955206 + 0.295943i \(0.0956338\pi\)
\(620\) −0.252766 + 0.252766i −0.0101513 + 0.0101513i
\(621\) 0 0
\(622\) −3.71885 + 8.97811i −0.149112 + 0.359989i
\(623\) −39.4309 16.3328i −1.57977 0.654360i
\(624\) 0 0
\(625\) 24.9468i 0.997872i
\(626\) 2.65644 1.10033i 0.106173 0.0439781i
\(627\) 0 0
\(628\) 4.75686 0.189819
\(629\) 20.5515 + 23.1180i 0.819443 + 0.921775i
\(630\) 0 0
\(631\) 29.8822 + 29.8822i 1.18959 + 1.18959i 0.977180 + 0.212414i \(0.0681324\pi\)
0.212414 + 0.977180i \(0.431868\pi\)
\(632\) 12.0493 4.99099i 0.479296 0.198531i
\(633\) 0 0
\(634\) 2.39930 + 5.79242i 0.0952883 + 0.230046i
\(635\) −0.305228 0.126430i −0.0121126 0.00501721i
\(636\) 0 0
\(637\) 0.0549690 0.0549690i 0.00217795 0.00217795i
\(638\) −2.89500 + 2.89500i −0.114614 + 0.114614i
\(639\) 0 0
\(640\) 0.485785 + 0.201219i 0.0192023 + 0.00795387i
\(641\) −14.0727 33.9746i −0.555839 1.34192i −0.913033 0.407885i \(-0.866266\pi\)
0.357194 0.934030i \(-0.383734\pi\)
\(642\) 0 0
\(643\) −20.2367 + 8.38232i −0.798058 + 0.330567i −0.744178 0.667981i \(-0.767159\pi\)
−0.0538797 + 0.998547i \(0.517159\pi\)
\(644\) −18.9407 18.9407i −0.746368 0.746368i
\(645\) 0 0
\(646\) 8.37855 2.90732i 0.329650 0.114387i
\(647\) 13.3204 0.523681 0.261840 0.965111i \(-0.415671\pi\)
0.261840 + 0.965111i \(0.415671\pi\)
\(648\) 0 0
\(649\) 47.2928 19.5893i 1.85640 0.768948i
\(650\) 0.733747i 0.0287799i
\(651\) 0 0
\(652\) −18.8866 7.82309i −0.739657 0.306376i
\(653\) 3.92953 9.48672i 0.153774 0.371244i −0.828153 0.560502i \(-0.810608\pi\)
0.981927 + 0.189258i \(0.0606082\pi\)
\(654\) 0 0
\(655\) 0.264971 0.264971i 0.0103533 0.0103533i
\(656\) −2.91594 + 7.03970i −0.113848 + 0.274854i
\(657\) 0 0
\(658\) −2.96630 7.16129i −0.115639 0.279176i
\(659\) 22.3839i 0.871954i −0.899958 0.435977i \(-0.856403\pi\)
0.899958 0.435977i \(-0.143597\pi\)
\(660\) 0 0
\(661\) −22.1866 22.1866i −0.862958 0.862958i 0.128722 0.991681i \(-0.458912\pi\)
−0.991681 + 0.128722i \(0.958912\pi\)
\(662\) 7.72895 0.300394
\(663\) 0 0
\(664\) −10.6411 −0.412953
\(665\) 0.774486 + 0.774486i 0.0300333 + 0.0300333i
\(666\) 0 0
\(667\) 12.6727i 0.490690i
\(668\) −6.71444 16.2101i −0.259790 0.627188i
\(669\) 0 0
\(670\) 0.0227446 0.0549104i 0.000878702 0.00212137i
\(671\) −6.98632 + 6.98632i −0.269704 + 0.269704i
\(672\) 0 0
\(673\) 3.79549 9.16311i 0.146305 0.353212i −0.833690 0.552233i \(-0.813776\pi\)
0.979995 + 0.199020i \(0.0637760\pi\)
\(674\) 7.96720 + 3.30012i 0.306885 + 0.127116i
\(675\) 0 0
\(676\) 24.3071i 0.934887i
\(677\) −1.12058 + 0.464158i −0.0430673 + 0.0178390i −0.404113 0.914709i \(-0.632420\pi\)
0.361046 + 0.932548i \(0.382420\pi\)
\(678\) 0 0
\(679\) 9.33924 0.358407
\(680\) 0.0176040 0.299538i 0.000675083 0.0114868i
\(681\) 0 0
\(682\) −3.79239 3.79239i −0.145218 0.145218i
\(683\) −28.5239 + 11.8150i −1.09144 + 0.452088i −0.854507 0.519440i \(-0.826141\pi\)
−0.236929 + 0.971527i \(0.576141\pi\)
\(684\) 0 0
\(685\) 0.192519 + 0.464782i 0.00735577 + 0.0177584i
\(686\) 5.29238 + 2.19218i 0.202064 + 0.0836977i
\(687\) 0 0
\(688\) 10.9250 10.9250i 0.416513 0.416513i
\(689\) −4.28677 + 4.28677i −0.163313 + 0.163313i
\(690\) 0 0
\(691\) 23.8070 + 9.86119i 0.905661 + 0.375137i 0.786394 0.617725i \(-0.211945\pi\)
0.119267 + 0.992862i \(0.461945\pi\)
\(692\) 1.15137 + 2.77966i 0.0437687 + 0.105667i
\(693\) 0 0
\(694\) 6.66179 2.75940i 0.252878 0.104745i
\(695\) 0.233151 + 0.233151i 0.00884393 + 0.00884393i
\(696\) 0 0
\(697\) 9.16682 + 0.538739i 0.347218 + 0.0204062i
\(698\) −5.97339 −0.226096
\(699\) 0 0
\(700\) −23.5022 + 9.73492i −0.888299 + 0.367945i
\(701\) 25.4354i 0.960683i 0.877081 + 0.480342i \(0.159487\pi\)
−0.877081 + 0.480342i \(0.840513\pi\)
\(702\) 0 0
\(703\) −47.6125 19.7218i −1.79574 0.743820i
\(704\) 11.9280 28.7968i 0.449555 1.08532i
\(705\) 0 0
\(706\) −1.61028 + 1.61028i −0.0606037 + 0.0606037i
\(707\) −4.51564 + 10.9017i −0.169828 + 0.410001i
\(708\) 0 0
\(709\) −15.3766 37.1224i −0.577480 1.39416i −0.895067 0.445932i \(-0.852872\pi\)
0.317587 0.948229i \(-0.397128\pi\)
\(710\) 0.0805737i 0.00302388i
\(711\) 0 0
\(712\) −13.7744 13.7744i −0.516216 0.516216i
\(713\) 16.6010 0.621712
\(714\) 0 0
\(715\) −0.151638 −0.00567096
\(716\) 8.94516 + 8.94516i 0.334296 + 0.334296i
\(717\) 0 0
\(718\) 8.32133i 0.310549i
\(719\) 7.61734 + 18.3899i 0.284079 + 0.685827i 0.999923 0.0124334i \(-0.00395779\pi\)
−0.715844 + 0.698260i \(0.753958\pi\)
\(720\) 0 0
\(721\) 1.00139 2.41756i 0.0372936 0.0900348i
\(722\) −6.24125 + 6.24125i −0.232275 + 0.232275i
\(723\) 0 0
\(724\) 12.4269 30.0013i 0.461843 1.11499i
\(725\) −11.1190 4.60565i −0.412950 0.171050i
\(726\) 0 0
\(727\) 3.61240i 0.133977i −0.997754 0.0669883i \(-0.978661\pi\)
0.997754 0.0669883i \(-0.0213390\pi\)
\(728\) 1.41714 0.586999i 0.0525227 0.0217556i
\(729\) 0 0
\(730\) 0.222705 0.00824267
\(731\) −16.7544 8.12231i −0.619685 0.300414i
\(732\) 0 0
\(733\) 6.03103 + 6.03103i 0.222761 + 0.222761i 0.809660 0.586899i \(-0.199651\pi\)
−0.586899 + 0.809660i \(0.699651\pi\)
\(734\) −8.44747 + 3.49906i −0.311802 + 0.129153i
\(735\) 0 0
\(736\) −7.07669 17.0846i −0.260850 0.629748i
\(737\) −15.9816 6.61979i −0.588690 0.243843i
\(738\) 0 0
\(739\) −15.6825 + 15.6825i −0.576890 + 0.576890i −0.934045 0.357155i \(-0.883747\pi\)
0.357155 + 0.934045i \(0.383747\pi\)
\(740\) −0.600970 + 0.600970i −0.0220921 + 0.0220921i
\(741\) 0 0
\(742\) 10.0100 + 4.14629i 0.367480 + 0.152215i
\(743\) 9.91023 + 23.9254i 0.363571 + 0.877738i 0.994772 + 0.102119i \(0.0325623\pi\)
−0.631201 + 0.775619i \(0.717438\pi\)
\(744\) 0 0
\(745\) −1.24763 + 0.516783i −0.0457095 + 0.0189335i
\(746\) −3.71893 3.71893i −0.136160 0.136160i
\(747\) 0 0
\(748\) −42.4947 2.49744i −1.55376 0.0913154i
\(749\) 46.9530 1.71563
\(750\) 0 0
\(751\) −3.91962 + 1.62356i −0.143029 + 0.0592445i −0.453050 0.891485i \(-0.649664\pi\)
0.310021 + 0.950730i \(0.399664\pi\)
\(752\) 31.6393i 1.15377i
\(753\) 0 0
\(754\) 0.326805 + 0.135367i 0.0119016 + 0.00492979i
\(755\) 0.290010 0.700146i 0.0105545 0.0254809i
\(756\) 0 0
\(757\) 5.57075 5.57075i 0.202472 0.202472i −0.598586 0.801058i \(-0.704271\pi\)
0.801058 + 0.598586i \(0.204271\pi\)
\(758\) −1.15987 + 2.80018i −0.0421285 + 0.101707i
\(759\) 0 0
\(760\) 0.191308 + 0.461859i 0.00693948 + 0.0167534i
\(761\) 45.9699i 1.66641i −0.552965 0.833205i \(-0.686504\pi\)
0.552965 0.833205i \(-0.313496\pi\)
\(762\) 0 0
\(763\) 21.8508 + 21.8508i 0.791052 + 0.791052i
\(764\) 9.06893 0.328102
\(765\) 0 0
\(766\) −1.63542 −0.0590903
\(767\) −3.12734 3.12734i −0.112922 0.112922i
\(768\) 0 0
\(769\) 17.5627i 0.633328i 0.948538 + 0.316664i \(0.102563\pi\)
−0.948538 + 0.316664i \(0.897437\pi\)
\(770\) 0.103711 + 0.250380i 0.00373748 + 0.00902307i
\(771\) 0 0
\(772\) −5.62635 + 13.5832i −0.202497 + 0.488871i
\(773\) 12.3939 12.3939i 0.445776 0.445776i −0.448172 0.893948i \(-0.647925\pi\)
0.893948 + 0.448172i \(0.147925\pi\)
\(774\) 0 0
\(775\) 6.03331 14.5657i 0.216723 0.523215i
\(776\) 3.93815 + 1.63124i 0.141371 + 0.0585579i
\(777\) 0 0
\(778\) 0.419669i 0.0150459i
\(779\) −14.1344 + 5.85465i −0.506416 + 0.209765i
\(780\) 0 0
\(781\) −23.4509 −0.839138
\(782\) −5.07641 + 4.51285i −0.181532 + 0.161379i
\(783\) 0 0
\(784\) 0.400999 + 0.400999i 0.0143214 + 0.0143214i
\(785\) 0.137631 0.0570085i 0.00491225 0.00203472i
\(786\) 0 0
\(787\) 12.2537 + 29.5830i 0.436797 + 1.05452i 0.977048 + 0.213018i \(0.0683292\pi\)
−0.540251 + 0.841504i \(0.681671\pi\)
\(788\) 3.33926 + 1.38317i 0.118956 + 0.0492732i
\(789\) 0 0
\(790\) 0.140776 0.140776i 0.00500859 0.00500859i
\(791\) −8.62491 + 8.62491i −0.306667 + 0.306667i
\(792\) 0 0
\(793\) 0.788660 + 0.326674i 0.0280061 + 0.0116005i
\(794\) −1.54545 3.73105i −0.0548460 0.132410i
\(795\) 0 0
\(796\) −15.0610 + 6.23847i −0.533823 + 0.221117i
\(797\) 3.77414 + 3.77414i 0.133687 + 0.133687i 0.770784 0.637097i \(-0.219865\pi\)
−0.637097 + 0.770784i \(0.719865\pi\)
\(798\) 0 0
\(799\) 36.0220 12.4995i 1.27437 0.442200i
\(800\) −17.5619 −0.620908
\(801\) 0 0
\(802\) −3.62453 + 1.50133i −0.127986 + 0.0530137i
\(803\) 64.8179i 2.28737i
\(804\) 0 0
\(805\) −0.775008 0.321019i −0.0273154 0.0113144i
\(806\) −0.177328 + 0.428109i −0.00624613 + 0.0150795i
\(807\) 0 0
\(808\) −3.80829 + 3.80829i −0.133975 + 0.133975i
\(809\) −15.5314 + 37.4960i −0.546054 + 1.31829i 0.374338 + 0.927293i \(0.377870\pi\)
−0.920391 + 0.390998i \(0.872130\pi\)
\(810\) 0 0
\(811\) 8.29520 + 20.0264i 0.291284 + 0.703221i 0.999997 0.00227504i \(-0.000724170\pi\)
−0.708714 + 0.705496i \(0.750724\pi\)
\(812\) 12.2637i 0.430371i
\(813\) 0 0
\(814\) −9.01668 9.01668i −0.316034 0.316034i
\(815\) −0.640204 −0.0224254
\(816\) 0 0
\(817\) 31.0213 1.08530
\(818\) −0.0346035 0.0346035i −0.00120988 0.00120988i
\(819\) 0 0
\(820\) 0.252303i 0.00881081i
\(821\) −1.16146 2.80401i −0.0405353 0.0978608i 0.902315 0.431077i \(-0.141866\pi\)
−0.942851 + 0.333216i \(0.891866\pi\)
\(822\) 0 0
\(823\) −2.32792 + 5.62009i −0.0811462 + 0.195904i −0.959245 0.282574i \(-0.908812\pi\)
0.878099 + 0.478479i \(0.158812\pi\)
\(824\) 0.844526 0.844526i 0.0294205 0.0294205i
\(825\) 0 0
\(826\) −3.02486 + 7.30266i −0.105248 + 0.254092i
\(827\) 21.1076 + 8.74304i 0.733982 + 0.304025i 0.718187 0.695850i \(-0.244972\pi\)
0.0157948 + 0.999875i \(0.494972\pi\)
\(828\) 0 0
\(829\) 5.37918i 0.186827i −0.995627 0.0934133i \(-0.970222\pi\)
0.995627 0.0934133i \(-0.0297778\pi\)
\(830\) −0.150071 + 0.0621616i −0.00520905 + 0.00215766i
\(831\) 0 0
\(832\) −2.69302 −0.0933638
\(833\) 0.298126 0.614965i 0.0103295 0.0213073i
\(834\) 0 0
\(835\) −0.388539 0.388539i −0.0134460 0.0134460i
\(836\) 65.5229 27.1405i 2.26616 0.938673i
\(837\) 0 0
\(838\) 3.17791 + 7.67215i 0.109779 + 0.265030i
\(839\) 1.41160 + 0.584702i 0.0487337 + 0.0201862i 0.406917 0.913465i \(-0.366604\pi\)
−0.358183 + 0.933651i \(0.616604\pi\)
\(840\) 0 0
\(841\) 16.4034 16.4034i 0.565636 0.565636i
\(842\) −5.89550 + 5.89550i −0.203172 + 0.203172i
\(843\) 0 0
\(844\) −34.6187 14.3395i −1.19162 0.493587i
\(845\) −0.291308 0.703279i −0.0100213 0.0241935i
\(846\) 0 0
\(847\) 45.6684 18.9165i 1.56918 0.649977i
\(848\) −31.2720 31.2720i −1.07389 1.07389i
\(849\) 0 0
\(850\) 2.11464 + 6.09414i 0.0725317 + 0.209027i
\(851\) 39.4701 1.35302
\(852\) 0 0
\(853\) −19.7045 + 8.16188i −0.674670 + 0.279457i −0.693597 0.720364i \(-0.743975\pi\)
0.0189270 + 0.999821i \(0.493975\pi\)
\(854\) 1.52563i 0.0522060i
\(855\) 0 0
\(856\) 19.7991 + 8.20104i 0.676718 + 0.280306i
\(857\) −1.76691 + 4.26569i −0.0603564 + 0.145713i −0.951181 0.308635i \(-0.900128\pi\)
0.890824 + 0.454348i \(0.150128\pi\)
\(858\) 0 0
\(859\) 26.2760 26.2760i 0.896525 0.896525i −0.0986015 0.995127i \(-0.531437\pi\)
0.995127 + 0.0986015i \(0.0314369\pi\)
\(860\) 0.195777 0.472647i 0.00667594 0.0161171i
\(861\) 0 0
\(862\) 3.81703 + 9.21513i 0.130009 + 0.313869i
\(863\) 32.4840i 1.10577i 0.833258 + 0.552884i \(0.186473\pi\)
−0.833258 + 0.552884i \(0.813527\pi\)
\(864\) 0 0
\(865\) 0.0666257 + 0.0666257i 0.00226534 + 0.00226534i
\(866\) −10.6958 −0.363458
\(867\) 0 0
\(868\) −16.0652 −0.545287
\(869\) −40.9727 40.9727i −1.38990 1.38990i
\(870\) 0 0
\(871\) 1.49457i 0.0506415i
\(872\) 5.39744 + 13.0306i 0.182780 + 0.441271i
\(873\) 0 0
\(874\) 4.33064 10.4551i 0.146486 0.353649i
\(875\) −1.12705 + 1.12705i −0.0381011 + 0.0381011i
\(876\) 0 0
\(877\) −1.06535 + 2.57197i −0.0359741 + 0.0868493i −0.940846 0.338836i \(-0.889967\pi\)
0.904871 + 0.425685i \(0.139967\pi\)
\(878\) −8.58919 3.55776i −0.289871 0.120069i
\(879\) 0 0
\(880\) 1.10620i 0.0372901i
\(881\) −47.0398 + 19.4845i −1.58481 + 0.656450i −0.989167 0.146797i \(-0.953103\pi\)
−0.595645 + 0.803248i \(0.703103\pi\)
\(882\) 0 0
\(883\) 36.5258 1.22919 0.614596 0.788842i \(-0.289319\pi\)
0.614596 + 0.788842i \(0.289319\pi\)
\(884\) 1.20568 + 3.47462i 0.0405513 + 0.116864i
\(885\) 0 0
\(886\) −3.46251 3.46251i −0.116325 0.116325i
\(887\) 24.1541 10.0049i 0.811014 0.335933i 0.0616555 0.998097i \(-0.480362\pi\)
0.749359 + 0.662164i \(0.230362\pi\)
\(888\) 0 0
\(889\) −5.68199 13.7175i −0.190568 0.460071i
\(890\) −0.274726 0.113795i −0.00920884 0.00381442i
\(891\) 0 0
\(892\) −28.7933 + 28.7933i −0.964070 + 0.964070i
\(893\) −44.9194 + 44.9194i −1.50317 + 1.50317i
\(894\) 0 0
\(895\) 0.366014 + 0.151608i 0.0122345 + 0.00506770i
\(896\) 9.04315 + 21.8321i 0.302110 + 0.729359i
\(897\) 0 0
\(898\) −2.43956 + 1.01050i −0.0814093 + 0.0337208i
\(899\) −5.37439 5.37439i −0.179246 0.179246i
\(900\) 0 0
\(901\) −23.2495 + 47.9582i −0.774552 + 1.59772i
\(902\) −3.78544 −0.126041
\(903\) 0 0
\(904\) −5.14340 + 2.13047i −0.171067 + 0.0708583i
\(905\) 1.01696i 0.0338049i
\(906\) 0 0
\(907\) 43.9800 + 18.2171i 1.46033 + 0.604890i 0.964631 0.263603i \(-0.0849108\pi\)
0.495702 + 0.868493i \(0.334911\pi\)
\(908\) 5.95138 14.3679i 0.197504 0.476816i
\(909\) 0 0
\(910\) 0.0165569 0.0165569i 0.000548857 0.000548857i
\(911\) 13.8928 33.5403i 0.460290 1.11124i −0.507988 0.861364i \(-0.669611\pi\)
0.968278 0.249875i \(-0.0803894\pi\)
\(912\) 0 0
\(913\) 18.0920 + 43.6780i 0.598759 + 1.44553i
\(914\) 7.46421i 0.246894i
\(915\) 0 0
\(916\) 27.4883 + 27.4883i 0.908240 + 0.908240i
\(917\) 16.8409 0.556135
\(918\) 0 0
\(919\) −1.14473 −0.0377611 −0.0188806 0.999822i \(-0.506010\pi\)
−0.0188806 + 0.999822i \(0.506010\pi\)
\(920\) −0.270733 0.270733i −0.00892581 0.00892581i
\(921\) 0 0
\(922\) 1.14006i 0.0375459i
\(923\) 0.775370 + 1.87191i 0.0255216 + 0.0616146i
\(924\) 0 0
\(925\) 14.3446 34.6310i 0.471648 1.13866i
\(926\) 4.59440 4.59440i 0.150981 0.150981i
\(927\) 0 0
\(928\) −3.23996 + 7.82195i −0.106357 + 0.256768i
\(929\) 40.8677 + 16.9279i 1.34083 + 0.555388i 0.933724 0.357995i \(-0.116540\pi\)
0.407102 + 0.913383i \(0.366540\pi\)
\(930\) 0 0
\(931\) 1.13862i 0.0373169i
\(932\) −26.1423 + 10.8285i −0.856319 + 0.354699i
\(933\) 0 0
\(934\) −11.3618 −0.371771
\(935\) −1.25944 + 0.437019i −0.0411880 + 0.0142921i
\(936\) 0 0
\(937\) 3.40623 + 3.40623i 0.111277 + 0.111277i 0.760553 0.649276i \(-0.224928\pi\)
−0.649276 + 0.760553i \(0.724928\pi\)
\(938\) 2.46778 1.02219i 0.0805758 0.0333756i
\(939\) 0 0
\(940\) 0.400913 + 0.967890i 0.0130763 + 0.0315691i
\(941\) 46.5982 + 19.3016i 1.51906 + 0.629214i 0.977403 0.211386i \(-0.0677978\pi\)
0.541655 + 0.840601i \(0.317798\pi\)
\(942\) 0 0
\(943\) 8.28530 8.28530i 0.269806 0.269806i
\(944\) 22.8140 22.8140i 0.742532 0.742532i
\(945\) 0 0
\(946\) 7.09138 + 2.93735i 0.230561 + 0.0955014i
\(947\) 8.78638 + 21.2122i 0.285519 + 0.689304i 0.999946 0.0104062i \(-0.00331245\pi\)
−0.714427 + 0.699710i \(0.753312\pi\)
\(948\) 0 0
\(949\) −5.17393 + 2.14311i −0.167953 + 0.0695684i
\(950\) −7.59940 7.59940i −0.246557 0.246557i
\(951\) 0 0
\(952\) 10.0784 8.95950i 0.326642 0.290379i
\(953\) 22.2611 0.721108 0.360554 0.932738i \(-0.382588\pi\)
0.360554 + 0.932738i \(0.382588\pi\)
\(954\) 0 0
\(955\) 0.262392 0.108686i 0.00849082 0.00351701i
\(956\) 40.1273i 1.29781i
\(957\) 0 0
\(958\) −7.32006 3.03207i −0.236500 0.0979617i
\(959\) −8.65216 + 20.8882i −0.279393 + 0.674514i
\(960\) 0 0
\(961\) −14.8800 + 14.8800i −0.479999 + 0.479999i
\(962\) −0.421611 + 1.01786i −0.0135933 + 0.0328171i
\(963\) 0 0
\(964\) 8.46966 + 20.4476i 0.272789 + 0.658572i
\(965\) 0.460434i 0.0148219i
\(966\) 0 0
\(967\) 28.6694 + 28.6694i 0.921944 + 0.921944i 0.997167 0.0752224i \(-0.0239667\pi\)
−0.0752224 + 0.997167i \(0.523967\pi\)
\(968\) 22.5614 0.725150
\(969\) 0 0
\(970\) 0.0650691 0.00208924
\(971\) 5.27642 + 5.27642i 0.169328 + 0.169328i 0.786684 0.617356i \(-0.211796\pi\)
−0.617356 + 0.786684i \(0.711796\pi\)
\(972\) 0 0
\(973\) 14.8185i 0.475059i
\(974\) −2.47977 5.98669i −0.0794570 0.191826i
\(975\) 0 0
\(976\) −2.38309 + 5.75328i −0.0762808 + 0.184158i
\(977\) −1.22888 + 1.22888i −0.0393153 + 0.0393153i −0.726491 0.687176i \(-0.758850\pi\)
0.687176 + 0.726491i \(0.258850\pi\)
\(978\) 0 0
\(979\) −33.1199 + 79.9586i −1.05852 + 2.55549i
\(980\) 0.0173483 + 0.00718591i 0.000554172 + 0.000229546i
\(981\) 0 0
\(982\) 5.19645i 0.165826i
\(983\) −49.9069 + 20.6721i −1.59178 + 0.659338i −0.990223 0.139491i \(-0.955454\pi\)
−0.601559 + 0.798828i \(0.705454\pi\)
\(984\) 0 0
\(985\) 0.113192 0.00360658
\(986\) 3.10441 + 0.182448i 0.0988647 + 0.00581033i
\(987\) 0 0
\(988\) −4.33285 4.33285i −0.137846 0.137846i
\(989\) −21.9501 + 9.09205i −0.697974 + 0.289110i
\(990\) 0 0
\(991\) −2.66540 6.43485i −0.0846692 0.204410i 0.875874 0.482539i \(-0.160285\pi\)
−0.960544 + 0.278130i \(0.910285\pi\)
\(992\) −10.2466 4.24428i −0.325330 0.134756i
\(993\) 0 0
\(994\) 2.56053 2.56053i 0.0812150 0.0812150i
\(995\) −0.360997 + 0.360997i −0.0114444 + 0.0114444i
\(996\) 0 0
\(997\) −43.1441 17.8709i −1.36639 0.565976i −0.425581 0.904920i \(-0.639930\pi\)
−0.940807 + 0.338944i \(0.889930\pi\)
\(998\) 3.42366 + 8.26545i 0.108374 + 0.261638i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.2.l.a.325.7 yes 48
3.2 odd 2 inner 459.2.l.a.325.6 yes 48
17.3 odd 16 7803.2.a.cd.1.14 24
17.9 even 8 inner 459.2.l.a.298.7 yes 48
17.14 odd 16 7803.2.a.cg.1.14 24
51.14 even 16 7803.2.a.cd.1.11 24
51.20 even 16 7803.2.a.cg.1.11 24
51.26 odd 8 inner 459.2.l.a.298.6 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
459.2.l.a.298.6 48 51.26 odd 8 inner
459.2.l.a.298.7 yes 48 17.9 even 8 inner
459.2.l.a.325.6 yes 48 3.2 odd 2 inner
459.2.l.a.325.7 yes 48 1.1 even 1 trivial
7803.2.a.cd.1.11 24 51.14 even 16
7803.2.a.cd.1.14 24 17.3 odd 16
7803.2.a.cg.1.11 24 51.20 even 16
7803.2.a.cg.1.14 24 17.14 odd 16