Properties

Label 7803.2.a.cg.1.10
Level $7803$
Weight $2$
Character 7803.1
Self dual yes
Analytic conductor $62.307$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7803,2,Mod(1,7803)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7803, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7803.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7803 = 3^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7803.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,24,20,0,0,0,0,0,8,0,4,16,0,24,0,0,4,48,0,0,36,0,28,0, 0,0,64,0,0,0,0,0,0,0,0,0,0,0,36,0,4,16,0,0,0,0,24,0,0,16,0,0,20,80,0,0, 0,0,0,-16,0,-24,72,0,16,0,0,-48,72,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(73)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.3072686972\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 459)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Character \(\chi\) \(=\) 7803.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.533361 q^{2} -1.71553 q^{4} -2.01564 q^{5} -2.52795 q^{7} +1.98172 q^{8} +1.07506 q^{10} +2.43279 q^{11} +3.12835 q^{13} +1.34831 q^{14} +2.37408 q^{16} +5.61764 q^{19} +3.45788 q^{20} -1.29756 q^{22} +2.17884 q^{23} -0.937211 q^{25} -1.66854 q^{26} +4.33677 q^{28} +4.75129 q^{29} +4.46744 q^{31} -5.22968 q^{32} +5.09543 q^{35} +4.68703 q^{37} -2.99623 q^{38} -3.99442 q^{40} +9.39479 q^{41} -9.70418 q^{43} -4.17352 q^{44} -1.16211 q^{46} -10.4884 q^{47} -0.609457 q^{49} +0.499872 q^{50} -5.36677 q^{52} +2.83803 q^{53} -4.90362 q^{55} -5.00969 q^{56} -2.53415 q^{58} +3.50470 q^{59} -7.88955 q^{61} -2.38276 q^{62} -1.95885 q^{64} -6.30562 q^{65} -4.16861 q^{67} -2.71771 q^{70} -4.51044 q^{71} +12.5366 q^{73} -2.49988 q^{74} -9.63720 q^{76} -6.14998 q^{77} +4.52640 q^{79} -4.78528 q^{80} -5.01082 q^{82} -10.8255 q^{83} +5.17583 q^{86} +4.82111 q^{88} -16.2213 q^{89} -7.90833 q^{91} -3.73785 q^{92} +5.59411 q^{94} -11.3231 q^{95} +0.802837 q^{97} +0.325061 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 24 q^{4} + 20 q^{5} + 8 q^{11} + 4 q^{13} + 16 q^{14} + 24 q^{16} + 4 q^{19} + 48 q^{20} + 36 q^{23} + 28 q^{25} + 64 q^{29} + 36 q^{41} + 4 q^{43} + 16 q^{44} + 24 q^{49} + 16 q^{52} + 20 q^{55}+ \cdots - 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.533361 −0.377143 −0.188572 0.982059i \(-0.560386\pi\)
−0.188572 + 0.982059i \(0.560386\pi\)
\(3\) 0 0
\(4\) −1.71553 −0.857763
\(5\) −2.01564 −0.901420 −0.450710 0.892670i \(-0.648829\pi\)
−0.450710 + 0.892670i \(0.648829\pi\)
\(6\) 0 0
\(7\) −2.52795 −0.955476 −0.477738 0.878502i \(-0.658543\pi\)
−0.477738 + 0.878502i \(0.658543\pi\)
\(8\) 1.98172 0.700643
\(9\) 0 0
\(10\) 1.07506 0.339965
\(11\) 2.43279 0.733515 0.366757 0.930317i \(-0.380468\pi\)
0.366757 + 0.930317i \(0.380468\pi\)
\(12\) 0 0
\(13\) 3.12835 0.867649 0.433824 0.900997i \(-0.357164\pi\)
0.433824 + 0.900997i \(0.357164\pi\)
\(14\) 1.34831 0.360352
\(15\) 0 0
\(16\) 2.37408 0.593520
\(17\) 0 0
\(18\) 0 0
\(19\) 5.61764 1.28877 0.644387 0.764699i \(-0.277113\pi\)
0.644387 + 0.764699i \(0.277113\pi\)
\(20\) 3.45788 0.773205
\(21\) 0 0
\(22\) −1.29756 −0.276640
\(23\) 2.17884 0.454319 0.227160 0.973858i \(-0.427056\pi\)
0.227160 + 0.973858i \(0.427056\pi\)
\(24\) 0 0
\(25\) −0.937211 −0.187442
\(26\) −1.66854 −0.327228
\(27\) 0 0
\(28\) 4.33677 0.819572
\(29\) 4.75129 0.882293 0.441146 0.897435i \(-0.354572\pi\)
0.441146 + 0.897435i \(0.354572\pi\)
\(30\) 0 0
\(31\) 4.46744 0.802375 0.401188 0.915996i \(-0.368598\pi\)
0.401188 + 0.915996i \(0.368598\pi\)
\(32\) −5.22968 −0.924485
\(33\) 0 0
\(34\) 0 0
\(35\) 5.09543 0.861285
\(36\) 0 0
\(37\) 4.68703 0.770544 0.385272 0.922803i \(-0.374108\pi\)
0.385272 + 0.922803i \(0.374108\pi\)
\(38\) −2.99623 −0.486053
\(39\) 0 0
\(40\) −3.99442 −0.631573
\(41\) 9.39479 1.46722 0.733610 0.679571i \(-0.237834\pi\)
0.733610 + 0.679571i \(0.237834\pi\)
\(42\) 0 0
\(43\) −9.70418 −1.47987 −0.739937 0.672677i \(-0.765145\pi\)
−0.739937 + 0.672677i \(0.765145\pi\)
\(44\) −4.17352 −0.629182
\(45\) 0 0
\(46\) −1.16211 −0.171344
\(47\) −10.4884 −1.52989 −0.764946 0.644094i \(-0.777234\pi\)
−0.764946 + 0.644094i \(0.777234\pi\)
\(48\) 0 0
\(49\) −0.609457 −0.0870652
\(50\) 0.499872 0.0706926
\(51\) 0 0
\(52\) −5.36677 −0.744237
\(53\) 2.83803 0.389834 0.194917 0.980820i \(-0.437556\pi\)
0.194917 + 0.980820i \(0.437556\pi\)
\(54\) 0 0
\(55\) −4.90362 −0.661205
\(56\) −5.00969 −0.669448
\(57\) 0 0
\(58\) −2.53415 −0.332751
\(59\) 3.50470 0.456273 0.228137 0.973629i \(-0.426737\pi\)
0.228137 + 0.973629i \(0.426737\pi\)
\(60\) 0 0
\(61\) −7.88955 −1.01015 −0.505077 0.863075i \(-0.668536\pi\)
−0.505077 + 0.863075i \(0.668536\pi\)
\(62\) −2.38276 −0.302610
\(63\) 0 0
\(64\) −1.95885 −0.244857
\(65\) −6.30562 −0.782116
\(66\) 0 0
\(67\) −4.16861 −0.509277 −0.254639 0.967036i \(-0.581957\pi\)
−0.254639 + 0.967036i \(0.581957\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −2.71771 −0.324828
\(71\) −4.51044 −0.535291 −0.267645 0.963517i \(-0.586246\pi\)
−0.267645 + 0.963517i \(0.586246\pi\)
\(72\) 0 0
\(73\) 12.5366 1.46730 0.733651 0.679526i \(-0.237815\pi\)
0.733651 + 0.679526i \(0.237815\pi\)
\(74\) −2.49988 −0.290605
\(75\) 0 0
\(76\) −9.63720 −1.10546
\(77\) −6.14998 −0.700856
\(78\) 0 0
\(79\) 4.52640 0.509260 0.254630 0.967039i \(-0.418046\pi\)
0.254630 + 0.967039i \(0.418046\pi\)
\(80\) −4.78528 −0.535011
\(81\) 0 0
\(82\) −5.01082 −0.553352
\(83\) −10.8255 −1.18825 −0.594125 0.804373i \(-0.702501\pi\)
−0.594125 + 0.804373i \(0.702501\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 5.17583 0.558124
\(87\) 0 0
\(88\) 4.82111 0.513932
\(89\) −16.2213 −1.71945 −0.859726 0.510756i \(-0.829366\pi\)
−0.859726 + 0.510756i \(0.829366\pi\)
\(90\) 0 0
\(91\) −7.90833 −0.829018
\(92\) −3.73785 −0.389698
\(93\) 0 0
\(94\) 5.59411 0.576989
\(95\) −11.3231 −1.16173
\(96\) 0 0
\(97\) 0.802837 0.0815158 0.0407579 0.999169i \(-0.487023\pi\)
0.0407579 + 0.999169i \(0.487023\pi\)
\(98\) 0.325061 0.0328361
\(99\) 0 0
\(100\) 1.60781 0.160781
\(101\) 10.7867 1.07331 0.536657 0.843801i \(-0.319687\pi\)
0.536657 + 0.843801i \(0.319687\pi\)
\(102\) 0 0
\(103\) 13.2358 1.30416 0.652082 0.758149i \(-0.273896\pi\)
0.652082 + 0.758149i \(0.273896\pi\)
\(104\) 6.19951 0.607912
\(105\) 0 0
\(106\) −1.51370 −0.147023
\(107\) −8.20981 −0.793673 −0.396836 0.917889i \(-0.629892\pi\)
−0.396836 + 0.917889i \(0.629892\pi\)
\(108\) 0 0
\(109\) 0.228783 0.0219135 0.0109567 0.999940i \(-0.496512\pi\)
0.0109567 + 0.999940i \(0.496512\pi\)
\(110\) 2.61540 0.249369
\(111\) 0 0
\(112\) −6.00156 −0.567094
\(113\) 12.0126 1.13005 0.565024 0.825075i \(-0.308867\pi\)
0.565024 + 0.825075i \(0.308867\pi\)
\(114\) 0 0
\(115\) −4.39175 −0.409533
\(116\) −8.15096 −0.756798
\(117\) 0 0
\(118\) −1.86927 −0.172081
\(119\) 0 0
\(120\) 0 0
\(121\) −5.08152 −0.461956
\(122\) 4.20798 0.380973
\(123\) 0 0
\(124\) −7.66400 −0.688248
\(125\) 11.9673 1.07038
\(126\) 0 0
\(127\) −9.51499 −0.844319 −0.422160 0.906522i \(-0.638728\pi\)
−0.422160 + 0.906522i \(0.638728\pi\)
\(128\) 11.5041 1.01683
\(129\) 0 0
\(130\) 3.36317 0.294970
\(131\) 14.9234 1.30387 0.651934 0.758276i \(-0.273958\pi\)
0.651934 + 0.758276i \(0.273958\pi\)
\(132\) 0 0
\(133\) −14.2011 −1.23139
\(134\) 2.22338 0.192070
\(135\) 0 0
\(136\) 0 0
\(137\) 14.1629 1.21002 0.605009 0.796219i \(-0.293170\pi\)
0.605009 + 0.796219i \(0.293170\pi\)
\(138\) 0 0
\(139\) −15.4050 −1.30664 −0.653319 0.757083i \(-0.726624\pi\)
−0.653319 + 0.757083i \(0.726624\pi\)
\(140\) −8.74135 −0.738779
\(141\) 0 0
\(142\) 2.40569 0.201881
\(143\) 7.61063 0.636433
\(144\) 0 0
\(145\) −9.57687 −0.795316
\(146\) −6.68656 −0.553383
\(147\) 0 0
\(148\) −8.04073 −0.660944
\(149\) 6.62192 0.542489 0.271244 0.962511i \(-0.412565\pi\)
0.271244 + 0.962511i \(0.412565\pi\)
\(150\) 0 0
\(151\) −17.0531 −1.38776 −0.693882 0.720089i \(-0.744101\pi\)
−0.693882 + 0.720089i \(0.744101\pi\)
\(152\) 11.1326 0.902971
\(153\) 0 0
\(154\) 3.28016 0.264323
\(155\) −9.00472 −0.723277
\(156\) 0 0
\(157\) 14.5703 1.16284 0.581418 0.813605i \(-0.302498\pi\)
0.581418 + 0.813605i \(0.302498\pi\)
\(158\) −2.41421 −0.192064
\(159\) 0 0
\(160\) 10.5411 0.833349
\(161\) −5.50800 −0.434091
\(162\) 0 0
\(163\) 5.39557 0.422614 0.211307 0.977420i \(-0.432228\pi\)
0.211307 + 0.977420i \(0.432228\pi\)
\(164\) −16.1170 −1.25853
\(165\) 0 0
\(166\) 5.77388 0.448140
\(167\) 12.4575 0.963993 0.481996 0.876173i \(-0.339912\pi\)
0.481996 + 0.876173i \(0.339912\pi\)
\(168\) 0 0
\(169\) −3.21341 −0.247185
\(170\) 0 0
\(171\) 0 0
\(172\) 16.6478 1.26938
\(173\) 2.67379 0.203284 0.101642 0.994821i \(-0.467590\pi\)
0.101642 + 0.994821i \(0.467590\pi\)
\(174\) 0 0
\(175\) 2.36922 0.179097
\(176\) 5.77565 0.435356
\(177\) 0 0
\(178\) 8.65180 0.648480
\(179\) 14.0084 1.04704 0.523519 0.852014i \(-0.324619\pi\)
0.523519 + 0.852014i \(0.324619\pi\)
\(180\) 0 0
\(181\) −13.3634 −0.993291 −0.496646 0.867953i \(-0.665435\pi\)
−0.496646 + 0.867953i \(0.665435\pi\)
\(182\) 4.21800 0.312659
\(183\) 0 0
\(184\) 4.31784 0.318316
\(185\) −9.44735 −0.694583
\(186\) 0 0
\(187\) 0 0
\(188\) 17.9931 1.31228
\(189\) 0 0
\(190\) 6.03931 0.438138
\(191\) −20.9983 −1.51938 −0.759691 0.650285i \(-0.774650\pi\)
−0.759691 + 0.650285i \(0.774650\pi\)
\(192\) 0 0
\(193\) 5.11341 0.368072 0.184036 0.982920i \(-0.441084\pi\)
0.184036 + 0.982920i \(0.441084\pi\)
\(194\) −0.428202 −0.0307431
\(195\) 0 0
\(196\) 1.04554 0.0746813
\(197\) 3.83971 0.273568 0.136784 0.990601i \(-0.456323\pi\)
0.136784 + 0.990601i \(0.456323\pi\)
\(198\) 0 0
\(199\) −7.22725 −0.512326 −0.256163 0.966634i \(-0.582458\pi\)
−0.256163 + 0.966634i \(0.582458\pi\)
\(200\) −1.85729 −0.131330
\(201\) 0 0
\(202\) −5.75319 −0.404793
\(203\) −12.0110 −0.843010
\(204\) 0 0
\(205\) −18.9365 −1.32258
\(206\) −7.05947 −0.491857
\(207\) 0 0
\(208\) 7.42696 0.514967
\(209\) 13.6665 0.945335
\(210\) 0 0
\(211\) −12.5596 −0.864636 −0.432318 0.901721i \(-0.642304\pi\)
−0.432318 + 0.901721i \(0.642304\pi\)
\(212\) −4.86872 −0.334385
\(213\) 0 0
\(214\) 4.37880 0.299328
\(215\) 19.5601 1.33399
\(216\) 0 0
\(217\) −11.2935 −0.766650
\(218\) −0.122024 −0.00826451
\(219\) 0 0
\(220\) 8.41230 0.567157
\(221\) 0 0
\(222\) 0 0
\(223\) 4.79698 0.321229 0.160615 0.987017i \(-0.448652\pi\)
0.160615 + 0.987017i \(0.448652\pi\)
\(224\) 13.2204 0.883323
\(225\) 0 0
\(226\) −6.40704 −0.426190
\(227\) 22.4744 1.49168 0.745839 0.666127i \(-0.232049\pi\)
0.745839 + 0.666127i \(0.232049\pi\)
\(228\) 0 0
\(229\) −2.28961 −0.151302 −0.0756510 0.997134i \(-0.524103\pi\)
−0.0756510 + 0.997134i \(0.524103\pi\)
\(230\) 2.34239 0.154452
\(231\) 0 0
\(232\) 9.41572 0.618172
\(233\) 24.9870 1.63696 0.818478 0.574538i \(-0.194818\pi\)
0.818478 + 0.574538i \(0.194818\pi\)
\(234\) 0 0
\(235\) 21.1408 1.37908
\(236\) −6.01241 −0.391374
\(237\) 0 0
\(238\) 0 0
\(239\) 16.8913 1.09261 0.546304 0.837587i \(-0.316034\pi\)
0.546304 + 0.837587i \(0.316034\pi\)
\(240\) 0 0
\(241\) −29.9907 −1.93187 −0.965936 0.258783i \(-0.916679\pi\)
−0.965936 + 0.258783i \(0.916679\pi\)
\(242\) 2.71029 0.174224
\(243\) 0 0
\(244\) 13.5347 0.866472
\(245\) 1.22844 0.0784823
\(246\) 0 0
\(247\) 17.5740 1.11820
\(248\) 8.85320 0.562178
\(249\) 0 0
\(250\) −6.38287 −0.403688
\(251\) 24.1719 1.52572 0.762858 0.646566i \(-0.223795\pi\)
0.762858 + 0.646566i \(0.223795\pi\)
\(252\) 0 0
\(253\) 5.30066 0.333250
\(254\) 5.07493 0.318429
\(255\) 0 0
\(256\) −2.21815 −0.138634
\(257\) −26.7412 −1.66807 −0.834034 0.551712i \(-0.813975\pi\)
−0.834034 + 0.551712i \(0.813975\pi\)
\(258\) 0 0
\(259\) −11.8486 −0.736236
\(260\) 10.8175 0.670870
\(261\) 0 0
\(262\) −7.95959 −0.491745
\(263\) 2.34258 0.144449 0.0722247 0.997388i \(-0.476990\pi\)
0.0722247 + 0.997388i \(0.476990\pi\)
\(264\) 0 0
\(265\) −5.72044 −0.351404
\(266\) 7.57433 0.464412
\(267\) 0 0
\(268\) 7.15136 0.436839
\(269\) −17.2220 −1.05005 −0.525023 0.851088i \(-0.675943\pi\)
−0.525023 + 0.851088i \(0.675943\pi\)
\(270\) 0 0
\(271\) 24.8158 1.50745 0.753726 0.657189i \(-0.228254\pi\)
0.753726 + 0.657189i \(0.228254\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −7.55394 −0.456350
\(275\) −2.28004 −0.137492
\(276\) 0 0
\(277\) −18.5075 −1.11201 −0.556005 0.831179i \(-0.687666\pi\)
−0.556005 + 0.831179i \(0.687666\pi\)
\(278\) 8.21645 0.492790
\(279\) 0 0
\(280\) 10.0977 0.603453
\(281\) −17.2627 −1.02981 −0.514903 0.857249i \(-0.672172\pi\)
−0.514903 + 0.857249i \(0.672172\pi\)
\(282\) 0 0
\(283\) −20.7111 −1.23115 −0.615574 0.788079i \(-0.711076\pi\)
−0.615574 + 0.788079i \(0.711076\pi\)
\(284\) 7.73778 0.459153
\(285\) 0 0
\(286\) −4.05922 −0.240027
\(287\) −23.7496 −1.40189
\(288\) 0 0
\(289\) 0 0
\(290\) 5.10793 0.299948
\(291\) 0 0
\(292\) −21.5069 −1.25860
\(293\) 23.8401 1.39275 0.696375 0.717678i \(-0.254795\pi\)
0.696375 + 0.717678i \(0.254795\pi\)
\(294\) 0 0
\(295\) −7.06421 −0.411294
\(296\) 9.28838 0.539876
\(297\) 0 0
\(298\) −3.53187 −0.204596
\(299\) 6.81618 0.394190
\(300\) 0 0
\(301\) 24.5317 1.41398
\(302\) 9.09548 0.523386
\(303\) 0 0
\(304\) 13.3367 0.764913
\(305\) 15.9025 0.910572
\(306\) 0 0
\(307\) 13.9729 0.797474 0.398737 0.917065i \(-0.369449\pi\)
0.398737 + 0.917065i \(0.369449\pi\)
\(308\) 10.5505 0.601168
\(309\) 0 0
\(310\) 4.80277 0.272779
\(311\) −9.75466 −0.553136 −0.276568 0.960994i \(-0.589197\pi\)
−0.276568 + 0.960994i \(0.589197\pi\)
\(312\) 0 0
\(313\) 33.2415 1.87892 0.939461 0.342655i \(-0.111326\pi\)
0.939461 + 0.342655i \(0.111326\pi\)
\(314\) −7.77123 −0.438556
\(315\) 0 0
\(316\) −7.76516 −0.436825
\(317\) 7.34140 0.412334 0.206167 0.978517i \(-0.433901\pi\)
0.206167 + 0.978517i \(0.433901\pi\)
\(318\) 0 0
\(319\) 11.5589 0.647175
\(320\) 3.94834 0.220719
\(321\) 0 0
\(322\) 2.93775 0.163715
\(323\) 0 0
\(324\) 0 0
\(325\) −2.93193 −0.162634
\(326\) −2.87779 −0.159386
\(327\) 0 0
\(328\) 18.6178 1.02800
\(329\) 26.5142 1.46178
\(330\) 0 0
\(331\) 2.05218 0.112798 0.0563990 0.998408i \(-0.482038\pi\)
0.0563990 + 0.998408i \(0.482038\pi\)
\(332\) 18.5714 1.01924
\(333\) 0 0
\(334\) −6.64436 −0.363563
\(335\) 8.40241 0.459073
\(336\) 0 0
\(337\) −6.09966 −0.332270 −0.166135 0.986103i \(-0.553129\pi\)
−0.166135 + 0.986103i \(0.553129\pi\)
\(338\) 1.71391 0.0932243
\(339\) 0 0
\(340\) 0 0
\(341\) 10.8683 0.588554
\(342\) 0 0
\(343\) 19.2363 1.03866
\(344\) −19.2309 −1.03686
\(345\) 0 0
\(346\) −1.42609 −0.0766673
\(347\) 34.4147 1.84748 0.923738 0.383026i \(-0.125118\pi\)
0.923738 + 0.383026i \(0.125118\pi\)
\(348\) 0 0
\(349\) −17.4294 −0.932976 −0.466488 0.884528i \(-0.654481\pi\)
−0.466488 + 0.884528i \(0.654481\pi\)
\(350\) −1.26365 −0.0675451
\(351\) 0 0
\(352\) −12.7227 −0.678123
\(353\) 35.9886 1.91548 0.957739 0.287638i \(-0.0928700\pi\)
0.957739 + 0.287638i \(0.0928700\pi\)
\(354\) 0 0
\(355\) 9.09141 0.482522
\(356\) 27.8280 1.47488
\(357\) 0 0
\(358\) −7.47155 −0.394884
\(359\) 18.7253 0.988285 0.494142 0.869381i \(-0.335482\pi\)
0.494142 + 0.869381i \(0.335482\pi\)
\(360\) 0 0
\(361\) 12.5578 0.660939
\(362\) 7.12750 0.374613
\(363\) 0 0
\(364\) 13.5669 0.711101
\(365\) −25.2693 −1.32266
\(366\) 0 0
\(367\) 24.2752 1.26716 0.633578 0.773679i \(-0.281586\pi\)
0.633578 + 0.773679i \(0.281586\pi\)
\(368\) 5.17274 0.269648
\(369\) 0 0
\(370\) 5.03885 0.261957
\(371\) −7.17441 −0.372477
\(372\) 0 0
\(373\) 1.52714 0.0790723 0.0395361 0.999218i \(-0.487412\pi\)
0.0395361 + 0.999218i \(0.487412\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −20.7851 −1.07191
\(377\) 14.8637 0.765520
\(378\) 0 0
\(379\) −5.78502 −0.297156 −0.148578 0.988901i \(-0.547470\pi\)
−0.148578 + 0.988901i \(0.547470\pi\)
\(380\) 19.4251 0.996486
\(381\) 0 0
\(382\) 11.1997 0.573025
\(383\) −27.9186 −1.42658 −0.713288 0.700871i \(-0.752795\pi\)
−0.713288 + 0.700871i \(0.752795\pi\)
\(384\) 0 0
\(385\) 12.3961 0.631765
\(386\) −2.72730 −0.138816
\(387\) 0 0
\(388\) −1.37729 −0.0699212
\(389\) −5.79580 −0.293859 −0.146929 0.989147i \(-0.546939\pi\)
−0.146929 + 0.989147i \(0.546939\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −1.20777 −0.0610016
\(393\) 0 0
\(394\) −2.04795 −0.103174
\(395\) −9.12358 −0.459057
\(396\) 0 0
\(397\) −25.6588 −1.28778 −0.643889 0.765119i \(-0.722680\pi\)
−0.643889 + 0.765119i \(0.722680\pi\)
\(398\) 3.85474 0.193221
\(399\) 0 0
\(400\) −2.22501 −0.111251
\(401\) −1.94594 −0.0971755 −0.0485877 0.998819i \(-0.515472\pi\)
−0.0485877 + 0.998819i \(0.515472\pi\)
\(402\) 0 0
\(403\) 13.9757 0.696180
\(404\) −18.5048 −0.920648
\(405\) 0 0
\(406\) 6.40622 0.317935
\(407\) 11.4026 0.565205
\(408\) 0 0
\(409\) 9.72007 0.480627 0.240313 0.970695i \(-0.422750\pi\)
0.240313 + 0.970695i \(0.422750\pi\)
\(410\) 10.1000 0.498803
\(411\) 0 0
\(412\) −22.7064 −1.11866
\(413\) −8.85972 −0.435958
\(414\) 0 0
\(415\) 21.8202 1.07111
\(416\) −16.3603 −0.802129
\(417\) 0 0
\(418\) −7.28921 −0.356527
\(419\) −4.92897 −0.240796 −0.120398 0.992726i \(-0.538417\pi\)
−0.120398 + 0.992726i \(0.538417\pi\)
\(420\) 0 0
\(421\) −33.8369 −1.64911 −0.824554 0.565783i \(-0.808574\pi\)
−0.824554 + 0.565783i \(0.808574\pi\)
\(422\) 6.69878 0.326092
\(423\) 0 0
\(424\) 5.62418 0.273134
\(425\) 0 0
\(426\) 0 0
\(427\) 19.9444 0.965177
\(428\) 14.0841 0.680783
\(429\) 0 0
\(430\) −10.4326 −0.503104
\(431\) −14.9941 −0.722242 −0.361121 0.932519i \(-0.617606\pi\)
−0.361121 + 0.932519i \(0.617606\pi\)
\(432\) 0 0
\(433\) 0.570805 0.0274311 0.0137156 0.999906i \(-0.495634\pi\)
0.0137156 + 0.999906i \(0.495634\pi\)
\(434\) 6.02350 0.289137
\(435\) 0 0
\(436\) −0.392483 −0.0187965
\(437\) 12.2399 0.585515
\(438\) 0 0
\(439\) −25.4402 −1.21419 −0.607097 0.794628i \(-0.707666\pi\)
−0.607097 + 0.794628i \(0.707666\pi\)
\(440\) −9.71760 −0.463268
\(441\) 0 0
\(442\) 0 0
\(443\) 1.27194 0.0604317 0.0302158 0.999543i \(-0.490381\pi\)
0.0302158 + 0.999543i \(0.490381\pi\)
\(444\) 0 0
\(445\) 32.6962 1.54995
\(446\) −2.55852 −0.121150
\(447\) 0 0
\(448\) 4.95189 0.233955
\(449\) 30.7646 1.45187 0.725936 0.687762i \(-0.241407\pi\)
0.725936 + 0.687762i \(0.241407\pi\)
\(450\) 0 0
\(451\) 22.8556 1.07623
\(452\) −20.6079 −0.969313
\(453\) 0 0
\(454\) −11.9870 −0.562576
\(455\) 15.9403 0.747293
\(456\) 0 0
\(457\) 23.4935 1.09898 0.549490 0.835500i \(-0.314822\pi\)
0.549490 + 0.835500i \(0.314822\pi\)
\(458\) 1.22119 0.0570625
\(459\) 0 0
\(460\) 7.53416 0.351282
\(461\) −8.51912 −0.396775 −0.198387 0.980124i \(-0.563570\pi\)
−0.198387 + 0.980124i \(0.563570\pi\)
\(462\) 0 0
\(463\) 17.6689 0.821143 0.410571 0.911828i \(-0.365329\pi\)
0.410571 + 0.911828i \(0.365329\pi\)
\(464\) 11.2799 0.523658
\(465\) 0 0
\(466\) −13.3271 −0.617367
\(467\) 6.27728 0.290478 0.145239 0.989397i \(-0.453605\pi\)
0.145239 + 0.989397i \(0.453605\pi\)
\(468\) 0 0
\(469\) 10.5381 0.486602
\(470\) −11.2757 −0.520109
\(471\) 0 0
\(472\) 6.94533 0.319685
\(473\) −23.6083 −1.08551
\(474\) 0 0
\(475\) −5.26491 −0.241571
\(476\) 0 0
\(477\) 0 0
\(478\) −9.00917 −0.412070
\(479\) 33.8395 1.54617 0.773083 0.634304i \(-0.218713\pi\)
0.773083 + 0.634304i \(0.218713\pi\)
\(480\) 0 0
\(481\) 14.6627 0.668561
\(482\) 15.9959 0.728592
\(483\) 0 0
\(484\) 8.71748 0.396249
\(485\) −1.61823 −0.0734799
\(486\) 0 0
\(487\) −17.3297 −0.785283 −0.392641 0.919692i \(-0.628439\pi\)
−0.392641 + 0.919692i \(0.628439\pi\)
\(488\) −15.6349 −0.707757
\(489\) 0 0
\(490\) −0.655204 −0.0295991
\(491\) −18.8939 −0.852668 −0.426334 0.904566i \(-0.640195\pi\)
−0.426334 + 0.904566i \(0.640195\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −9.37326 −0.421723
\(495\) 0 0
\(496\) 10.6061 0.476226
\(497\) 11.4022 0.511458
\(498\) 0 0
\(499\) −6.48069 −0.290116 −0.145058 0.989423i \(-0.546337\pi\)
−0.145058 + 0.989423i \(0.546337\pi\)
\(500\) −20.5301 −0.918136
\(501\) 0 0
\(502\) −12.8924 −0.575414
\(503\) 16.6622 0.742930 0.371465 0.928447i \(-0.378856\pi\)
0.371465 + 0.928447i \(0.378856\pi\)
\(504\) 0 0
\(505\) −21.7420 −0.967506
\(506\) −2.82717 −0.125683
\(507\) 0 0
\(508\) 16.3232 0.724226
\(509\) 19.1265 0.847767 0.423884 0.905717i \(-0.360667\pi\)
0.423884 + 0.905717i \(0.360667\pi\)
\(510\) 0 0
\(511\) −31.6920 −1.40197
\(512\) −21.8252 −0.964546
\(513\) 0 0
\(514\) 14.2627 0.629101
\(515\) −26.6786 −1.17560
\(516\) 0 0
\(517\) −25.5161 −1.12220
\(518\) 6.31958 0.277667
\(519\) 0 0
\(520\) −12.4960 −0.547984
\(521\) −14.3864 −0.630279 −0.315139 0.949045i \(-0.602051\pi\)
−0.315139 + 0.949045i \(0.602051\pi\)
\(522\) 0 0
\(523\) −6.11004 −0.267173 −0.133587 0.991037i \(-0.542649\pi\)
−0.133587 + 0.991037i \(0.542649\pi\)
\(524\) −25.6015 −1.11841
\(525\) 0 0
\(526\) −1.24944 −0.0544781
\(527\) 0 0
\(528\) 0 0
\(529\) −18.2527 −0.793594
\(530\) 3.05106 0.132530
\(531\) 0 0
\(532\) 24.3624 1.05624
\(533\) 29.3902 1.27303
\(534\) 0 0
\(535\) 16.5480 0.715432
\(536\) −8.26101 −0.356821
\(537\) 0 0
\(538\) 9.18557 0.396018
\(539\) −1.48268 −0.0638636
\(540\) 0 0
\(541\) 28.6602 1.23220 0.616099 0.787669i \(-0.288712\pi\)
0.616099 + 0.787669i \(0.288712\pi\)
\(542\) −13.2358 −0.568526
\(543\) 0 0
\(544\) 0 0
\(545\) −0.461144 −0.0197532
\(546\) 0 0
\(547\) −16.9731 −0.725716 −0.362858 0.931844i \(-0.618199\pi\)
−0.362858 + 0.931844i \(0.618199\pi\)
\(548\) −24.2968 −1.03791
\(549\) 0 0
\(550\) 1.21609 0.0518540
\(551\) 26.6910 1.13708
\(552\) 0 0
\(553\) −11.4425 −0.486586
\(554\) 9.87120 0.419387
\(555\) 0 0
\(556\) 26.4277 1.12079
\(557\) 11.2465 0.476530 0.238265 0.971200i \(-0.423421\pi\)
0.238265 + 0.971200i \(0.423421\pi\)
\(558\) 0 0
\(559\) −30.3581 −1.28401
\(560\) 12.0970 0.511190
\(561\) 0 0
\(562\) 9.20724 0.388384
\(563\) −1.34971 −0.0568836 −0.0284418 0.999595i \(-0.509055\pi\)
−0.0284418 + 0.999595i \(0.509055\pi\)
\(564\) 0 0
\(565\) −24.2130 −1.01865
\(566\) 11.0465 0.464319
\(567\) 0 0
\(568\) −8.93842 −0.375048
\(569\) −0.494896 −0.0207471 −0.0103736 0.999946i \(-0.503302\pi\)
−0.0103736 + 0.999946i \(0.503302\pi\)
\(570\) 0 0
\(571\) 24.9578 1.04445 0.522225 0.852808i \(-0.325102\pi\)
0.522225 + 0.852808i \(0.325102\pi\)
\(572\) −13.0562 −0.545909
\(573\) 0 0
\(574\) 12.6671 0.528715
\(575\) −2.04203 −0.0851586
\(576\) 0 0
\(577\) −23.0850 −0.961043 −0.480521 0.876983i \(-0.659553\pi\)
−0.480521 + 0.876983i \(0.659553\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 16.4294 0.682193
\(581\) 27.3663 1.13534
\(582\) 0 0
\(583\) 6.90435 0.285949
\(584\) 24.8441 1.02806
\(585\) 0 0
\(586\) −12.7154 −0.525267
\(587\) 20.9646 0.865303 0.432652 0.901561i \(-0.357578\pi\)
0.432652 + 0.901561i \(0.357578\pi\)
\(588\) 0 0
\(589\) 25.0964 1.03408
\(590\) 3.76777 0.155117
\(591\) 0 0
\(592\) 11.1274 0.457333
\(593\) −27.5149 −1.12990 −0.564951 0.825124i \(-0.691105\pi\)
−0.564951 + 0.825124i \(0.691105\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −11.3601 −0.465327
\(597\) 0 0
\(598\) −3.63549 −0.148666
\(599\) −43.8786 −1.79283 −0.896415 0.443215i \(-0.853838\pi\)
−0.896415 + 0.443215i \(0.853838\pi\)
\(600\) 0 0
\(601\) 43.3759 1.76934 0.884670 0.466218i \(-0.154384\pi\)
0.884670 + 0.466218i \(0.154384\pi\)
\(602\) −13.0843 −0.533275
\(603\) 0 0
\(604\) 29.2551 1.19037
\(605\) 10.2425 0.416417
\(606\) 0 0
\(607\) 21.0232 0.853307 0.426653 0.904415i \(-0.359692\pi\)
0.426653 + 0.904415i \(0.359692\pi\)
\(608\) −29.3784 −1.19145
\(609\) 0 0
\(610\) −8.48175 −0.343416
\(611\) −32.8114 −1.32741
\(612\) 0 0
\(613\) 30.5509 1.23394 0.616969 0.786987i \(-0.288360\pi\)
0.616969 + 0.786987i \(0.288360\pi\)
\(614\) −7.45259 −0.300762
\(615\) 0 0
\(616\) −12.1875 −0.491050
\(617\) −8.08373 −0.325439 −0.162719 0.986672i \(-0.552026\pi\)
−0.162719 + 0.986672i \(0.552026\pi\)
\(618\) 0 0
\(619\) −7.34432 −0.295193 −0.147597 0.989048i \(-0.547154\pi\)
−0.147597 + 0.989048i \(0.547154\pi\)
\(620\) 15.4478 0.620400
\(621\) 0 0
\(622\) 5.20276 0.208612
\(623\) 41.0066 1.64289
\(624\) 0 0
\(625\) −19.4356 −0.777423
\(626\) −17.7297 −0.708623
\(627\) 0 0
\(628\) −24.9957 −0.997438
\(629\) 0 0
\(630\) 0 0
\(631\) 43.2402 1.72137 0.860683 0.509141i \(-0.170037\pi\)
0.860683 + 0.509141i \(0.170037\pi\)
\(632\) 8.97005 0.356810
\(633\) 0 0
\(634\) −3.91562 −0.155509
\(635\) 19.1788 0.761086
\(636\) 0 0
\(637\) −1.90660 −0.0755421
\(638\) −6.16507 −0.244078
\(639\) 0 0
\(640\) −23.1881 −0.916592
\(641\) 9.44281 0.372969 0.186484 0.982458i \(-0.440291\pi\)
0.186484 + 0.982458i \(0.440291\pi\)
\(642\) 0 0
\(643\) −0.346171 −0.0136516 −0.00682582 0.999977i \(-0.502173\pi\)
−0.00682582 + 0.999977i \(0.502173\pi\)
\(644\) 9.44912 0.372347
\(645\) 0 0
\(646\) 0 0
\(647\) 2.21802 0.0871996 0.0435998 0.999049i \(-0.486117\pi\)
0.0435998 + 0.999049i \(0.486117\pi\)
\(648\) 0 0
\(649\) 8.52622 0.334683
\(650\) 1.56378 0.0613363
\(651\) 0 0
\(652\) −9.25625 −0.362503
\(653\) −3.81435 −0.149267 −0.0746336 0.997211i \(-0.523779\pi\)
−0.0746336 + 0.997211i \(0.523779\pi\)
\(654\) 0 0
\(655\) −30.0802 −1.17533
\(656\) 22.3040 0.870824
\(657\) 0 0
\(658\) −14.1416 −0.551299
\(659\) −29.3352 −1.14274 −0.571368 0.820694i \(-0.693587\pi\)
−0.571368 + 0.820694i \(0.693587\pi\)
\(660\) 0 0
\(661\) −6.32915 −0.246175 −0.123088 0.992396i \(-0.539280\pi\)
−0.123088 + 0.992396i \(0.539280\pi\)
\(662\) −1.09455 −0.0425410
\(663\) 0 0
\(664\) −21.4530 −0.832538
\(665\) 28.6243 1.11000
\(666\) 0 0
\(667\) 10.3523 0.400843
\(668\) −21.3712 −0.826877
\(669\) 0 0
\(670\) −4.48152 −0.173136
\(671\) −19.1936 −0.740962
\(672\) 0 0
\(673\) −27.6869 −1.06725 −0.533627 0.845720i \(-0.679171\pi\)
−0.533627 + 0.845720i \(0.679171\pi\)
\(674\) 3.25332 0.125313
\(675\) 0 0
\(676\) 5.51269 0.212026
\(677\) 38.8370 1.49263 0.746314 0.665594i \(-0.231822\pi\)
0.746314 + 0.665594i \(0.231822\pi\)
\(678\) 0 0
\(679\) −2.02953 −0.0778864
\(680\) 0 0
\(681\) 0 0
\(682\) −5.79675 −0.221969
\(683\) 3.74165 0.143170 0.0715852 0.997434i \(-0.477194\pi\)
0.0715852 + 0.997434i \(0.477194\pi\)
\(684\) 0 0
\(685\) −28.5472 −1.09073
\(686\) −10.2599 −0.391726
\(687\) 0 0
\(688\) −23.0385 −0.878334
\(689\) 8.87837 0.338239
\(690\) 0 0
\(691\) 33.9745 1.29245 0.646226 0.763146i \(-0.276346\pi\)
0.646226 + 0.763146i \(0.276346\pi\)
\(692\) −4.58695 −0.174370
\(693\) 0 0
\(694\) −18.3554 −0.696763
\(695\) 31.0509 1.17783
\(696\) 0 0
\(697\) 0 0
\(698\) 9.29618 0.351866
\(699\) 0 0
\(700\) −4.06447 −0.153622
\(701\) 19.8395 0.749327 0.374663 0.927161i \(-0.377758\pi\)
0.374663 + 0.927161i \(0.377758\pi\)
\(702\) 0 0
\(703\) 26.3301 0.993057
\(704\) −4.76548 −0.179606
\(705\) 0 0
\(706\) −19.1949 −0.722410
\(707\) −27.2682 −1.02553
\(708\) 0 0
\(709\) 48.8784 1.83567 0.917833 0.396967i \(-0.129937\pi\)
0.917833 + 0.396967i \(0.129937\pi\)
\(710\) −4.84901 −0.181980
\(711\) 0 0
\(712\) −32.1460 −1.20472
\(713\) 9.73382 0.364535
\(714\) 0 0
\(715\) −15.3403 −0.573694
\(716\) −24.0318 −0.898111
\(717\) 0 0
\(718\) −9.98736 −0.372725
\(719\) 4.65960 0.173774 0.0868869 0.996218i \(-0.472308\pi\)
0.0868869 + 0.996218i \(0.472308\pi\)
\(720\) 0 0
\(721\) −33.4595 −1.24610
\(722\) −6.69787 −0.249269
\(723\) 0 0
\(724\) 22.9252 0.852008
\(725\) −4.45296 −0.165379
\(726\) 0 0
\(727\) 34.8089 1.29099 0.645495 0.763765i \(-0.276651\pi\)
0.645495 + 0.763765i \(0.276651\pi\)
\(728\) −15.6721 −0.580846
\(729\) 0 0
\(730\) 13.4777 0.498831
\(731\) 0 0
\(732\) 0 0
\(733\) −20.2207 −0.746867 −0.373434 0.927657i \(-0.621820\pi\)
−0.373434 + 0.927657i \(0.621820\pi\)
\(734\) −12.9475 −0.477899
\(735\) 0 0
\(736\) −11.3946 −0.420011
\(737\) −10.1414 −0.373562
\(738\) 0 0
\(739\) −20.7563 −0.763533 −0.381767 0.924259i \(-0.624684\pi\)
−0.381767 + 0.924259i \(0.624684\pi\)
\(740\) 16.2072 0.595788
\(741\) 0 0
\(742\) 3.82655 0.140477
\(743\) −14.0213 −0.514391 −0.257196 0.966359i \(-0.582798\pi\)
−0.257196 + 0.966359i \(0.582798\pi\)
\(744\) 0 0
\(745\) −13.3474 −0.489010
\(746\) −0.814517 −0.0298216
\(747\) 0 0
\(748\) 0 0
\(749\) 20.7540 0.758335
\(750\) 0 0
\(751\) 33.7354 1.23102 0.615512 0.788128i \(-0.288949\pi\)
0.615512 + 0.788128i \(0.288949\pi\)
\(752\) −24.9003 −0.908022
\(753\) 0 0
\(754\) −7.92773 −0.288711
\(755\) 34.3729 1.25096
\(756\) 0 0
\(757\) 37.1888 1.35165 0.675824 0.737063i \(-0.263788\pi\)
0.675824 + 0.737063i \(0.263788\pi\)
\(758\) 3.08550 0.112071
\(759\) 0 0
\(760\) −22.4392 −0.813956
\(761\) −10.1020 −0.366198 −0.183099 0.983094i \(-0.558613\pi\)
−0.183099 + 0.983094i \(0.558613\pi\)
\(762\) 0 0
\(763\) −0.578353 −0.0209378
\(764\) 36.0231 1.30327
\(765\) 0 0
\(766\) 14.8907 0.538023
\(767\) 10.9639 0.395885
\(768\) 0 0
\(769\) −51.1798 −1.84559 −0.922796 0.385288i \(-0.874102\pi\)
−0.922796 + 0.385288i \(0.874102\pi\)
\(770\) −6.61162 −0.238266
\(771\) 0 0
\(772\) −8.77219 −0.315718
\(773\) 21.0914 0.758604 0.379302 0.925273i \(-0.376164\pi\)
0.379302 + 0.925273i \(0.376164\pi\)
\(774\) 0 0
\(775\) −4.18693 −0.150399
\(776\) 1.59100 0.0571135
\(777\) 0 0
\(778\) 3.09125 0.110827
\(779\) 52.7765 1.89092
\(780\) 0 0
\(781\) −10.9730 −0.392644
\(782\) 0 0
\(783\) 0 0
\(784\) −1.44690 −0.0516750
\(785\) −29.3684 −1.04820
\(786\) 0 0
\(787\) 17.8351 0.635753 0.317877 0.948132i \(-0.397030\pi\)
0.317877 + 0.948132i \(0.397030\pi\)
\(788\) −6.58713 −0.234657
\(789\) 0 0
\(790\) 4.86617 0.173130
\(791\) −30.3672 −1.07973
\(792\) 0 0
\(793\) −24.6813 −0.876458
\(794\) 13.6854 0.485677
\(795\) 0 0
\(796\) 12.3985 0.439455
\(797\) −18.8627 −0.668150 −0.334075 0.942547i \(-0.608424\pi\)
−0.334075 + 0.942547i \(0.608424\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 4.90131 0.173288
\(801\) 0 0
\(802\) 1.03789 0.0366491
\(803\) 30.4990 1.07629
\(804\) 0 0
\(805\) 11.1021 0.391299
\(806\) −7.45410 −0.262560
\(807\) 0 0
\(808\) 21.3761 0.752009
\(809\) −3.14126 −0.110441 −0.0552205 0.998474i \(-0.517586\pi\)
−0.0552205 + 0.998474i \(0.517586\pi\)
\(810\) 0 0
\(811\) −47.4960 −1.66781 −0.833905 0.551907i \(-0.813900\pi\)
−0.833905 + 0.551907i \(0.813900\pi\)
\(812\) 20.6052 0.723102
\(813\) 0 0
\(814\) −6.08169 −0.213163
\(815\) −10.8755 −0.380953
\(816\) 0 0
\(817\) −54.5145 −1.90722
\(818\) −5.18431 −0.181265
\(819\) 0 0
\(820\) 32.4860 1.13446
\(821\) 14.7130 0.513486 0.256743 0.966480i \(-0.417351\pi\)
0.256743 + 0.966480i \(0.417351\pi\)
\(822\) 0 0
\(823\) 28.3774 0.989173 0.494587 0.869128i \(-0.335319\pi\)
0.494587 + 0.869128i \(0.335319\pi\)
\(824\) 26.2297 0.913753
\(825\) 0 0
\(826\) 4.72543 0.164419
\(827\) −16.8952 −0.587504 −0.293752 0.955882i \(-0.594904\pi\)
−0.293752 + 0.955882i \(0.594904\pi\)
\(828\) 0 0
\(829\) 3.03136 0.105283 0.0526417 0.998613i \(-0.483236\pi\)
0.0526417 + 0.998613i \(0.483236\pi\)
\(830\) −11.6380 −0.403963
\(831\) 0 0
\(832\) −6.12798 −0.212450
\(833\) 0 0
\(834\) 0 0
\(835\) −25.1098 −0.868962
\(836\) −23.4453 −0.810873
\(837\) 0 0
\(838\) 2.62892 0.0908146
\(839\) −37.4875 −1.29421 −0.647106 0.762400i \(-0.724021\pi\)
−0.647106 + 0.762400i \(0.724021\pi\)
\(840\) 0 0
\(841\) −6.42523 −0.221560
\(842\) 18.0473 0.621950
\(843\) 0 0
\(844\) 21.5462 0.741652
\(845\) 6.47706 0.222818
\(846\) 0 0
\(847\) 12.8458 0.441388
\(848\) 6.73772 0.231374
\(849\) 0 0
\(850\) 0 0
\(851\) 10.2123 0.350073
\(852\) 0 0
\(853\) −31.7823 −1.08821 −0.544103 0.839018i \(-0.683130\pi\)
−0.544103 + 0.839018i \(0.683130\pi\)
\(854\) −10.6376 −0.364010
\(855\) 0 0
\(856\) −16.2695 −0.556081
\(857\) 22.6117 0.772402 0.386201 0.922415i \(-0.373787\pi\)
0.386201 + 0.922415i \(0.373787\pi\)
\(858\) 0 0
\(859\) 36.9481 1.26065 0.630327 0.776330i \(-0.282921\pi\)
0.630327 + 0.776330i \(0.282921\pi\)
\(860\) −33.5558 −1.14424
\(861\) 0 0
\(862\) 7.99729 0.272389
\(863\) 32.8262 1.11742 0.558709 0.829364i \(-0.311297\pi\)
0.558709 + 0.829364i \(0.311297\pi\)
\(864\) 0 0
\(865\) −5.38938 −0.183245
\(866\) −0.304445 −0.0103455
\(867\) 0 0
\(868\) 19.3742 0.657604
\(869\) 11.0118 0.373550
\(870\) 0 0
\(871\) −13.0409 −0.441874
\(872\) 0.453384 0.0153535
\(873\) 0 0
\(874\) −6.52830 −0.220823
\(875\) −30.2527 −1.02273
\(876\) 0 0
\(877\) −25.2628 −0.853065 −0.426532 0.904472i \(-0.640265\pi\)
−0.426532 + 0.904472i \(0.640265\pi\)
\(878\) 13.5688 0.457925
\(879\) 0 0
\(880\) −11.6416 −0.392438
\(881\) 11.4521 0.385832 0.192916 0.981215i \(-0.438206\pi\)
0.192916 + 0.981215i \(0.438206\pi\)
\(882\) 0 0
\(883\) −37.1590 −1.25050 −0.625251 0.780424i \(-0.715003\pi\)
−0.625251 + 0.780424i \(0.715003\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −0.678403 −0.0227914
\(887\) −20.5460 −0.689868 −0.344934 0.938627i \(-0.612099\pi\)
−0.344934 + 0.938627i \(0.612099\pi\)
\(888\) 0 0
\(889\) 24.0535 0.806727
\(890\) −17.4389 −0.584552
\(891\) 0 0
\(892\) −8.22934 −0.275539
\(893\) −58.9201 −1.97169
\(894\) 0 0
\(895\) −28.2359 −0.943821
\(896\) −29.0819 −0.971558
\(897\) 0 0
\(898\) −16.4087 −0.547564
\(899\) 21.2261 0.707930
\(900\) 0 0
\(901\) 0 0
\(902\) −12.1903 −0.405892
\(903\) 0 0
\(904\) 23.8055 0.791760
\(905\) 26.9357 0.895372
\(906\) 0 0
\(907\) −32.9972 −1.09565 −0.547827 0.836592i \(-0.684545\pi\)
−0.547827 + 0.836592i \(0.684545\pi\)
\(908\) −38.5554 −1.27951
\(909\) 0 0
\(910\) −8.50194 −0.281837
\(911\) −6.63185 −0.219723 −0.109861 0.993947i \(-0.535041\pi\)
−0.109861 + 0.993947i \(0.535041\pi\)
\(912\) 0 0
\(913\) −26.3361 −0.871598
\(914\) −12.5305 −0.414473
\(915\) 0 0
\(916\) 3.92789 0.129781
\(917\) −37.7257 −1.24581
\(918\) 0 0
\(919\) 58.7318 1.93738 0.968692 0.248265i \(-0.0798604\pi\)
0.968692 + 0.248265i \(0.0798604\pi\)
\(920\) −8.70320 −0.286936
\(921\) 0 0
\(922\) 4.54377 0.149641
\(923\) −14.1103 −0.464445
\(924\) 0 0
\(925\) −4.39274 −0.144432
\(926\) −9.42390 −0.309689
\(927\) 0 0
\(928\) −24.8477 −0.815666
\(929\) 49.7859 1.63342 0.816711 0.577047i \(-0.195795\pi\)
0.816711 + 0.577047i \(0.195795\pi\)
\(930\) 0 0
\(931\) −3.42371 −0.112207
\(932\) −42.8659 −1.40412
\(933\) 0 0
\(934\) −3.34806 −0.109552
\(935\) 0 0
\(936\) 0 0
\(937\) −22.6222 −0.739035 −0.369517 0.929224i \(-0.620477\pi\)
−0.369517 + 0.929224i \(0.620477\pi\)
\(938\) −5.62059 −0.183519
\(939\) 0 0
\(940\) −36.2676 −1.18292
\(941\) −33.9667 −1.10728 −0.553642 0.832755i \(-0.686762\pi\)
−0.553642 + 0.832755i \(0.686762\pi\)
\(942\) 0 0
\(943\) 20.4697 0.666586
\(944\) 8.32045 0.270807
\(945\) 0 0
\(946\) 12.5917 0.409392
\(947\) 11.6328 0.378016 0.189008 0.981976i \(-0.439473\pi\)
0.189008 + 0.981976i \(0.439473\pi\)
\(948\) 0 0
\(949\) 39.2190 1.27310
\(950\) 2.80810 0.0911068
\(951\) 0 0
\(952\) 0 0
\(953\) 57.8467 1.87384 0.936919 0.349547i \(-0.113664\pi\)
0.936919 + 0.349547i \(0.113664\pi\)
\(954\) 0 0
\(955\) 42.3249 1.36960
\(956\) −28.9775 −0.937199
\(957\) 0 0
\(958\) −18.0487 −0.583127
\(959\) −35.8031 −1.15614
\(960\) 0 0
\(961\) −11.0420 −0.356194
\(962\) −7.82051 −0.252143
\(963\) 0 0
\(964\) 51.4498 1.65709
\(965\) −10.3068 −0.331787
\(966\) 0 0
\(967\) 27.3184 0.878501 0.439250 0.898365i \(-0.355244\pi\)
0.439250 + 0.898365i \(0.355244\pi\)
\(968\) −10.0701 −0.323666
\(969\) 0 0
\(970\) 0.863100 0.0277125
\(971\) −10.0632 −0.322943 −0.161471 0.986877i \(-0.551624\pi\)
−0.161471 + 0.986877i \(0.551624\pi\)
\(972\) 0 0
\(973\) 38.9432 1.24846
\(974\) 9.24298 0.296164
\(975\) 0 0
\(976\) −18.7304 −0.599546
\(977\) 26.5667 0.849945 0.424973 0.905206i \(-0.360284\pi\)
0.424973 + 0.905206i \(0.360284\pi\)
\(978\) 0 0
\(979\) −39.4630 −1.26124
\(980\) −2.10743 −0.0673192
\(981\) 0 0
\(982\) 10.0773 0.321578
\(983\) 30.5443 0.974213 0.487106 0.873343i \(-0.338052\pi\)
0.487106 + 0.873343i \(0.338052\pi\)
\(984\) 0 0
\(985\) −7.73947 −0.246600
\(986\) 0 0
\(987\) 0 0
\(988\) −30.1486 −0.959154
\(989\) −21.1438 −0.672335
\(990\) 0 0
\(991\) −2.06918 −0.0657298 −0.0328649 0.999460i \(-0.510463\pi\)
−0.0328649 + 0.999460i \(0.510463\pi\)
\(992\) −23.3632 −0.741784
\(993\) 0 0
\(994\) −6.08148 −0.192893
\(995\) 14.5675 0.461821
\(996\) 0 0
\(997\) 29.7880 0.943395 0.471697 0.881761i \(-0.343642\pi\)
0.471697 + 0.881761i \(0.343642\pi\)
\(998\) 3.45655 0.109415
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7803.2.a.cg.1.10 24
3.2 odd 2 7803.2.a.cd.1.15 24
17.10 odd 16 459.2.l.a.406.8 yes 48
17.12 odd 16 459.2.l.a.433.8 yes 48
17.16 even 2 7803.2.a.cd.1.10 24
51.29 even 16 459.2.l.a.433.5 yes 48
51.44 even 16 459.2.l.a.406.5 48
51.50 odd 2 inner 7803.2.a.cg.1.15 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
459.2.l.a.406.5 48 51.44 even 16
459.2.l.a.406.8 yes 48 17.10 odd 16
459.2.l.a.433.5 yes 48 51.29 even 16
459.2.l.a.433.8 yes 48 17.12 odd 16
7803.2.a.cd.1.10 24 17.16 even 2
7803.2.a.cd.1.15 24 3.2 odd 2
7803.2.a.cg.1.10 24 1.1 even 1 trivial
7803.2.a.cg.1.15 24 51.50 odd 2 inner