Properties

Label 2-7803-1.1-c1-0-53
Degree $2$
Conductor $7803$
Sign $1$
Analytic cond. $62.3072$
Root an. cond. $7.89349$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.313·2-s − 1.90·4-s − 0.0595·5-s + 2.67·7-s − 1.22·8-s − 0.0186·10-s − 5.42·11-s − 0.468·13-s + 0.838·14-s + 3.42·16-s − 6.86·19-s + 0.113·20-s − 1.69·22-s − 5.26·23-s − 4.99·25-s − 0.146·26-s − 5.09·28-s + 2.40·29-s + 3.15·31-s + 3.51·32-s − 0.159·35-s − 7.50·37-s − 2.15·38-s + 0.0727·40-s + 2.22·41-s − 4.51·43-s + 10.3·44-s + ⋯
L(s)  = 1  + 0.221·2-s − 0.950·4-s − 0.0266·5-s + 1.01·7-s − 0.431·8-s − 0.00589·10-s − 1.63·11-s − 0.130·13-s + 0.224·14-s + 0.855·16-s − 1.57·19-s + 0.0253·20-s − 0.362·22-s − 1.09·23-s − 0.999·25-s − 0.0288·26-s − 0.962·28-s + 0.447·29-s + 0.566·31-s + 0.621·32-s − 0.0269·35-s − 1.23·37-s − 0.348·38-s + 0.0115·40-s + 0.347·41-s − 0.688·43-s + 1.55·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7803 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7803 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7803\)    =    \(3^{3} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(62.3072\)
Root analytic conductor: \(7.89349\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7803,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.038483484\)
\(L(\frac12)\) \(\approx\) \(1.038483484\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
17 \( 1 \)
good2 \( 1 - 0.313T + 2T^{2} \)
5 \( 1 + 0.0595T + 5T^{2} \)
7 \( 1 - 2.67T + 7T^{2} \)
11 \( 1 + 5.42T + 11T^{2} \)
13 \( 1 + 0.468T + 13T^{2} \)
19 \( 1 + 6.86T + 19T^{2} \)
23 \( 1 + 5.26T + 23T^{2} \)
29 \( 1 - 2.40T + 29T^{2} \)
31 \( 1 - 3.15T + 31T^{2} \)
37 \( 1 + 7.50T + 37T^{2} \)
41 \( 1 - 2.22T + 41T^{2} \)
43 \( 1 + 4.51T + 43T^{2} \)
47 \( 1 - 9.24T + 47T^{2} \)
53 \( 1 - 12.9T + 53T^{2} \)
59 \( 1 - 9.43T + 59T^{2} \)
61 \( 1 + 1.82T + 61T^{2} \)
67 \( 1 + 3.18T + 67T^{2} \)
71 \( 1 + 4.32T + 71T^{2} \)
73 \( 1 - 11.9T + 73T^{2} \)
79 \( 1 - 10.6T + 79T^{2} \)
83 \( 1 - 8.70T + 83T^{2} \)
89 \( 1 + 15.9T + 89T^{2} \)
97 \( 1 + 3.48T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.142933053171055231802363650567, −7.35612043325868856214645208569, −6.30619181917473097920154492781, −5.51561433987261260205400741106, −5.08297045790138876241577369860, −4.32990570017933202381504096637, −3.79409611826157342719387655865, −2.58643037431270574768619240635, −1.92366732517957681715766893406, −0.47538235412164115585251731979, 0.47538235412164115585251731979, 1.92366732517957681715766893406, 2.58643037431270574768619240635, 3.79409611826157342719387655865, 4.32990570017933202381504096637, 5.08297045790138876241577369860, 5.51561433987261260205400741106, 6.30619181917473097920154492781, 7.35612043325868856214645208569, 8.142933053171055231802363650567

Graph of the $Z$-function along the critical line