Properties

Label 459.2.l.a.406.5
Level $459$
Weight $2$
Character 459.406
Analytic conductor $3.665$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [459,2,Mod(298,459)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("459.298"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 459.l (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0,0,0,-16,0,0,0,0,0,-48,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.66513345278\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(12\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 406.5
Character \(\chi\) \(=\) 459.406
Dual form 459.2.l.a.433.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.377143 - 0.377143i) q^{2} -1.71553i q^{4} +(1.86220 - 0.771351i) q^{5} +(-2.33552 - 0.967406i) q^{7} +(-1.40129 + 1.40129i) q^{8} +(-0.993228 - 0.411408i) q^{10} +(0.930989 - 2.24761i) q^{11} -3.12835i q^{13} +(0.515977 + 1.24568i) q^{14} -2.37408 q^{16} +(2.17080 + 3.50537i) q^{17} +(-3.97227 - 3.97227i) q^{19} +(-1.32327 - 3.19466i) q^{20} +(-1.19879 + 0.496554i) q^{22} +(-0.833806 + 2.01298i) q^{23} +(-0.662708 + 0.662708i) q^{25} +(-1.17984 + 1.17984i) q^{26} +(-1.65961 + 4.00665i) q^{28} +(4.38962 - 1.81824i) q^{29} +(-1.70961 - 4.12737i) q^{31} +(3.69794 + 3.69794i) q^{32} +(0.503326 - 2.14073i) q^{34} -5.09543 q^{35} +(1.79365 + 4.33025i) q^{37} +2.99623i q^{38} +(-1.52860 + 3.69036i) q^{40} +(-8.67965 - 3.59523i) q^{41} +(6.86189 - 6.86189i) q^{43} +(-3.85583 - 1.59714i) q^{44} +(1.07365 - 0.444720i) q^{46} -10.4884i q^{47} +(-0.430951 - 0.430951i) q^{49} +0.499872 q^{50} -5.36677 q^{52} +(2.00679 + 2.00679i) q^{53} -4.90362i q^{55} +(4.62835 - 1.91712i) q^{56} +(-2.34125 - 0.969779i) q^{58} +(-2.47820 + 2.47820i) q^{59} +(7.28899 + 3.01920i) q^{61} +(-0.911842 + 2.20138i) q^{62} +1.95885i q^{64} +(-2.41306 - 5.82563i) q^{65} +4.16861 q^{67} +(6.01356 - 3.72406i) q^{68} +(1.92171 + 1.92171i) q^{70} +(1.72607 + 4.16711i) q^{71} +(11.5823 - 4.79756i) q^{73} +(0.956663 - 2.30959i) q^{74} +(-6.81453 + 6.81453i) q^{76} +(-4.34870 + 4.34870i) q^{77} +(-1.73218 + 4.18185i) q^{79} +(-4.42102 + 1.83125i) q^{80} +(1.91756 + 4.62939i) q^{82} +(7.65476 + 7.65476i) q^{83} +(6.74634 + 4.85328i) q^{85} -5.17583 q^{86} +(1.84496 + 4.45412i) q^{88} +16.2213i q^{89} +(-3.02639 + 7.30634i) q^{91} +(3.45333 + 1.43042i) q^{92} +(-3.95563 + 3.95563i) q^{94} +(-10.4612 - 4.33317i) q^{95} +(-0.741725 + 0.307233i) q^{97} +0.325061i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 16 q^{10} - 48 q^{16} - 16 q^{19} - 24 q^{22} + 16 q^{25} + 24 q^{28} - 40 q^{31} + 64 q^{34} + 48 q^{37} - 48 q^{40} - 8 q^{43} + 24 q^{46} - 16 q^{49} + 32 q^{52} + 64 q^{58} - 24 q^{61} - 32 q^{67}+ \cdots - 88 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.377143 0.377143i −0.266681 0.266681i 0.561081 0.827761i \(-0.310386\pi\)
−0.827761 + 0.561081i \(0.810386\pi\)
\(3\) 0 0
\(4\) 1.71553i 0.857763i
\(5\) 1.86220 0.771351i 0.832803 0.344958i 0.0747915 0.997199i \(-0.476171\pi\)
0.758012 + 0.652241i \(0.226171\pi\)
\(6\) 0 0
\(7\) −2.33552 0.967406i −0.882745 0.365645i −0.105184 0.994453i \(-0.533543\pi\)
−0.777561 + 0.628808i \(0.783543\pi\)
\(8\) −1.40129 + 1.40129i −0.495429 + 0.495429i
\(9\) 0 0
\(10\) −0.993228 0.411408i −0.314086 0.130099i
\(11\) 0.930989 2.24761i 0.280704 0.677679i −0.719149 0.694856i \(-0.755468\pi\)
0.999852 + 0.0171772i \(0.00546794\pi\)
\(12\) 0 0
\(13\) 3.12835i 0.867649i −0.900997 0.433824i \(-0.857164\pi\)
0.900997 0.433824i \(-0.142836\pi\)
\(14\) 0.515977 + 1.24568i 0.137901 + 0.332921i
\(15\) 0 0
\(16\) −2.37408 −0.593520
\(17\) 2.17080 + 3.50537i 0.526496 + 0.850178i
\(18\) 0 0
\(19\) −3.97227 3.97227i −0.911301 0.911301i 0.0850736 0.996375i \(-0.472887\pi\)
−0.996375 + 0.0850736i \(0.972887\pi\)
\(20\) −1.32327 3.19466i −0.295893 0.714348i
\(21\) 0 0
\(22\) −1.19879 + 0.496554i −0.255582 + 0.105866i
\(23\) −0.833806 + 2.01298i −0.173860 + 0.419736i −0.986657 0.162811i \(-0.947944\pi\)
0.812797 + 0.582547i \(0.197944\pi\)
\(24\) 0 0
\(25\) −0.662708 + 0.662708i −0.132542 + 0.132542i
\(26\) −1.17984 + 1.17984i −0.231385 + 0.231385i
\(27\) 0 0
\(28\) −1.65961 + 4.00665i −0.313637 + 0.757186i
\(29\) 4.38962 1.81824i 0.815132 0.337639i 0.0641325 0.997941i \(-0.479572\pi\)
0.751000 + 0.660303i \(0.229572\pi\)
\(30\) 0 0
\(31\) −1.70961 4.12737i −0.307056 0.741298i −0.999798 0.0201125i \(-0.993598\pi\)
0.692742 0.721185i \(-0.256402\pi\)
\(32\) 3.69794 + 3.69794i 0.653710 + 0.653710i
\(33\) 0 0
\(34\) 0.503326 2.14073i 0.0863197 0.367132i
\(35\) −5.09543 −0.861285
\(36\) 0 0
\(37\) 1.79365 + 4.33025i 0.294874 + 0.711889i 0.999996 + 0.00280322i \(0.000892293\pi\)
−0.705122 + 0.709086i \(0.749108\pi\)
\(38\) 2.99623i 0.486053i
\(39\) 0 0
\(40\) −1.52860 + 3.69036i −0.241693 + 0.583498i
\(41\) −8.67965 3.59523i −1.35553 0.561481i −0.417707 0.908582i \(-0.637166\pi\)
−0.937828 + 0.347101i \(0.887166\pi\)
\(42\) 0 0
\(43\) 6.86189 6.86189i 1.04643 1.04643i 0.0475600 0.998868i \(-0.484855\pi\)
0.998868 0.0475600i \(-0.0151445\pi\)
\(44\) −3.85583 1.59714i −0.581288 0.240777i
\(45\) 0 0
\(46\) 1.07365 0.444720i 0.158301 0.0655703i
\(47\) 10.4884i 1.52989i −0.644094 0.764946i \(-0.722766\pi\)
0.644094 0.764946i \(-0.277234\pi\)
\(48\) 0 0
\(49\) −0.430951 0.430951i −0.0615644 0.0615644i
\(50\) 0.499872 0.0706926
\(51\) 0 0
\(52\) −5.36677 −0.744237
\(53\) 2.00679 + 2.00679i 0.275654 + 0.275654i 0.831371 0.555717i \(-0.187556\pi\)
−0.555717 + 0.831371i \(0.687556\pi\)
\(54\) 0 0
\(55\) 4.90362i 0.661205i
\(56\) 4.62835 1.91712i 0.618489 0.256187i
\(57\) 0 0
\(58\) −2.34125 0.969779i −0.307422 0.127338i
\(59\) −2.47820 + 2.47820i −0.322634 + 0.322634i −0.849777 0.527143i \(-0.823263\pi\)
0.527143 + 0.849777i \(0.323263\pi\)
\(60\) 0 0
\(61\) 7.28899 + 3.01920i 0.933260 + 0.386569i 0.796914 0.604093i \(-0.206464\pi\)
0.136346 + 0.990661i \(0.456464\pi\)
\(62\) −0.911842 + 2.20138i −0.115804 + 0.279576i
\(63\) 0 0
\(64\) 1.95885i 0.244857i
\(65\) −2.41306 5.82563i −0.299303 0.722581i
\(66\) 0 0
\(67\) 4.16861 0.509277 0.254639 0.967036i \(-0.418043\pi\)
0.254639 + 0.967036i \(0.418043\pi\)
\(68\) 6.01356 3.72406i 0.729251 0.451609i
\(69\) 0 0
\(70\) 1.92171 + 1.92171i 0.229688 + 0.229688i
\(71\) 1.72607 + 4.16711i 0.204847 + 0.494544i 0.992598 0.121450i \(-0.0387544\pi\)
−0.787751 + 0.615994i \(0.788754\pi\)
\(72\) 0 0
\(73\) 11.5823 4.79756i 1.35561 0.561512i 0.417762 0.908557i \(-0.362815\pi\)
0.937849 + 0.347044i \(0.112815\pi\)
\(74\) 0.956663 2.30959i 0.111210 0.268484i
\(75\) 0 0
\(76\) −6.81453 + 6.81453i −0.781680 + 0.781680i
\(77\) −4.34870 + 4.34870i −0.495580 + 0.495580i
\(78\) 0 0
\(79\) −1.73218 + 4.18185i −0.194885 + 0.470495i −0.990870 0.134822i \(-0.956954\pi\)
0.795984 + 0.605317i \(0.206954\pi\)
\(80\) −4.42102 + 1.83125i −0.494286 + 0.204740i
\(81\) 0 0
\(82\) 1.91756 + 4.62939i 0.211759 + 0.511231i
\(83\) 7.65476 + 7.65476i 0.840219 + 0.840219i 0.988887 0.148668i \(-0.0474986\pi\)
−0.148668 + 0.988887i \(0.547499\pi\)
\(84\) 0 0
\(85\) 6.74634 + 4.85328i 0.731744 + 0.526412i
\(86\) −5.17583 −0.558124
\(87\) 0 0
\(88\) 1.84496 + 4.45412i 0.196673 + 0.474811i
\(89\) 16.2213i 1.71945i 0.510756 + 0.859726i \(0.329366\pi\)
−0.510756 + 0.859726i \(0.670634\pi\)
\(90\) 0 0
\(91\) −3.02639 + 7.30634i −0.317251 + 0.765913i
\(92\) 3.45333 + 1.43042i 0.360034 + 0.149131i
\(93\) 0 0
\(94\) −3.95563 + 3.95563i −0.407993 + 0.407993i
\(95\) −10.4612 4.33317i −1.07330 0.444574i
\(96\) 0 0
\(97\) −0.741725 + 0.307233i −0.0753108 + 0.0311947i −0.420021 0.907514i \(-0.637977\pi\)
0.344710 + 0.938709i \(0.387977\pi\)
\(98\) 0.325061i 0.0328361i
\(99\) 0 0
\(100\) 1.13689 + 1.13689i 0.113689 + 0.113689i
\(101\) 10.7867 1.07331 0.536657 0.843801i \(-0.319687\pi\)
0.536657 + 0.843801i \(0.319687\pi\)
\(102\) 0 0
\(103\) 13.2358 1.30416 0.652082 0.758149i \(-0.273896\pi\)
0.652082 + 0.758149i \(0.273896\pi\)
\(104\) 4.38372 + 4.38372i 0.429859 + 0.429859i
\(105\) 0 0
\(106\) 1.51370i 0.147023i
\(107\) 7.58488 3.14176i 0.733258 0.303725i 0.0153679 0.999882i \(-0.495108\pi\)
0.717890 + 0.696157i \(0.245108\pi\)
\(108\) 0 0
\(109\) 0.211368 + 0.0875515i 0.0202454 + 0.00838592i 0.392783 0.919631i \(-0.371512\pi\)
−0.372538 + 0.928017i \(0.621512\pi\)
\(110\) −1.84937 + 1.84937i −0.176330 + 0.176330i
\(111\) 0 0
\(112\) 5.54472 + 2.29670i 0.523927 + 0.217018i
\(113\) 4.59701 11.0982i 0.432451 1.04403i −0.546044 0.837756i \(-0.683867\pi\)
0.978495 0.206272i \(-0.0661331\pi\)
\(114\) 0 0
\(115\) 4.39175i 0.409533i
\(116\) −3.11924 7.53051i −0.289614 0.699190i
\(117\) 0 0
\(118\) 1.86927 0.172081
\(119\) −1.67883 10.2869i −0.153898 0.943001i
\(120\) 0 0
\(121\) 3.59318 + 3.59318i 0.326652 + 0.326652i
\(122\) −1.61032 3.88767i −0.145792 0.351973i
\(123\) 0 0
\(124\) −7.08061 + 2.93289i −0.635858 + 0.263381i
\(125\) −4.57967 + 11.0563i −0.409618 + 0.988906i
\(126\) 0 0
\(127\) −6.72812 + 6.72812i −0.597024 + 0.597024i −0.939519 0.342496i \(-0.888728\pi\)
0.342496 + 0.939519i \(0.388728\pi\)
\(128\) 8.13465 8.13465i 0.719008 0.719008i
\(129\) 0 0
\(130\) −1.28703 + 3.10717i −0.112880 + 0.272517i
\(131\) 13.7875 5.71095i 1.20462 0.498968i 0.312128 0.950040i \(-0.398958\pi\)
0.892488 + 0.451072i \(0.148958\pi\)
\(132\) 0 0
\(133\) 5.43453 + 13.1201i 0.471234 + 1.13766i
\(134\) −1.57216 1.57216i −0.135814 0.135814i
\(135\) 0 0
\(136\) −7.95394 1.87012i −0.682045 0.160361i
\(137\) −14.1629 −1.21002 −0.605009 0.796219i \(-0.706830\pi\)
−0.605009 + 0.796219i \(0.706830\pi\)
\(138\) 0 0
\(139\) −5.89525 14.2324i −0.500029 1.20718i −0.949468 0.313865i \(-0.898376\pi\)
0.449439 0.893311i \(-0.351624\pi\)
\(140\) 8.74135i 0.738779i
\(141\) 0 0
\(142\) 0.920620 2.22257i 0.0772567 0.186514i
\(143\) −7.03131 2.91246i −0.587988 0.243552i
\(144\) 0 0
\(145\) 6.77187 6.77187i 0.562373 0.562373i
\(146\) −6.17757 2.55883i −0.511260 0.211771i
\(147\) 0 0
\(148\) 7.42866 3.07705i 0.610632 0.252932i
\(149\) 6.62192i 0.542489i 0.962511 + 0.271244i \(0.0874352\pi\)
−0.962511 + 0.271244i \(0.912565\pi\)
\(150\) 0 0
\(151\) −12.0584 12.0584i −0.981297 0.981297i 0.0185313 0.999828i \(-0.494101\pi\)
−0.999828 + 0.0185313i \(0.994101\pi\)
\(152\) 11.1326 0.902971
\(153\) 0 0
\(154\) 3.28016 0.264323
\(155\) −6.36730 6.36730i −0.511434 0.511434i
\(156\) 0 0
\(157\) 14.5703i 1.16284i 0.813605 + 0.581418i \(0.197502\pi\)
−0.813605 + 0.581418i \(0.802498\pi\)
\(158\) 2.23044 0.923878i 0.177444 0.0734998i
\(159\) 0 0
\(160\) 9.73873 + 4.03391i 0.769914 + 0.318909i
\(161\) 3.89475 3.89475i 0.306949 0.306949i
\(162\) 0 0
\(163\) −4.98486 2.06480i −0.390444 0.161727i 0.178820 0.983882i \(-0.442772\pi\)
−0.569265 + 0.822154i \(0.692772\pi\)
\(164\) −6.16771 + 14.8902i −0.481617 + 1.16273i
\(165\) 0 0
\(166\) 5.77388i 0.448140i
\(167\) 4.76729 + 11.5093i 0.368904 + 0.890613i 0.993931 + 0.110010i \(0.0350881\pi\)
−0.625027 + 0.780603i \(0.714912\pi\)
\(168\) 0 0
\(169\) 3.21341 0.247185
\(170\) −0.713958 4.37472i −0.0547580 0.335526i
\(171\) 0 0
\(172\) −11.7717 11.7717i −0.897587 0.897587i
\(173\) −1.02321 2.47026i −0.0777936 0.187810i 0.880198 0.474607i \(-0.157410\pi\)
−0.957992 + 0.286796i \(0.907410\pi\)
\(174\) 0 0
\(175\) 2.18888 0.906663i 0.165464 0.0685373i
\(176\) −2.21024 + 5.33600i −0.166603 + 0.402216i
\(177\) 0 0
\(178\) 6.11775 6.11775i 0.458544 0.458544i
\(179\) 9.90545 9.90545i 0.740368 0.740368i −0.232281 0.972649i \(-0.574619\pi\)
0.972649 + 0.232281i \(0.0746188\pi\)
\(180\) 0 0
\(181\) 5.11394 12.3461i 0.380116 0.917681i −0.611826 0.790992i \(-0.709565\pi\)
0.991942 0.126689i \(-0.0404351\pi\)
\(182\) 3.89692 1.61416i 0.288859 0.119649i
\(183\) 0 0
\(184\) −1.65237 3.98917i −0.121814 0.294085i
\(185\) 6.68029 + 6.68029i 0.491145 + 0.491145i
\(186\) 0 0
\(187\) 9.89969 1.61564i 0.723937 0.118147i
\(188\) −17.9931 −1.31228
\(189\) 0 0
\(190\) 2.31114 + 5.57959i 0.167668 + 0.404786i
\(191\) 20.9983i 1.51938i 0.650285 + 0.759691i \(0.274650\pi\)
−0.650285 + 0.759691i \(0.725350\pi\)
\(192\) 0 0
\(193\) 1.95682 4.72418i 0.140855 0.340054i −0.837672 0.546174i \(-0.816084\pi\)
0.978527 + 0.206120i \(0.0660838\pi\)
\(194\) 0.395607 + 0.163866i 0.0284030 + 0.0117649i
\(195\) 0 0
\(196\) −0.739307 + 0.739307i −0.0528077 + 0.0528077i
\(197\) 3.54743 + 1.46940i 0.252744 + 0.104690i 0.505459 0.862851i \(-0.331323\pi\)
−0.252714 + 0.967541i \(0.581323\pi\)
\(198\) 0 0
\(199\) 6.67711 2.76575i 0.473328 0.196059i −0.133251 0.991082i \(-0.542542\pi\)
0.606579 + 0.795024i \(0.292542\pi\)
\(200\) 1.85729i 0.131330i
\(201\) 0 0
\(202\) −4.06812 4.06812i −0.286232 0.286232i
\(203\) −12.0110 −0.843010
\(204\) 0 0
\(205\) −18.9365 −1.32258
\(206\) −4.99180 4.99180i −0.347795 0.347795i
\(207\) 0 0
\(208\) 7.42696i 0.514967i
\(209\) −12.6262 + 5.22996i −0.873376 + 0.361764i
\(210\) 0 0
\(211\) −11.6035 4.80633i −0.798819 0.330882i −0.0543357 0.998523i \(-0.517304\pi\)
−0.744483 + 0.667641i \(0.767304\pi\)
\(212\) 3.44270 3.44270i 0.236446 0.236446i
\(213\) 0 0
\(214\) −4.04548 1.67569i −0.276543 0.114548i
\(215\) 7.48532 18.0712i 0.510495 1.23244i
\(216\) 0 0
\(217\) 11.2935i 0.766650i
\(218\) −0.0466966 0.112736i −0.00316269 0.00763541i
\(219\) 0 0
\(220\) −8.41230 −0.567157
\(221\) 10.9660 6.79102i 0.737656 0.456814i
\(222\) 0 0
\(223\) −3.39198 3.39198i −0.227144 0.227144i 0.584355 0.811498i \(-0.301348\pi\)
−0.811498 + 0.584355i \(0.801348\pi\)
\(224\) −5.05922 12.2140i −0.338033 0.816084i
\(225\) 0 0
\(226\) −5.91933 + 2.45187i −0.393748 + 0.163096i
\(227\) −8.60058 + 20.7636i −0.570840 + 1.37813i 0.330000 + 0.943981i \(0.392951\pi\)
−0.900841 + 0.434150i \(0.857049\pi\)
\(228\) 0 0
\(229\) −1.61900 + 1.61900i −0.106987 + 0.106987i −0.758574 0.651587i \(-0.774103\pi\)
0.651587 + 0.758574i \(0.274103\pi\)
\(230\) 1.65632 1.65632i 0.109214 0.109214i
\(231\) 0 0
\(232\) −3.60324 + 8.69899i −0.236564 + 0.571117i
\(233\) 23.0850 9.56213i 1.51235 0.626436i 0.536309 0.844022i \(-0.319818\pi\)
0.976041 + 0.217586i \(0.0698183\pi\)
\(234\) 0 0
\(235\) −8.09024 19.5316i −0.527749 1.27410i
\(236\) 4.25141 + 4.25141i 0.276744 + 0.276744i
\(237\) 0 0
\(238\) −3.24648 + 4.51281i −0.210438 + 0.292522i
\(239\) −16.8913 −1.09261 −0.546304 0.837587i \(-0.683966\pi\)
−0.546304 + 0.837587i \(0.683966\pi\)
\(240\) 0 0
\(241\) −11.4769 27.7078i −0.739295 1.78482i −0.608732 0.793376i \(-0.708321\pi\)
−0.130564 0.991440i \(-0.541679\pi\)
\(242\) 2.71029i 0.174224i
\(243\) 0 0
\(244\) 5.17951 12.5045i 0.331584 0.800516i
\(245\) −1.13493 0.470105i −0.0725082 0.0300339i
\(246\) 0 0
\(247\) −12.4267 + 12.4267i −0.790689 + 0.790689i
\(248\) 8.17929 + 3.38797i 0.519385 + 0.215136i
\(249\) 0 0
\(250\) 5.89700 2.44262i 0.372959 0.154485i
\(251\) 24.1719i 1.52572i 0.646566 + 0.762858i \(0.276205\pi\)
−0.646566 + 0.762858i \(0.723795\pi\)
\(252\) 0 0
\(253\) 3.74814 + 3.74814i 0.235643 + 0.235643i
\(254\) 5.07493 0.318429
\(255\) 0 0
\(256\) −2.21815 −0.138634
\(257\) −18.9089 18.9089i −1.17950 1.17950i −0.979871 0.199632i \(-0.936025\pi\)
−0.199632 0.979871i \(-0.563975\pi\)
\(258\) 0 0
\(259\) 11.8486i 0.736236i
\(260\) −9.99403 + 4.13966i −0.619803 + 0.256731i
\(261\) 0 0
\(262\) −7.35370 3.04600i −0.454313 0.188183i
\(263\) −1.65645 + 1.65645i −0.102141 + 0.102141i −0.756331 0.654190i \(-0.773010\pi\)
0.654190 + 0.756331i \(0.273010\pi\)
\(264\) 0 0
\(265\) 5.28500 + 2.18912i 0.324655 + 0.134476i
\(266\) 2.89857 6.99777i 0.177723 0.429061i
\(267\) 0 0
\(268\) 7.15136i 0.436839i
\(269\) −6.59059 15.9111i −0.401835 0.970116i −0.987220 0.159361i \(-0.949057\pi\)
0.585385 0.810755i \(-0.300943\pi\)
\(270\) 0 0
\(271\) −24.8158 −1.50745 −0.753726 0.657189i \(-0.771746\pi\)
−0.753726 + 0.657189i \(0.771746\pi\)
\(272\) −5.15365 8.32204i −0.312486 0.504597i
\(273\) 0 0
\(274\) 5.34144 + 5.34144i 0.322688 + 0.322688i
\(275\) 0.872534 + 2.10648i 0.0526158 + 0.127026i
\(276\) 0 0
\(277\) −17.0987 + 7.08252i −1.02736 + 0.425548i −0.831760 0.555136i \(-0.812666\pi\)
−0.195603 + 0.980683i \(0.562666\pi\)
\(278\) −3.14430 + 7.59101i −0.188582 + 0.455278i
\(279\) 0 0
\(280\) 7.14016 7.14016i 0.426706 0.426706i
\(281\) −12.2066 + 12.2066i −0.728182 + 0.728182i −0.970257 0.242075i \(-0.922172\pi\)
0.242075 + 0.970257i \(0.422172\pi\)
\(282\) 0 0
\(283\) 7.92580 19.1346i 0.471140 1.13743i −0.492521 0.870301i \(-0.663924\pi\)
0.963660 0.267131i \(-0.0860756\pi\)
\(284\) 7.14878 2.96112i 0.424202 0.175710i
\(285\) 0 0
\(286\) 1.55340 + 3.75023i 0.0918542 + 0.221756i
\(287\) 16.7935 + 16.7935i 0.991288 + 0.991288i
\(288\) 0 0
\(289\) −7.57527 + 15.2189i −0.445604 + 0.895230i
\(290\) −5.10793 −0.299948
\(291\) 0 0
\(292\) −8.23034 19.8698i −0.481644 1.16279i
\(293\) 23.8401i 1.39275i −0.717678 0.696375i \(-0.754795\pi\)
0.717678 0.696375i \(-0.245205\pi\)
\(294\) 0 0
\(295\) −2.70335 + 6.52648i −0.157395 + 0.379986i
\(296\) −8.58134 3.55451i −0.498780 0.206602i
\(297\) 0 0
\(298\) 2.49741 2.49741i 0.144671 0.144671i
\(299\) 6.29733 + 2.60844i 0.364184 + 0.150850i
\(300\) 0 0
\(301\) −22.6643 + 9.38787i −1.30635 + 0.541108i
\(302\) 9.09548i 0.523386i
\(303\) 0 0
\(304\) 9.43049 + 9.43049i 0.540875 + 0.540875i
\(305\) 15.9025 0.910572
\(306\) 0 0
\(307\) 13.9729 0.797474 0.398737 0.917065i \(-0.369449\pi\)
0.398737 + 0.917065i \(0.369449\pi\)
\(308\) 7.46030 + 7.46030i 0.425090 + 0.425090i
\(309\) 0 0
\(310\) 4.80277i 0.272779i
\(311\) 9.01213 3.73295i 0.511031 0.211676i −0.112241 0.993681i \(-0.535803\pi\)
0.623272 + 0.782005i \(0.285803\pi\)
\(312\) 0 0
\(313\) 30.7112 + 12.7210i 1.73590 + 0.719032i 0.999077 + 0.0429439i \(0.0136737\pi\)
0.736820 + 0.676089i \(0.236326\pi\)
\(314\) 5.49509 5.49509i 0.310106 0.310106i
\(315\) 0 0
\(316\) 7.17407 + 2.97160i 0.403573 + 0.167166i
\(317\) 2.80943 6.78257i 0.157793 0.380947i −0.825135 0.564936i \(-0.808901\pi\)
0.982928 + 0.183989i \(0.0589010\pi\)
\(318\) 0 0
\(319\) 11.5589i 0.647175i
\(320\) 1.51096 + 3.64779i 0.0844654 + 0.203917i
\(321\) 0 0
\(322\) −2.93775 −0.163715
\(323\) 5.30129 22.5473i 0.294972 1.25456i
\(324\) 0 0
\(325\) 2.07319 + 2.07319i 0.115000 + 0.115000i
\(326\) 1.10128 + 2.65873i 0.0609944 + 0.147254i
\(327\) 0 0
\(328\) 17.2006 7.12473i 0.949745 0.393397i
\(329\) −10.1465 + 24.4959i −0.559397 + 1.35050i
\(330\) 0 0
\(331\) 1.45111 1.45111i 0.0797602 0.0797602i −0.666101 0.745861i \(-0.732038\pi\)
0.745861 + 0.666101i \(0.232038\pi\)
\(332\) 13.1319 13.1319i 0.720709 0.720709i
\(333\) 0 0
\(334\) 2.54269 6.13859i 0.139130 0.335889i
\(335\) 7.76281 3.21546i 0.424128 0.175679i
\(336\) 0 0
\(337\) 2.33424 + 5.63535i 0.127154 + 0.306977i 0.974617 0.223877i \(-0.0718713\pi\)
−0.847463 + 0.530854i \(0.821871\pi\)
\(338\) −1.21192 1.21192i −0.0659195 0.0659195i
\(339\) 0 0
\(340\) 8.32592 11.5735i 0.451536 0.627662i
\(341\) −10.8683 −0.588554
\(342\) 0 0
\(343\) 7.36143 + 17.7721i 0.397480 + 0.959601i
\(344\) 19.2309i 1.03686i
\(345\) 0 0
\(346\) −0.545743 + 1.31754i −0.0293393 + 0.0708314i
\(347\) −31.7950 13.1699i −1.70684 0.706998i −0.706845 0.707369i \(-0.749882\pi\)
−1.00000 0.000370632i \(0.999882\pi\)
\(348\) 0 0
\(349\) 12.3245 12.3245i 0.659713 0.659713i −0.295599 0.955312i \(-0.595519\pi\)
0.955312 + 0.295599i \(0.0955192\pi\)
\(350\) −1.16746 0.483579i −0.0624035 0.0258484i
\(351\) 0 0
\(352\) 11.7543 4.86877i 0.626504 0.259507i
\(353\) 35.9886i 1.91548i 0.287638 + 0.957739i \(0.407130\pi\)
−0.287638 + 0.957739i \(0.592870\pi\)
\(354\) 0 0
\(355\) 6.42860 + 6.42860i 0.341195 + 0.341195i
\(356\) 27.8280 1.47488
\(357\) 0 0
\(358\) −7.47155 −0.394884
\(359\) 13.2408 + 13.2408i 0.698823 + 0.698823i 0.964157 0.265334i \(-0.0854822\pi\)
−0.265334 + 0.964157i \(0.585482\pi\)
\(360\) 0 0
\(361\) 12.5578i 0.660939i
\(362\) −6.58495 + 2.72758i −0.346097 + 0.143358i
\(363\) 0 0
\(364\) 12.5342 + 5.19184i 0.656971 + 0.272127i
\(365\) 17.8681 17.8681i 0.935259 0.935259i
\(366\) 0 0
\(367\) −22.4274 9.28972i −1.17070 0.484919i −0.289275 0.957246i \(-0.593414\pi\)
−0.881424 + 0.472326i \(0.843414\pi\)
\(368\) 1.97952 4.77899i 0.103190 0.249122i
\(369\) 0 0
\(370\) 5.03885i 0.261957i
\(371\) −2.74553 6.62829i −0.142541 0.344124i
\(372\) 0 0
\(373\) −1.52714 −0.0790723 −0.0395361 0.999218i \(-0.512588\pi\)
−0.0395361 + 0.999218i \(0.512588\pi\)
\(374\) −4.34293 3.12428i −0.224568 0.161552i
\(375\) 0 0
\(376\) 14.6973 + 14.6973i 0.757953 + 0.757953i
\(377\) −5.68810 13.7323i −0.292952 0.707249i
\(378\) 0 0
\(379\) −5.34466 + 2.21383i −0.274537 + 0.113717i −0.515704 0.856767i \(-0.672470\pi\)
0.241168 + 0.970483i \(0.422470\pi\)
\(380\) −7.43366 + 17.9464i −0.381339 + 0.920633i
\(381\) 0 0
\(382\) 7.91936 7.91936i 0.405190 0.405190i
\(383\) −19.7415 + 19.7415i −1.00874 + 1.00874i −0.00877965 + 0.999961i \(0.502795\pi\)
−0.999961 + 0.00877965i \(0.997205\pi\)
\(384\) 0 0
\(385\) −4.74379 + 11.4525i −0.241766 + 0.583675i
\(386\) −2.51969 + 1.04369i −0.128249 + 0.0531225i
\(387\) 0 0
\(388\) 0.527065 + 1.27245i 0.0267577 + 0.0645988i
\(389\) 4.09825 + 4.09825i 0.207789 + 0.207789i 0.803327 0.595538i \(-0.203061\pi\)
−0.595538 + 0.803327i \(0.703061\pi\)
\(390\) 0 0
\(391\) −8.86629 + 1.44698i −0.448387 + 0.0731772i
\(392\) 1.20777 0.0610016
\(393\) 0 0
\(394\) −0.783718 1.89206i −0.0394832 0.0953208i
\(395\) 9.12358i 0.459057i
\(396\) 0 0
\(397\) −9.81920 + 23.7057i −0.492812 + 1.18975i 0.460472 + 0.887674i \(0.347680\pi\)
−0.953283 + 0.302078i \(0.902320\pi\)
\(398\) −3.56131 1.47514i −0.178512 0.0739423i
\(399\) 0 0
\(400\) 1.57332 1.57332i 0.0786661 0.0786661i
\(401\) −1.79781 0.744678i −0.0897784 0.0371875i 0.337342 0.941382i \(-0.390472\pi\)
−0.427121 + 0.904195i \(0.640472\pi\)
\(402\) 0 0
\(403\) −12.9119 + 5.34827i −0.643186 + 0.266417i
\(404\) 18.5048i 0.920648i
\(405\) 0 0
\(406\) 4.52988 + 4.52988i 0.224814 + 0.224814i
\(407\) 11.4026 0.565205
\(408\) 0 0
\(409\) 9.72007 0.480627 0.240313 0.970695i \(-0.422750\pi\)
0.240313 + 0.970695i \(0.422750\pi\)
\(410\) 7.14177 + 7.14177i 0.352707 + 0.352707i
\(411\) 0 0
\(412\) 22.7064i 1.11866i
\(413\) 8.18532 3.39047i 0.402773 0.166834i
\(414\) 0 0
\(415\) 20.1592 + 8.35023i 0.989578 + 0.409897i
\(416\) 11.5685 11.5685i 0.567191 0.567191i
\(417\) 0 0
\(418\) 6.73435 + 2.78946i 0.329388 + 0.136437i
\(419\) −1.88624 + 4.55378i −0.0921486 + 0.222466i −0.963233 0.268666i \(-0.913417\pi\)
0.871085 + 0.491133i \(0.163417\pi\)
\(420\) 0 0
\(421\) 33.8369i 1.64911i 0.565783 + 0.824554i \(0.308574\pi\)
−0.565783 + 0.824554i \(0.691426\pi\)
\(422\) 2.56351 + 6.18887i 0.124790 + 0.301269i
\(423\) 0 0
\(424\) −5.62418 −0.273134
\(425\) −3.76165 0.884433i −0.182467 0.0429013i
\(426\) 0 0
\(427\) −14.1028 14.1028i −0.682483 0.682483i
\(428\) −5.38977 13.0121i −0.260524 0.628961i
\(429\) 0 0
\(430\) −9.63846 + 3.99238i −0.464808 + 0.192530i
\(431\) 5.73801 13.8528i 0.276390 0.667265i −0.723340 0.690492i \(-0.757394\pi\)
0.999730 + 0.0232273i \(0.00739415\pi\)
\(432\) 0 0
\(433\) 0.403620 0.403620i 0.0193967 0.0193967i −0.697342 0.716739i \(-0.745634\pi\)
0.716739 + 0.697342i \(0.245634\pi\)
\(434\) 4.25926 4.25926i 0.204451 0.204451i
\(435\) 0 0
\(436\) 0.150197 0.362607i 0.00719313 0.0173657i
\(437\) 11.3082 4.68402i 0.540945 0.224067i
\(438\) 0 0
\(439\) 9.73553 + 23.5037i 0.464652 + 1.12177i 0.966466 + 0.256793i \(0.0826659\pi\)
−0.501815 + 0.864975i \(0.667334\pi\)
\(440\) 6.87138 + 6.87138i 0.327580 + 0.327580i
\(441\) 0 0
\(442\) −6.69696 1.57458i −0.318542 0.0748952i
\(443\) −1.27194 −0.0604317 −0.0302158 0.999543i \(-0.509619\pi\)
−0.0302158 + 0.999543i \(0.509619\pi\)
\(444\) 0 0
\(445\) 12.5123 + 30.2073i 0.593139 + 1.43196i
\(446\) 2.55852i 0.121150i
\(447\) 0 0
\(448\) 1.89501 4.57495i 0.0895306 0.216146i
\(449\) −28.4228 11.7731i −1.34135 0.555607i −0.407482 0.913213i \(-0.633593\pi\)
−0.933873 + 0.357606i \(0.883593\pi\)
\(450\) 0 0
\(451\) −16.1613 + 16.1613i −0.761007 + 0.761007i
\(452\) −19.0392 7.88629i −0.895529 0.370940i
\(453\) 0 0
\(454\) 11.0745 4.58721i 0.519753 0.215289i
\(455\) 15.9403i 0.747293i
\(456\) 0 0
\(457\) 16.6124 + 16.6124i 0.777096 + 0.777096i 0.979336 0.202240i \(-0.0648221\pi\)
−0.202240 + 0.979336i \(0.564822\pi\)
\(458\) 1.22119 0.0570625
\(459\) 0 0
\(460\) 7.53416 0.351282
\(461\) −6.02393 6.02393i −0.280562 0.280562i 0.552771 0.833333i \(-0.313570\pi\)
−0.833333 + 0.552771i \(0.813570\pi\)
\(462\) 0 0
\(463\) 17.6689i 0.821143i 0.911828 + 0.410571i \(0.134671\pi\)
−0.911828 + 0.410571i \(0.865329\pi\)
\(464\) −10.4213 + 4.31665i −0.483797 + 0.200395i
\(465\) 0 0
\(466\) −12.3127 5.10007i −0.570373 0.236256i
\(467\) −4.43871 + 4.43871i −0.205399 + 0.205399i −0.802309 0.596910i \(-0.796395\pi\)
0.596910 + 0.802309i \(0.296395\pi\)
\(468\) 0 0
\(469\) −9.73589 4.03274i −0.449562 0.186215i
\(470\) −4.31502 + 10.4174i −0.199037 + 0.480518i
\(471\) 0 0
\(472\) 6.94533i 0.319685i
\(473\) −9.03449 21.8112i −0.415406 1.00288i
\(474\) 0 0
\(475\) 5.26491 0.241571
\(476\) −17.6475 + 2.88008i −0.808871 + 0.132008i
\(477\) 0 0
\(478\) 6.37045 + 6.37045i 0.291377 + 0.291377i
\(479\) −12.9498 31.2636i −0.591692 1.42847i −0.881867 0.471498i \(-0.843713\pi\)
0.290174 0.956974i \(-0.406287\pi\)
\(480\) 0 0
\(481\) 13.5466 5.61117i 0.617670 0.255847i
\(482\) −6.12136 + 14.7783i −0.278820 + 0.673132i
\(483\) 0 0
\(484\) 6.16419 6.16419i 0.280190 0.280190i
\(485\) −1.14426 + 1.14426i −0.0519582 + 0.0519582i
\(486\) 0 0
\(487\) 6.63178 16.0105i 0.300515 0.725506i −0.699427 0.714704i \(-0.746561\pi\)
0.999942 0.0108024i \(-0.00343859\pi\)
\(488\) −14.4447 + 5.98320i −0.653882 + 0.270847i
\(489\) 0 0
\(490\) 0.250736 + 0.605329i 0.0113271 + 0.0273460i
\(491\) 13.3600 + 13.3600i 0.602928 + 0.602928i 0.941088 0.338161i \(-0.109805\pi\)
−0.338161 + 0.941088i \(0.609805\pi\)
\(492\) 0 0
\(493\) 15.9026 + 11.4402i 0.716217 + 0.515242i
\(494\) 9.37326 0.421723
\(495\) 0 0
\(496\) 4.05876 + 9.79871i 0.182244 + 0.439975i
\(497\) 11.4022i 0.511458i
\(498\) 0 0
\(499\) −2.48005 + 5.98738i −0.111022 + 0.268032i −0.969619 0.244620i \(-0.921337\pi\)
0.858597 + 0.512652i \(0.171337\pi\)
\(500\) 18.9674 + 7.85654i 0.848247 + 0.351355i
\(501\) 0 0
\(502\) 9.11627 9.11627i 0.406879 0.406879i
\(503\) 15.3938 + 6.37634i 0.686378 + 0.284307i 0.698490 0.715620i \(-0.253856\pi\)
−0.0121125 + 0.999927i \(0.503856\pi\)
\(504\) 0 0
\(505\) 20.0870 8.32030i 0.893859 0.370248i
\(506\) 2.82717i 0.125683i
\(507\) 0 0
\(508\) 11.5423 + 11.5423i 0.512105 + 0.512105i
\(509\) 19.1265 0.847767 0.423884 0.905717i \(-0.360667\pi\)
0.423884 + 0.905717i \(0.360667\pi\)
\(510\) 0 0
\(511\) −31.6920 −1.40197
\(512\) −15.4327 15.4327i −0.682037 0.682037i
\(513\) 0 0
\(514\) 14.2627i 0.629101i
\(515\) 24.6478 10.2095i 1.08611 0.449882i
\(516\) 0 0
\(517\) −23.5738 9.76460i −1.03678 0.429447i
\(518\) −4.46862 + 4.46862i −0.196340 + 0.196340i
\(519\) 0 0
\(520\) 11.5448 + 4.78200i 0.506271 + 0.209704i
\(521\) −5.50543 + 13.2913i −0.241197 + 0.582302i −0.997402 0.0720330i \(-0.977051\pi\)
0.756205 + 0.654335i \(0.227051\pi\)
\(522\) 0 0
\(523\) 6.11004i 0.267173i 0.991037 + 0.133587i \(0.0426495\pi\)
−0.991037 + 0.133587i \(0.957351\pi\)
\(524\) −9.79729 23.6527i −0.427997 1.03328i
\(525\) 0 0
\(526\) 1.24944 0.0544781
\(527\) 10.7568 14.9525i 0.468571 0.651342i
\(528\) 0 0
\(529\) 12.9066 + 12.9066i 0.561156 + 0.561156i
\(530\) −1.16759 2.81881i −0.0507169 0.122441i
\(531\) 0 0
\(532\) 22.5079 9.32308i 0.975842 0.404207i
\(533\) −11.2471 + 27.1530i −0.487168 + 1.17613i
\(534\) 0 0
\(535\) 11.7012 11.7012i 0.505887 0.505887i
\(536\) −5.84142 + 5.84142i −0.252311 + 0.252311i
\(537\) 0 0
\(538\) −3.51517 + 8.48636i −0.151550 + 0.365873i
\(539\) −1.36982 + 0.567398i −0.0590023 + 0.0244395i
\(540\) 0 0
\(541\) −10.9678 26.4785i −0.471541 1.13840i −0.963482 0.267773i \(-0.913712\pi\)
0.491941 0.870629i \(-0.336288\pi\)
\(542\) 9.35911 + 9.35911i 0.402008 + 0.402008i
\(543\) 0 0
\(544\) −4.93518 + 20.9901i −0.211594 + 0.899945i
\(545\) 0.461144 0.0197532
\(546\) 0 0
\(547\) −6.49532 15.6811i −0.277720 0.670475i 0.722052 0.691839i \(-0.243199\pi\)
−0.999772 + 0.0213641i \(0.993199\pi\)
\(548\) 24.2968i 1.03791i
\(549\) 0 0
\(550\) 0.465376 1.12352i 0.0198437 0.0479069i
\(551\) −24.6593 10.2142i −1.05052 0.435140i
\(552\) 0 0
\(553\) 8.09109 8.09109i 0.344068 0.344068i
\(554\) 9.11980 + 3.77754i 0.387463 + 0.160492i
\(555\) 0 0
\(556\) −24.4160 + 10.1135i −1.03547 + 0.428906i
\(557\) 11.2465i 0.476530i 0.971200 + 0.238265i \(0.0765787\pi\)
−0.971200 + 0.238265i \(0.923421\pi\)
\(558\) 0 0
\(559\) −21.4664 21.4664i −0.907932 0.907932i
\(560\) 12.0970 0.511190
\(561\) 0 0
\(562\) 9.20724 0.388384
\(563\) −0.954391 0.954391i −0.0402228 0.0402228i 0.686709 0.726932i \(-0.259055\pi\)
−0.726932 + 0.686709i \(0.759055\pi\)
\(564\) 0 0
\(565\) 24.2130i 1.01865i
\(566\) −10.2056 + 4.22731i −0.428975 + 0.177687i
\(567\) 0 0
\(568\) −8.25802 3.42059i −0.346499 0.143525i
\(569\) 0.349944 0.349944i 0.0146704 0.0146704i −0.699734 0.714404i \(-0.746698\pi\)
0.714404 + 0.699734i \(0.246698\pi\)
\(570\) 0 0
\(571\) −23.0580 9.55093i −0.964946 0.399694i −0.156118 0.987738i \(-0.549898\pi\)
−0.808828 + 0.588045i \(0.799898\pi\)
\(572\) −4.99641 + 12.0624i −0.208910 + 0.504354i
\(573\) 0 0
\(574\) 12.6671i 0.528715i
\(575\) −0.781452 1.88659i −0.0325888 0.0786763i
\(576\) 0 0
\(577\) 23.0850 0.961043 0.480521 0.876983i \(-0.340447\pi\)
0.480521 + 0.876983i \(0.340447\pi\)
\(578\) 8.59667 2.88275i 0.357575 0.119907i
\(579\) 0 0
\(580\) −11.6173 11.6173i −0.482383 0.482383i
\(581\) −10.4726 25.2831i −0.434477 1.04892i
\(582\) 0 0
\(583\) 6.37878 2.64218i 0.264182 0.109428i
\(584\) −9.50742 + 22.9529i −0.393420 + 0.949799i
\(585\) 0 0
\(586\) −8.99112 + 8.99112i −0.371420 + 0.371420i
\(587\) 14.8242 14.8242i 0.611862 0.611862i −0.331569 0.943431i \(-0.607578\pi\)
0.943431 + 0.331569i \(0.107578\pi\)
\(588\) 0 0
\(589\) −9.60399 + 23.1861i −0.395725 + 0.955366i
\(590\) 3.48097 1.44186i 0.143309 0.0593606i
\(591\) 0 0
\(592\) −4.25827 10.2804i −0.175014 0.422521i
\(593\) 19.4560 + 19.4560i 0.798962 + 0.798962i 0.982932 0.183970i \(-0.0588950\pi\)
−0.183970 + 0.982932i \(0.558895\pi\)
\(594\) 0 0
\(595\) −11.0612 17.8614i −0.453463 0.732245i
\(596\) 11.3601 0.465327
\(597\) 0 0
\(598\) −1.39124 3.35875i −0.0568920 0.137350i
\(599\) 43.8786i 1.79283i 0.443215 + 0.896415i \(0.353838\pi\)
−0.443215 + 0.896415i \(0.646162\pi\)
\(600\) 0 0
\(601\) 16.5992 40.0741i 0.677097 1.63466i −0.0921808 0.995742i \(-0.529384\pi\)
0.769278 0.638914i \(-0.220616\pi\)
\(602\) 12.0883 + 5.00713i 0.492681 + 0.204075i
\(603\) 0 0
\(604\) −20.6865 + 20.6865i −0.841720 + 0.841720i
\(605\) 9.46283 + 3.91963i 0.384719 + 0.159356i
\(606\) 0 0
\(607\) −19.4229 + 8.04524i −0.788352 + 0.326546i −0.740281 0.672298i \(-0.765308\pi\)
−0.0480715 + 0.998844i \(0.515308\pi\)
\(608\) 29.3784i 1.19145i
\(609\) 0 0
\(610\) −5.99751 5.99751i −0.242832 0.242832i
\(611\) −32.8114 −1.32741
\(612\) 0 0
\(613\) 30.5509 1.23394 0.616969 0.786987i \(-0.288360\pi\)
0.616969 + 0.786987i \(0.288360\pi\)
\(614\) −5.26978 5.26978i −0.212671 0.212671i
\(615\) 0 0
\(616\) 12.1875i 0.491050i
\(617\) 7.46839 3.09351i 0.300666 0.124540i −0.227250 0.973836i \(-0.572974\pi\)
0.527916 + 0.849296i \(0.322974\pi\)
\(618\) 0 0
\(619\) −6.78527 2.81055i −0.272723 0.112966i 0.242131 0.970244i \(-0.422154\pi\)
−0.514854 + 0.857278i \(0.672154\pi\)
\(620\) −10.9233 + 10.9233i −0.438689 + 0.438689i
\(621\) 0 0
\(622\) −4.80672 1.99101i −0.192732 0.0798322i
\(623\) 15.6925 37.8852i 0.628709 1.51784i
\(624\) 0 0
\(625\) 19.4356i 0.777423i
\(626\) −6.78488 16.3801i −0.271178 0.654682i
\(627\) 0 0
\(628\) 24.9957 0.997438
\(629\) −11.2855 + 15.6875i −0.449982 + 0.625502i
\(630\) 0 0
\(631\) −30.5755 30.5755i −1.21719 1.21719i −0.968612 0.248578i \(-0.920037\pi\)
−0.248578 0.968612i \(-0.579963\pi\)
\(632\) −3.43269 8.28725i −0.136545 0.329649i
\(633\) 0 0
\(634\) −3.61756 + 1.49844i −0.143672 + 0.0595107i
\(635\) −7.33940 + 17.7189i −0.291255 + 0.703152i
\(636\) 0 0
\(637\) −1.34817 + 1.34817i −0.0534163 + 0.0534163i
\(638\) −4.35937 + 4.35937i −0.172589 + 0.172589i
\(639\) 0 0
\(640\) 8.87372 21.4231i 0.350764 0.846820i
\(641\) 8.72402 3.61361i 0.344578 0.142729i −0.203681 0.979037i \(-0.565291\pi\)
0.548259 + 0.836308i \(0.315291\pi\)
\(642\) 0 0
\(643\) 0.132474 + 0.319820i 0.00522426 + 0.0126125i 0.926470 0.376368i \(-0.122827\pi\)
−0.921246 + 0.388981i \(0.872827\pi\)
\(644\) −6.68154 6.68154i −0.263289 0.263289i
\(645\) 0 0
\(646\) −10.5029 + 6.50421i −0.413231 + 0.255905i
\(647\) −2.21802 −0.0871996 −0.0435998 0.999049i \(-0.513883\pi\)
−0.0435998 + 0.999049i \(0.513883\pi\)
\(648\) 0 0
\(649\) 3.26284 + 7.87720i 0.128078 + 0.309207i
\(650\) 1.56378i 0.0613363i
\(651\) 0 0
\(652\) −3.54221 + 8.55166i −0.138724 + 0.334909i
\(653\) 3.52400 + 1.45969i 0.137905 + 0.0571221i 0.450569 0.892742i \(-0.351221\pi\)
−0.312664 + 0.949864i \(0.601221\pi\)
\(654\) 0 0
\(655\) 21.2699 21.2699i 0.831085 0.831085i
\(656\) 20.6062 + 8.53537i 0.804537 + 0.333250i
\(657\) 0 0
\(658\) 13.0652 5.41177i 0.509334 0.210973i
\(659\) 29.3352i 1.14274i −0.820694 0.571368i \(-0.806413\pi\)
0.820694 0.571368i \(-0.193587\pi\)
\(660\) 0 0
\(661\) −4.47539 4.47539i −0.174072 0.174072i 0.614694 0.788766i \(-0.289280\pi\)
−0.788766 + 0.614694i \(0.789280\pi\)
\(662\) −1.09455 −0.0425410
\(663\) 0 0
\(664\) −21.4530 −0.832538
\(665\) 20.2404 + 20.2404i 0.784890 + 0.784890i
\(666\) 0 0
\(667\) 10.3523i 0.400843i
\(668\) 19.7444 8.17841i 0.763935 0.316432i
\(669\) 0 0
\(670\) −4.14038 1.71500i −0.159957 0.0662563i
\(671\) 13.5719 13.5719i 0.523939 0.523939i
\(672\) 0 0
\(673\) 25.5794 + 10.5953i 0.986013 + 0.408420i 0.816650 0.577133i \(-0.195829\pi\)
0.169364 + 0.985554i \(0.445829\pi\)
\(674\) 1.24499 3.00568i 0.0479553 0.115774i
\(675\) 0 0
\(676\) 5.51269i 0.212026i
\(677\) 14.8623 + 35.8807i 0.571204 + 1.37901i 0.900531 + 0.434792i \(0.143178\pi\)
−0.329327 + 0.944216i \(0.606822\pi\)
\(678\) 0 0
\(679\) 2.02953 0.0778864
\(680\) −16.2544 + 2.65273i −0.623327 + 0.101727i
\(681\) 0 0
\(682\) 4.09892 + 4.09892i 0.156956 + 0.156956i
\(683\) −1.43187 3.45684i −0.0547889 0.132272i 0.894115 0.447838i \(-0.147806\pi\)
−0.948904 + 0.315566i \(0.897806\pi\)
\(684\) 0 0
\(685\) −26.3742 + 10.9246i −1.00771 + 0.417406i
\(686\) 3.92630 9.47893i 0.149907 0.361907i
\(687\) 0 0
\(688\) −16.2907 + 16.2907i −0.621076 + 0.621076i
\(689\) 6.27795 6.27795i 0.239171 0.239171i
\(690\) 0 0
\(691\) −13.0015 + 31.3884i −0.494600 + 1.19407i 0.457755 + 0.889078i \(0.348654\pi\)
−0.952355 + 0.304992i \(0.901346\pi\)
\(692\) −4.23779 + 1.75535i −0.161097 + 0.0667284i
\(693\) 0 0
\(694\) 7.02432 + 16.9582i 0.266640 + 0.643725i
\(695\) −21.9563 21.9563i −0.832851 0.832851i
\(696\) 0 0
\(697\) −6.23916 38.2299i −0.236325 1.44806i
\(698\) −9.29618 −0.351866
\(699\) 0 0
\(700\) −1.55540 3.75508i −0.0587887 0.141929i
\(701\) 19.8395i 0.749327i −0.927161 0.374663i \(-0.877758\pi\)
0.927161 0.374663i \(-0.122242\pi\)
\(702\) 0 0
\(703\) 10.0761 24.3258i 0.380026 0.917465i
\(704\) 4.40273 + 1.82367i 0.165934 + 0.0687322i
\(705\) 0 0
\(706\) 13.5729 13.5729i 0.510821 0.510821i
\(707\) −25.1925 10.4351i −0.947462 0.392452i
\(708\) 0 0
\(709\) −45.1577 + 18.7049i −1.69593 + 0.702479i −0.999880 0.0155099i \(-0.995063\pi\)
−0.696055 + 0.717989i \(0.745063\pi\)
\(710\) 4.84901i 0.181980i
\(711\) 0 0
\(712\) −22.7306 22.7306i −0.851867 0.851867i
\(713\) 9.73382 0.364535
\(714\) 0 0
\(715\) −15.3403 −0.573694
\(716\) −16.9931 16.9931i −0.635060 0.635060i
\(717\) 0 0
\(718\) 9.98736i 0.372725i
\(719\) −4.30491 + 1.78315i −0.160546 + 0.0665003i −0.461509 0.887135i \(-0.652692\pi\)
0.300963 + 0.953636i \(0.402692\pi\)
\(720\) 0 0
\(721\) −30.9126 12.8044i −1.15124 0.476861i
\(722\) 4.73611 4.73611i 0.176260 0.176260i
\(723\) 0 0
\(724\) −21.1801 8.77309i −0.787153 0.326049i
\(725\) −1.70407 + 4.11400i −0.0632878 + 0.152790i
\(726\) 0 0
\(727\) 34.8089i 1.29099i −0.763765 0.645495i \(-0.776651\pi\)
0.763765 0.645495i \(-0.223349\pi\)
\(728\) −5.99744 14.4791i −0.222280 0.536631i
\(729\) 0 0
\(730\) −13.4777 −0.498831
\(731\) 38.9493 + 9.15770i 1.44059 + 0.338710i
\(732\) 0 0
\(733\) 14.2982 + 14.2982i 0.528115 + 0.528115i 0.920010 0.391895i \(-0.128180\pi\)
−0.391895 + 0.920010i \(0.628180\pi\)
\(734\) 4.95478 + 11.9619i 0.182884 + 0.441521i
\(735\) 0 0
\(736\) −10.5273 + 4.36053i −0.388040 + 0.160731i
\(737\) 3.88094 9.36941i 0.142956 0.345127i
\(738\) 0 0
\(739\) −14.6769 + 14.6769i −0.539900 + 0.539900i −0.923499 0.383600i \(-0.874684\pi\)
0.383600 + 0.923499i \(0.374684\pi\)
\(740\) 11.4602 11.4602i 0.421286 0.421286i
\(741\) 0 0
\(742\) −1.46436 + 3.53527i −0.0537583 + 0.129784i
\(743\) −12.9540 + 5.36572i −0.475236 + 0.196849i −0.607428 0.794375i \(-0.707798\pi\)
0.132192 + 0.991224i \(0.457798\pi\)
\(744\) 0 0
\(745\) 5.10782 + 12.3314i 0.187136 + 0.451786i
\(746\) 0.575950 + 0.575950i 0.0210870 + 0.0210870i
\(747\) 0 0
\(748\) −2.77167 16.9832i −0.101342 0.620966i
\(749\) −20.7540 −0.758335
\(750\) 0 0
\(751\) 12.9100 + 31.1675i 0.471092 + 1.13732i 0.963681 + 0.267055i \(0.0860507\pi\)
−0.492589 + 0.870262i \(0.663949\pi\)
\(752\) 24.9003i 0.908022i
\(753\) 0 0
\(754\) −3.03381 + 7.32427i −0.110485 + 0.266734i
\(755\) −31.7564 13.1539i −1.15573 0.478721i
\(756\) 0 0
\(757\) −26.2964 + 26.2964i −0.955760 + 0.955760i −0.999062 0.0433020i \(-0.986212\pi\)
0.0433020 + 0.999062i \(0.486212\pi\)
\(758\) 2.85063 + 1.18077i 0.103540 + 0.0428875i
\(759\) 0 0
\(760\) 20.7311 8.58711i 0.751997 0.311487i
\(761\) 10.1020i 0.366198i −0.983094 0.183099i \(-0.941387\pi\)
0.983094 0.183099i \(-0.0586130\pi\)
\(762\) 0 0
\(763\) −0.408957 0.408957i −0.0148052 0.0148052i
\(764\) 36.0231 1.30327
\(765\) 0 0
\(766\) 14.8907 0.538023
\(767\) 7.75268 + 7.75268i 0.279933 + 0.279933i
\(768\) 0 0
\(769\) 51.1798i 1.84559i −0.385288 0.922796i \(-0.625898\pi\)
0.385288 0.922796i \(-0.374102\pi\)
\(770\) 6.10834 2.53016i 0.220129 0.0911805i
\(771\) 0 0
\(772\) −8.10445 3.35697i −0.291685 0.120820i
\(773\) −14.9138 + 14.9138i −0.536414 + 0.536414i −0.922474 0.386060i \(-0.873836\pi\)
0.386060 + 0.922474i \(0.373836\pi\)
\(774\) 0 0
\(775\) 3.86822 + 1.60227i 0.138951 + 0.0575552i
\(776\) 0.608848 1.46989i 0.0218564 0.0527660i
\(777\) 0 0
\(778\) 3.09125i 0.110827i
\(779\) 20.1967 + 48.7591i 0.723622 + 1.74698i
\(780\) 0 0
\(781\) 10.9730 0.392644
\(782\) 3.88958 + 2.79814i 0.139091 + 0.100061i
\(783\) 0 0
\(784\) 1.02311 + 1.02311i 0.0365397 + 0.0365397i
\(785\) 11.2388 + 27.1329i 0.401130 + 0.968414i
\(786\) 0 0
\(787\) 16.4775 6.82521i 0.587360 0.243292i −0.0691547 0.997606i \(-0.522030\pi\)
0.656514 + 0.754314i \(0.272030\pi\)
\(788\) 2.52079 6.08571i 0.0897993 0.216795i
\(789\) 0 0
\(790\) 3.44090 3.44090i 0.122422 0.122422i
\(791\) −21.4729 + 21.4729i −0.763487 + 0.763487i
\(792\) 0 0
\(793\) 9.44512 22.8025i 0.335406 0.809742i
\(794\) 12.6437 5.23718i 0.448707 0.185861i
\(795\) 0 0
\(796\) −4.74472 11.4548i −0.168172 0.406003i
\(797\) 13.3379 + 13.3379i 0.472453 + 0.472453i 0.902708 0.430254i \(-0.141576\pi\)
−0.430254 + 0.902708i \(0.641576\pi\)
\(798\) 0 0
\(799\) 36.7658 22.7682i 1.30068 0.805482i
\(800\) −4.90131 −0.173288
\(801\) 0 0
\(802\) 0.397182 + 0.958883i 0.0140250 + 0.0338593i
\(803\) 30.4990i 1.07629i
\(804\) 0 0
\(805\) 4.24860 10.2570i 0.149743 0.361513i
\(806\) 6.88669 + 2.85256i 0.242573 + 0.100477i
\(807\) 0 0
\(808\) −15.1152 + 15.1152i −0.531751 + 0.531751i
\(809\) −2.90215 1.20211i −0.102034 0.0422639i 0.331082 0.943602i \(-0.392586\pi\)
−0.433117 + 0.901338i \(0.642586\pi\)
\(810\) 0 0
\(811\) 43.8806 18.1759i 1.54086 0.638244i 0.559222 0.829018i \(-0.311100\pi\)
0.981634 + 0.190774i \(0.0610998\pi\)
\(812\) 20.6052i 0.723102i
\(813\) 0 0
\(814\) −4.30041 4.30041i −0.150729 0.150729i
\(815\) −10.8755 −0.380953
\(816\) 0 0
\(817\) −54.5145 −1.90722
\(818\) −3.66586 3.66586i −0.128174 0.128174i
\(819\) 0 0
\(820\) 32.4860i 1.13446i
\(821\) −13.5930 + 5.63041i −0.474400 + 0.196503i −0.607056 0.794659i \(-0.707649\pi\)
0.132656 + 0.991162i \(0.457649\pi\)
\(822\) 0 0
\(823\) 26.2173 + 10.8596i 0.913877 + 0.378540i 0.789539 0.613700i \(-0.210319\pi\)
0.124337 + 0.992240i \(0.460319\pi\)
\(824\) −18.5472 + 18.5472i −0.646121 + 0.646121i
\(825\) 0 0
\(826\) −4.36573 1.80834i −0.151903 0.0629204i
\(827\) −6.46551 + 15.6091i −0.224828 + 0.542783i −0.995534 0.0944088i \(-0.969904\pi\)
0.770706 + 0.637191i \(0.219904\pi\)
\(828\) 0 0
\(829\) 3.03136i 0.105283i −0.998613 0.0526417i \(-0.983236\pi\)
0.998613 0.0526417i \(-0.0167641\pi\)
\(830\) −4.45369 10.7522i −0.154590 0.373213i
\(831\) 0 0
\(832\) 6.12798 0.212450
\(833\) 0.575136 2.44615i 0.0199273 0.0847541i
\(834\) 0 0
\(835\) 17.7553 + 17.7553i 0.614449 + 0.614449i
\(836\) 8.97213 + 21.6606i 0.310308 + 0.749149i
\(837\) 0 0
\(838\) 2.42881 1.00604i 0.0839018 0.0347532i
\(839\) 14.3458 34.6339i 0.495273 1.19570i −0.456730 0.889606i \(-0.650979\pi\)
0.952003 0.306090i \(-0.0990207\pi\)
\(840\) 0 0
\(841\) −4.54332 + 4.54332i −0.156666 + 0.156666i
\(842\) 12.7613 12.7613i 0.439785 0.439785i
\(843\) 0 0
\(844\) −8.24539 + 19.9061i −0.283818 + 0.685197i
\(845\) 5.98403 2.47866i 0.205857 0.0852687i
\(846\) 0 0
\(847\) −4.91589 11.8680i −0.168912 0.407790i
\(848\) −4.76429 4.76429i −0.163606 0.163606i
\(849\) 0 0
\(850\) 1.08512 + 1.75224i 0.0372194 + 0.0601013i
\(851\) −10.2123 −0.350073
\(852\) 0 0
\(853\) −12.1626 29.3630i −0.416438 1.00537i −0.983371 0.181607i \(-0.941870\pi\)
0.566933 0.823764i \(-0.308130\pi\)
\(854\) 10.6376i 0.364010i
\(855\) 0 0
\(856\) −6.22608 + 15.0311i −0.212803 + 0.513752i
\(857\) −20.8905 8.65313i −0.713606 0.295585i −0.00381018 0.999993i \(-0.501213\pi\)
−0.709796 + 0.704407i \(0.751213\pi\)
\(858\) 0 0
\(859\) −26.1263 + 26.1263i −0.891417 + 0.891417i −0.994657 0.103239i \(-0.967079\pi\)
0.103239 + 0.994657i \(0.467079\pi\)
\(860\) −31.0016 12.8413i −1.05714 0.437883i
\(861\) 0 0
\(862\) −7.38853 + 3.06043i −0.251654 + 0.104239i
\(863\) 32.8262i 1.11742i 0.829364 + 0.558709i \(0.188703\pi\)
−0.829364 + 0.558709i \(0.811297\pi\)
\(864\) 0 0
\(865\) −3.81087 3.81087i −0.129573 0.129573i
\(866\) −0.304445 −0.0103455
\(867\) 0 0
\(868\) 19.3742 0.657604
\(869\) 7.78652 + 7.78652i 0.264140 + 0.264140i
\(870\) 0 0
\(871\) 13.0409i 0.441874i
\(872\) −0.418872 + 0.173502i −0.0141848 + 0.00587553i
\(873\) 0 0
\(874\) −6.03137 2.49827i −0.204014 0.0845054i
\(875\) 21.3919 21.3919i 0.723177 0.723177i
\(876\) 0 0
\(877\) 23.3398 + 9.66766i 0.788129 + 0.326454i 0.740191 0.672397i \(-0.234735\pi\)
0.0479379 + 0.998850i \(0.484735\pi\)
\(878\) 5.19256 12.5359i 0.175240 0.423067i
\(879\) 0 0
\(880\) 11.6416i 0.392438i
\(881\) 4.38254 + 10.5804i 0.147651 + 0.356462i 0.980350 0.197264i \(-0.0632056\pi\)
−0.832699 + 0.553726i \(0.813206\pi\)
\(882\) 0 0
\(883\) 37.1590 1.25050 0.625251 0.780424i \(-0.284997\pi\)
0.625251 + 0.780424i \(0.284997\pi\)
\(884\) −11.6502 18.8125i −0.391838 0.632734i
\(885\) 0 0
\(886\) 0.479704 + 0.479704i 0.0161160 + 0.0161160i
\(887\) 7.86263 + 18.9821i 0.264001 + 0.637355i 0.999179 0.0405193i \(-0.0129012\pi\)
−0.735178 + 0.677875i \(0.762901\pi\)
\(888\) 0 0
\(889\) 22.2225 9.20486i 0.745318 0.308721i
\(890\) 6.67357 16.1114i 0.223699 0.540056i
\(891\) 0 0
\(892\) −5.81902 + 5.81902i −0.194835 + 0.194835i
\(893\) −41.6628 + 41.6628i −1.39419 + 1.39419i
\(894\) 0 0
\(895\) 10.8054 26.0866i 0.361185 0.871977i
\(896\) −26.8682 + 11.1292i −0.897603 + 0.371799i
\(897\) 0 0
\(898\) 6.27932 + 15.1596i 0.209544 + 0.505883i
\(899\) −15.0091 15.0091i −0.500582 0.500582i
\(900\) 0 0
\(901\) −2.67821 + 11.3909i −0.0892242 + 0.379486i
\(902\) 12.1903 0.405892
\(903\) 0 0
\(904\) 9.10998 + 21.9934i 0.302993 + 0.731491i
\(905\) 26.9357i 0.895372i
\(906\) 0 0
\(907\) −12.6275 + 30.4854i −0.419288 + 1.01225i 0.563266 + 0.826276i \(0.309545\pi\)
−0.982554 + 0.185976i \(0.940455\pi\)
\(908\) 35.6205 + 14.7545i 1.18211 + 0.489646i
\(909\) 0 0
\(910\) 6.01178 6.01178i 0.199289 0.199289i
\(911\) −6.12703 2.53790i −0.202998 0.0840843i 0.278868 0.960329i \(-0.410041\pi\)
−0.481866 + 0.876245i \(0.660041\pi\)
\(912\) 0 0
\(913\) 24.3314 10.0784i 0.805252 0.333546i
\(914\) 12.5305i 0.414473i
\(915\) 0 0
\(916\) 2.77744 + 2.77744i 0.0917692 + 0.0917692i
\(917\) −37.7257 −1.24581
\(918\) 0 0
\(919\) 58.7318 1.93738 0.968692 0.248265i \(-0.0798604\pi\)
0.968692 + 0.248265i \(0.0798604\pi\)
\(920\) −6.15409 6.15409i −0.202894 0.202894i
\(921\) 0 0
\(922\) 4.54377i 0.149641i
\(923\) 13.0362 5.39976i 0.429091 0.177735i
\(924\) 0 0
\(925\) −4.05836 1.68103i −0.133438 0.0552719i
\(926\) 6.66370 6.66370i 0.218983 0.218983i
\(927\) 0 0
\(928\) 22.9563 + 9.50881i 0.753577 + 0.312142i
\(929\) 19.0522 45.9962i 0.625083 1.50908i −0.220580 0.975369i \(-0.570795\pi\)
0.845664 0.533716i \(-0.179205\pi\)
\(930\) 0 0
\(931\) 3.42371i 0.112207i
\(932\) −16.4041 39.6029i −0.537333 1.29724i
\(933\) 0 0
\(934\) 3.34806 0.109552
\(935\) 17.1890 10.6448i 0.562141 0.348122i
\(936\) 0 0
\(937\) 15.9963 + 15.9963i 0.522577 + 0.522577i 0.918349 0.395772i \(-0.129523\pi\)
−0.395772 + 0.918349i \(0.629523\pi\)
\(938\) 2.15091 + 5.19275i 0.0702296 + 0.169549i
\(939\) 0 0
\(940\) −33.5069 + 13.8790i −1.09287 + 0.452684i
\(941\) 12.9985 31.3812i 0.423739 1.02300i −0.557496 0.830180i \(-0.688238\pi\)
0.981235 0.192817i \(-0.0617623\pi\)
\(942\) 0 0
\(943\) 14.4743 14.4743i 0.471348 0.471348i
\(944\) 5.88344 5.88344i 0.191490 0.191490i
\(945\) 0 0
\(946\) −4.81865 + 11.6332i −0.156668 + 0.378229i
\(947\) 10.7473 4.45169i 0.349241 0.144661i −0.201165 0.979557i \(-0.564473\pi\)
0.550406 + 0.834897i \(0.314473\pi\)
\(948\) 0 0
\(949\) −15.0085 36.2337i −0.487196 1.17619i
\(950\) −1.98563 1.98563i −0.0644222 0.0644222i
\(951\) 0 0
\(952\) 16.7674 + 12.0624i 0.543436 + 0.390944i
\(953\) −57.8467 −1.87384 −0.936919 0.349547i \(-0.886336\pi\)
−0.936919 + 0.349547i \(0.886336\pi\)
\(954\) 0 0
\(955\) 16.1970 + 39.1031i 0.524123 + 1.26535i
\(956\) 28.9775i 0.937199i
\(957\) 0 0
\(958\) −6.90693 + 16.6748i −0.223153 + 0.538739i
\(959\) 33.0778 + 13.7013i 1.06814 + 0.442437i
\(960\) 0 0
\(961\) 7.80789 7.80789i 0.251867 0.251867i
\(962\) −7.22521 2.99278i −0.232950 0.0964911i
\(963\) 0 0
\(964\) −47.5334 + 19.6890i −1.53095 + 0.634140i
\(965\) 10.3068i 0.331787i
\(966\) 0 0
\(967\) 19.3170 + 19.3170i 0.621194 + 0.621194i 0.945837 0.324643i \(-0.105244\pi\)
−0.324643 + 0.945837i \(0.605244\pi\)
\(968\) −10.0701 −0.323666
\(969\) 0 0
\(970\) 0.863100 0.0277125
\(971\) −7.11574 7.11574i −0.228355 0.228355i 0.583650 0.812005i \(-0.301624\pi\)
−0.812005 + 0.583650i \(0.801624\pi\)
\(972\) 0 0
\(973\) 38.9432i 1.24846i
\(974\) −8.53940 + 3.53713i −0.273620 + 0.113337i
\(975\) 0 0
\(976\) −17.3047 7.16782i −0.553908 0.229436i
\(977\) −18.7855 + 18.7855i −0.601002 + 0.601002i −0.940579 0.339576i \(-0.889716\pi\)
0.339576 + 0.940579i \(0.389716\pi\)
\(978\) 0 0
\(979\) 36.4591 + 15.1018i 1.16524 + 0.482657i
\(980\) −0.806477 + 1.94701i −0.0257620 + 0.0621949i
\(981\) 0 0
\(982\) 10.0773i 0.321578i
\(983\) 11.6888 + 28.2193i 0.372815 + 0.900055i 0.993271 + 0.115814i \(0.0369476\pi\)
−0.620456 + 0.784241i \(0.713052\pi\)
\(984\) 0 0
\(985\) 7.73947 0.246600
\(986\) −1.68295 10.3122i −0.0535961 0.328406i
\(987\) 0 0
\(988\) 21.3183 + 21.3183i 0.678224 + 0.678224i
\(989\) 8.09140 + 19.5344i 0.257291 + 0.621157i
\(990\) 0 0
\(991\) −1.91168 + 0.791842i −0.0607264 + 0.0251537i −0.412840 0.910804i \(-0.635463\pi\)
0.352114 + 0.935957i \(0.385463\pi\)
\(992\) 8.94073 21.5848i 0.283868 0.685319i
\(993\) 0 0
\(994\) −4.30026 + 4.30026i −0.136396 + 0.136396i
\(995\) 10.3008 10.3008i 0.326557 0.326557i
\(996\) 0 0
\(997\) −11.3994 + 27.5205i −0.361022 + 0.871583i 0.634130 + 0.773227i \(0.281358\pi\)
−0.995151 + 0.0983564i \(0.968642\pi\)
\(998\) 3.19344 1.32276i 0.101086 0.0418714i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.2.l.a.406.5 48
3.2 odd 2 inner 459.2.l.a.406.8 yes 48
17.5 odd 16 7803.2.a.cg.1.15 24
17.8 even 8 inner 459.2.l.a.433.5 yes 48
17.12 odd 16 7803.2.a.cd.1.15 24
51.5 even 16 7803.2.a.cd.1.10 24
51.8 odd 8 inner 459.2.l.a.433.8 yes 48
51.29 even 16 7803.2.a.cg.1.10 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
459.2.l.a.406.5 48 1.1 even 1 trivial
459.2.l.a.406.8 yes 48 3.2 odd 2 inner
459.2.l.a.433.5 yes 48 17.8 even 8 inner
459.2.l.a.433.8 yes 48 51.8 odd 8 inner
7803.2.a.cd.1.10 24 51.5 even 16
7803.2.a.cd.1.15 24 17.12 odd 16
7803.2.a.cg.1.10 24 51.29 even 16
7803.2.a.cg.1.15 24 17.5 odd 16