Properties

Label 7803.2.a.cd.1.15
Level $7803$
Weight $2$
Character 7803.1
Self dual yes
Analytic conductor $62.307$
Analytic rank $1$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7803,2,Mod(1,7803)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7803.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7803, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7803 = 3^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7803.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,24,-20,0,0,0,0,0,-8,0,4,-16,0,24,0,0,4,-48,0,0,-36,0, 28,0,0,0,-64,0,0,0,0,0,0,0,0,0,0,0,-36,0,4,-16,0,0,0,0,24,0,0,16,0,0,20, -80,0,0,0,0,0,16,0,-24,-72,0,16,0,0,-48,-72,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(73)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.3072686972\)
Analytic rank: \(1\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 459)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.15
Character \(\chi\) \(=\) 7803.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.533361 q^{2} -1.71553 q^{4} +2.01564 q^{5} -2.52795 q^{7} -1.98172 q^{8} +1.07506 q^{10} -2.43279 q^{11} +3.12835 q^{13} -1.34831 q^{14} +2.37408 q^{16} +5.61764 q^{19} -3.45788 q^{20} -1.29756 q^{22} -2.17884 q^{23} -0.937211 q^{25} +1.66854 q^{26} +4.33677 q^{28} -4.75129 q^{29} +4.46744 q^{31} +5.22968 q^{32} -5.09543 q^{35} +4.68703 q^{37} +2.99623 q^{38} -3.99442 q^{40} -9.39479 q^{41} -9.70418 q^{43} +4.17352 q^{44} -1.16211 q^{46} +10.4884 q^{47} -0.609457 q^{49} -0.499872 q^{50} -5.36677 q^{52} -2.83803 q^{53} -4.90362 q^{55} +5.00969 q^{56} -2.53415 q^{58} -3.50470 q^{59} -7.88955 q^{61} +2.38276 q^{62} -1.95885 q^{64} +6.30562 q^{65} -4.16861 q^{67} -2.71771 q^{70} +4.51044 q^{71} +12.5366 q^{73} +2.49988 q^{74} -9.63720 q^{76} +6.14998 q^{77} +4.52640 q^{79} +4.78528 q^{80} -5.01082 q^{82} +10.8255 q^{83} -5.17583 q^{86} +4.82111 q^{88} +16.2213 q^{89} -7.90833 q^{91} +3.73785 q^{92} +5.59411 q^{94} +11.3231 q^{95} +0.802837 q^{97} -0.325061 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 24 q^{4} - 20 q^{5} - 8 q^{11} + 4 q^{13} - 16 q^{14} + 24 q^{16} + 4 q^{19} - 48 q^{20} - 36 q^{23} + 28 q^{25} - 64 q^{29} - 36 q^{41} + 4 q^{43} - 16 q^{44} + 24 q^{49} + 16 q^{52} + 20 q^{55}+ \cdots + 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.533361 0.377143 0.188572 0.982059i \(-0.439614\pi\)
0.188572 + 0.982059i \(0.439614\pi\)
\(3\) 0 0
\(4\) −1.71553 −0.857763
\(5\) 2.01564 0.901420 0.450710 0.892670i \(-0.351171\pi\)
0.450710 + 0.892670i \(0.351171\pi\)
\(6\) 0 0
\(7\) −2.52795 −0.955476 −0.477738 0.878502i \(-0.658543\pi\)
−0.477738 + 0.878502i \(0.658543\pi\)
\(8\) −1.98172 −0.700643
\(9\) 0 0
\(10\) 1.07506 0.339965
\(11\) −2.43279 −0.733515 −0.366757 0.930317i \(-0.619532\pi\)
−0.366757 + 0.930317i \(0.619532\pi\)
\(12\) 0 0
\(13\) 3.12835 0.867649 0.433824 0.900997i \(-0.357164\pi\)
0.433824 + 0.900997i \(0.357164\pi\)
\(14\) −1.34831 −0.360352
\(15\) 0 0
\(16\) 2.37408 0.593520
\(17\) 0 0
\(18\) 0 0
\(19\) 5.61764 1.28877 0.644387 0.764699i \(-0.277113\pi\)
0.644387 + 0.764699i \(0.277113\pi\)
\(20\) −3.45788 −0.773205
\(21\) 0 0
\(22\) −1.29756 −0.276640
\(23\) −2.17884 −0.454319 −0.227160 0.973858i \(-0.572944\pi\)
−0.227160 + 0.973858i \(0.572944\pi\)
\(24\) 0 0
\(25\) −0.937211 −0.187442
\(26\) 1.66854 0.327228
\(27\) 0 0
\(28\) 4.33677 0.819572
\(29\) −4.75129 −0.882293 −0.441146 0.897435i \(-0.645428\pi\)
−0.441146 + 0.897435i \(0.645428\pi\)
\(30\) 0 0
\(31\) 4.46744 0.802375 0.401188 0.915996i \(-0.368598\pi\)
0.401188 + 0.915996i \(0.368598\pi\)
\(32\) 5.22968 0.924485
\(33\) 0 0
\(34\) 0 0
\(35\) −5.09543 −0.861285
\(36\) 0 0
\(37\) 4.68703 0.770544 0.385272 0.922803i \(-0.374108\pi\)
0.385272 + 0.922803i \(0.374108\pi\)
\(38\) 2.99623 0.486053
\(39\) 0 0
\(40\) −3.99442 −0.631573
\(41\) −9.39479 −1.46722 −0.733610 0.679571i \(-0.762166\pi\)
−0.733610 + 0.679571i \(0.762166\pi\)
\(42\) 0 0
\(43\) −9.70418 −1.47987 −0.739937 0.672677i \(-0.765145\pi\)
−0.739937 + 0.672677i \(0.765145\pi\)
\(44\) 4.17352 0.629182
\(45\) 0 0
\(46\) −1.16211 −0.171344
\(47\) 10.4884 1.52989 0.764946 0.644094i \(-0.222766\pi\)
0.764946 + 0.644094i \(0.222766\pi\)
\(48\) 0 0
\(49\) −0.609457 −0.0870652
\(50\) −0.499872 −0.0706926
\(51\) 0 0
\(52\) −5.36677 −0.744237
\(53\) −2.83803 −0.389834 −0.194917 0.980820i \(-0.562444\pi\)
−0.194917 + 0.980820i \(0.562444\pi\)
\(54\) 0 0
\(55\) −4.90362 −0.661205
\(56\) 5.00969 0.669448
\(57\) 0 0
\(58\) −2.53415 −0.332751
\(59\) −3.50470 −0.456273 −0.228137 0.973629i \(-0.573263\pi\)
−0.228137 + 0.973629i \(0.573263\pi\)
\(60\) 0 0
\(61\) −7.88955 −1.01015 −0.505077 0.863075i \(-0.668536\pi\)
−0.505077 + 0.863075i \(0.668536\pi\)
\(62\) 2.38276 0.302610
\(63\) 0 0
\(64\) −1.95885 −0.244857
\(65\) 6.30562 0.782116
\(66\) 0 0
\(67\) −4.16861 −0.509277 −0.254639 0.967036i \(-0.581957\pi\)
−0.254639 + 0.967036i \(0.581957\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −2.71771 −0.324828
\(71\) 4.51044 0.535291 0.267645 0.963517i \(-0.413754\pi\)
0.267645 + 0.963517i \(0.413754\pi\)
\(72\) 0 0
\(73\) 12.5366 1.46730 0.733651 0.679526i \(-0.237815\pi\)
0.733651 + 0.679526i \(0.237815\pi\)
\(74\) 2.49988 0.290605
\(75\) 0 0
\(76\) −9.63720 −1.10546
\(77\) 6.14998 0.700856
\(78\) 0 0
\(79\) 4.52640 0.509260 0.254630 0.967039i \(-0.418046\pi\)
0.254630 + 0.967039i \(0.418046\pi\)
\(80\) 4.78528 0.535011
\(81\) 0 0
\(82\) −5.01082 −0.553352
\(83\) 10.8255 1.18825 0.594125 0.804373i \(-0.297499\pi\)
0.594125 + 0.804373i \(0.297499\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −5.17583 −0.558124
\(87\) 0 0
\(88\) 4.82111 0.513932
\(89\) 16.2213 1.71945 0.859726 0.510756i \(-0.170634\pi\)
0.859726 + 0.510756i \(0.170634\pi\)
\(90\) 0 0
\(91\) −7.90833 −0.829018
\(92\) 3.73785 0.389698
\(93\) 0 0
\(94\) 5.59411 0.576989
\(95\) 11.3231 1.16173
\(96\) 0 0
\(97\) 0.802837 0.0815158 0.0407579 0.999169i \(-0.487023\pi\)
0.0407579 + 0.999169i \(0.487023\pi\)
\(98\) −0.325061 −0.0328361
\(99\) 0 0
\(100\) 1.60781 0.160781
\(101\) −10.7867 −1.07331 −0.536657 0.843801i \(-0.680313\pi\)
−0.536657 + 0.843801i \(0.680313\pi\)
\(102\) 0 0
\(103\) 13.2358 1.30416 0.652082 0.758149i \(-0.273896\pi\)
0.652082 + 0.758149i \(0.273896\pi\)
\(104\) −6.19951 −0.607912
\(105\) 0 0
\(106\) −1.51370 −0.147023
\(107\) 8.20981 0.793673 0.396836 0.917889i \(-0.370108\pi\)
0.396836 + 0.917889i \(0.370108\pi\)
\(108\) 0 0
\(109\) 0.228783 0.0219135 0.0109567 0.999940i \(-0.496512\pi\)
0.0109567 + 0.999940i \(0.496512\pi\)
\(110\) −2.61540 −0.249369
\(111\) 0 0
\(112\) −6.00156 −0.567094
\(113\) −12.0126 −1.13005 −0.565024 0.825075i \(-0.691133\pi\)
−0.565024 + 0.825075i \(0.691133\pi\)
\(114\) 0 0
\(115\) −4.39175 −0.409533
\(116\) 8.15096 0.756798
\(117\) 0 0
\(118\) −1.86927 −0.172081
\(119\) 0 0
\(120\) 0 0
\(121\) −5.08152 −0.461956
\(122\) −4.20798 −0.380973
\(123\) 0 0
\(124\) −7.66400 −0.688248
\(125\) −11.9673 −1.07038
\(126\) 0 0
\(127\) −9.51499 −0.844319 −0.422160 0.906522i \(-0.638728\pi\)
−0.422160 + 0.906522i \(0.638728\pi\)
\(128\) −11.5041 −1.01683
\(129\) 0 0
\(130\) 3.36317 0.294970
\(131\) −14.9234 −1.30387 −0.651934 0.758276i \(-0.726042\pi\)
−0.651934 + 0.758276i \(0.726042\pi\)
\(132\) 0 0
\(133\) −14.2011 −1.23139
\(134\) −2.22338 −0.192070
\(135\) 0 0
\(136\) 0 0
\(137\) −14.1629 −1.21002 −0.605009 0.796219i \(-0.706830\pi\)
−0.605009 + 0.796219i \(0.706830\pi\)
\(138\) 0 0
\(139\) −15.4050 −1.30664 −0.653319 0.757083i \(-0.726624\pi\)
−0.653319 + 0.757083i \(0.726624\pi\)
\(140\) 8.74135 0.738779
\(141\) 0 0
\(142\) 2.40569 0.201881
\(143\) −7.61063 −0.636433
\(144\) 0 0
\(145\) −9.57687 −0.795316
\(146\) 6.68656 0.553383
\(147\) 0 0
\(148\) −8.04073 −0.660944
\(149\) −6.62192 −0.542489 −0.271244 0.962511i \(-0.587435\pi\)
−0.271244 + 0.962511i \(0.587435\pi\)
\(150\) 0 0
\(151\) −17.0531 −1.38776 −0.693882 0.720089i \(-0.744101\pi\)
−0.693882 + 0.720089i \(0.744101\pi\)
\(152\) −11.1326 −0.902971
\(153\) 0 0
\(154\) 3.28016 0.264323
\(155\) 9.00472 0.723277
\(156\) 0 0
\(157\) 14.5703 1.16284 0.581418 0.813605i \(-0.302498\pi\)
0.581418 + 0.813605i \(0.302498\pi\)
\(158\) 2.41421 0.192064
\(159\) 0 0
\(160\) 10.5411 0.833349
\(161\) 5.50800 0.434091
\(162\) 0 0
\(163\) 5.39557 0.422614 0.211307 0.977420i \(-0.432228\pi\)
0.211307 + 0.977420i \(0.432228\pi\)
\(164\) 16.1170 1.25853
\(165\) 0 0
\(166\) 5.77388 0.448140
\(167\) −12.4575 −0.963993 −0.481996 0.876173i \(-0.660088\pi\)
−0.481996 + 0.876173i \(0.660088\pi\)
\(168\) 0 0
\(169\) −3.21341 −0.247185
\(170\) 0 0
\(171\) 0 0
\(172\) 16.6478 1.26938
\(173\) −2.67379 −0.203284 −0.101642 0.994821i \(-0.532410\pi\)
−0.101642 + 0.994821i \(0.532410\pi\)
\(174\) 0 0
\(175\) 2.36922 0.179097
\(176\) −5.77565 −0.435356
\(177\) 0 0
\(178\) 8.65180 0.648480
\(179\) −14.0084 −1.04704 −0.523519 0.852014i \(-0.675381\pi\)
−0.523519 + 0.852014i \(0.675381\pi\)
\(180\) 0 0
\(181\) −13.3634 −0.993291 −0.496646 0.867953i \(-0.665435\pi\)
−0.496646 + 0.867953i \(0.665435\pi\)
\(182\) −4.21800 −0.312659
\(183\) 0 0
\(184\) 4.31784 0.318316
\(185\) 9.44735 0.694583
\(186\) 0 0
\(187\) 0 0
\(188\) −17.9931 −1.31228
\(189\) 0 0
\(190\) 6.03931 0.438138
\(191\) 20.9983 1.51938 0.759691 0.650285i \(-0.225350\pi\)
0.759691 + 0.650285i \(0.225350\pi\)
\(192\) 0 0
\(193\) 5.11341 0.368072 0.184036 0.982920i \(-0.441084\pi\)
0.184036 + 0.982920i \(0.441084\pi\)
\(194\) 0.428202 0.0307431
\(195\) 0 0
\(196\) 1.04554 0.0746813
\(197\) −3.83971 −0.273568 −0.136784 0.990601i \(-0.543677\pi\)
−0.136784 + 0.990601i \(0.543677\pi\)
\(198\) 0 0
\(199\) −7.22725 −0.512326 −0.256163 0.966634i \(-0.582458\pi\)
−0.256163 + 0.966634i \(0.582458\pi\)
\(200\) 1.85729 0.131330
\(201\) 0 0
\(202\) −5.75319 −0.404793
\(203\) 12.0110 0.843010
\(204\) 0 0
\(205\) −18.9365 −1.32258
\(206\) 7.05947 0.491857
\(207\) 0 0
\(208\) 7.42696 0.514967
\(209\) −13.6665 −0.945335
\(210\) 0 0
\(211\) −12.5596 −0.864636 −0.432318 0.901721i \(-0.642304\pi\)
−0.432318 + 0.901721i \(0.642304\pi\)
\(212\) 4.86872 0.334385
\(213\) 0 0
\(214\) 4.37880 0.299328
\(215\) −19.5601 −1.33399
\(216\) 0 0
\(217\) −11.2935 −0.766650
\(218\) 0.122024 0.00826451
\(219\) 0 0
\(220\) 8.41230 0.567157
\(221\) 0 0
\(222\) 0 0
\(223\) 4.79698 0.321229 0.160615 0.987017i \(-0.448652\pi\)
0.160615 + 0.987017i \(0.448652\pi\)
\(224\) −13.2204 −0.883323
\(225\) 0 0
\(226\) −6.40704 −0.426190
\(227\) −22.4744 −1.49168 −0.745839 0.666127i \(-0.767951\pi\)
−0.745839 + 0.666127i \(0.767951\pi\)
\(228\) 0 0
\(229\) −2.28961 −0.151302 −0.0756510 0.997134i \(-0.524103\pi\)
−0.0756510 + 0.997134i \(0.524103\pi\)
\(230\) −2.34239 −0.154452
\(231\) 0 0
\(232\) 9.41572 0.618172
\(233\) −24.9870 −1.63696 −0.818478 0.574538i \(-0.805182\pi\)
−0.818478 + 0.574538i \(0.805182\pi\)
\(234\) 0 0
\(235\) 21.1408 1.37908
\(236\) 6.01241 0.391374
\(237\) 0 0
\(238\) 0 0
\(239\) −16.8913 −1.09261 −0.546304 0.837587i \(-0.683966\pi\)
−0.546304 + 0.837587i \(0.683966\pi\)
\(240\) 0 0
\(241\) −29.9907 −1.93187 −0.965936 0.258783i \(-0.916679\pi\)
−0.965936 + 0.258783i \(0.916679\pi\)
\(242\) −2.71029 −0.174224
\(243\) 0 0
\(244\) 13.5347 0.866472
\(245\) −1.22844 −0.0784823
\(246\) 0 0
\(247\) 17.5740 1.11820
\(248\) −8.85320 −0.562178
\(249\) 0 0
\(250\) −6.38287 −0.403688
\(251\) −24.1719 −1.52572 −0.762858 0.646566i \(-0.776205\pi\)
−0.762858 + 0.646566i \(0.776205\pi\)
\(252\) 0 0
\(253\) 5.30066 0.333250
\(254\) −5.07493 −0.318429
\(255\) 0 0
\(256\) −2.21815 −0.138634
\(257\) 26.7412 1.66807 0.834034 0.551712i \(-0.186025\pi\)
0.834034 + 0.551712i \(0.186025\pi\)
\(258\) 0 0
\(259\) −11.8486 −0.736236
\(260\) −10.8175 −0.670870
\(261\) 0 0
\(262\) −7.95959 −0.491745
\(263\) −2.34258 −0.144449 −0.0722247 0.997388i \(-0.523010\pi\)
−0.0722247 + 0.997388i \(0.523010\pi\)
\(264\) 0 0
\(265\) −5.72044 −0.351404
\(266\) −7.57433 −0.464412
\(267\) 0 0
\(268\) 7.15136 0.436839
\(269\) 17.2220 1.05005 0.525023 0.851088i \(-0.324057\pi\)
0.525023 + 0.851088i \(0.324057\pi\)
\(270\) 0 0
\(271\) 24.8158 1.50745 0.753726 0.657189i \(-0.228254\pi\)
0.753726 + 0.657189i \(0.228254\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −7.55394 −0.456350
\(275\) 2.28004 0.137492
\(276\) 0 0
\(277\) −18.5075 −1.11201 −0.556005 0.831179i \(-0.687666\pi\)
−0.556005 + 0.831179i \(0.687666\pi\)
\(278\) −8.21645 −0.492790
\(279\) 0 0
\(280\) 10.0977 0.603453
\(281\) 17.2627 1.02981 0.514903 0.857249i \(-0.327828\pi\)
0.514903 + 0.857249i \(0.327828\pi\)
\(282\) 0 0
\(283\) −20.7111 −1.23115 −0.615574 0.788079i \(-0.711076\pi\)
−0.615574 + 0.788079i \(0.711076\pi\)
\(284\) −7.73778 −0.459153
\(285\) 0 0
\(286\) −4.05922 −0.240027
\(287\) 23.7496 1.40189
\(288\) 0 0
\(289\) 0 0
\(290\) −5.10793 −0.299948
\(291\) 0 0
\(292\) −21.5069 −1.25860
\(293\) −23.8401 −1.39275 −0.696375 0.717678i \(-0.745205\pi\)
−0.696375 + 0.717678i \(0.745205\pi\)
\(294\) 0 0
\(295\) −7.06421 −0.411294
\(296\) −9.28838 −0.539876
\(297\) 0 0
\(298\) −3.53187 −0.204596
\(299\) −6.81618 −0.394190
\(300\) 0 0
\(301\) 24.5317 1.41398
\(302\) −9.09548 −0.523386
\(303\) 0 0
\(304\) 13.3367 0.764913
\(305\) −15.9025 −0.910572
\(306\) 0 0
\(307\) 13.9729 0.797474 0.398737 0.917065i \(-0.369449\pi\)
0.398737 + 0.917065i \(0.369449\pi\)
\(308\) −10.5505 −0.601168
\(309\) 0 0
\(310\) 4.80277 0.272779
\(311\) 9.75466 0.553136 0.276568 0.960994i \(-0.410803\pi\)
0.276568 + 0.960994i \(0.410803\pi\)
\(312\) 0 0
\(313\) 33.2415 1.87892 0.939461 0.342655i \(-0.111326\pi\)
0.939461 + 0.342655i \(0.111326\pi\)
\(314\) 7.77123 0.438556
\(315\) 0 0
\(316\) −7.76516 −0.436825
\(317\) −7.34140 −0.412334 −0.206167 0.978517i \(-0.566099\pi\)
−0.206167 + 0.978517i \(0.566099\pi\)
\(318\) 0 0
\(319\) 11.5589 0.647175
\(320\) −3.94834 −0.220719
\(321\) 0 0
\(322\) 2.93775 0.163715
\(323\) 0 0
\(324\) 0 0
\(325\) −2.93193 −0.162634
\(326\) 2.87779 0.159386
\(327\) 0 0
\(328\) 18.6178 1.02800
\(329\) −26.5142 −1.46178
\(330\) 0 0
\(331\) 2.05218 0.112798 0.0563990 0.998408i \(-0.482038\pi\)
0.0563990 + 0.998408i \(0.482038\pi\)
\(332\) −18.5714 −1.01924
\(333\) 0 0
\(334\) −6.64436 −0.363563
\(335\) −8.40241 −0.459073
\(336\) 0 0
\(337\) −6.09966 −0.332270 −0.166135 0.986103i \(-0.553129\pi\)
−0.166135 + 0.986103i \(0.553129\pi\)
\(338\) −1.71391 −0.0932243
\(339\) 0 0
\(340\) 0 0
\(341\) −10.8683 −0.588554
\(342\) 0 0
\(343\) 19.2363 1.03866
\(344\) 19.2309 1.03686
\(345\) 0 0
\(346\) −1.42609 −0.0766673
\(347\) −34.4147 −1.84748 −0.923738 0.383026i \(-0.874882\pi\)
−0.923738 + 0.383026i \(0.874882\pi\)
\(348\) 0 0
\(349\) −17.4294 −0.932976 −0.466488 0.884528i \(-0.654481\pi\)
−0.466488 + 0.884528i \(0.654481\pi\)
\(350\) 1.26365 0.0675451
\(351\) 0 0
\(352\) −12.7227 −0.678123
\(353\) −35.9886 −1.91548 −0.957739 0.287638i \(-0.907130\pi\)
−0.957739 + 0.287638i \(0.907130\pi\)
\(354\) 0 0
\(355\) 9.09141 0.482522
\(356\) −27.8280 −1.47488
\(357\) 0 0
\(358\) −7.47155 −0.394884
\(359\) −18.7253 −0.988285 −0.494142 0.869381i \(-0.664518\pi\)
−0.494142 + 0.869381i \(0.664518\pi\)
\(360\) 0 0
\(361\) 12.5578 0.660939
\(362\) −7.12750 −0.374613
\(363\) 0 0
\(364\) 13.5669 0.711101
\(365\) 25.2693 1.32266
\(366\) 0 0
\(367\) 24.2752 1.26716 0.633578 0.773679i \(-0.281586\pi\)
0.633578 + 0.773679i \(0.281586\pi\)
\(368\) −5.17274 −0.269648
\(369\) 0 0
\(370\) 5.03885 0.261957
\(371\) 7.17441 0.372477
\(372\) 0 0
\(373\) 1.52714 0.0790723 0.0395361 0.999218i \(-0.487412\pi\)
0.0395361 + 0.999218i \(0.487412\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −20.7851 −1.07191
\(377\) −14.8637 −0.765520
\(378\) 0 0
\(379\) −5.78502 −0.297156 −0.148578 0.988901i \(-0.547470\pi\)
−0.148578 + 0.988901i \(0.547470\pi\)
\(380\) −19.4251 −0.996486
\(381\) 0 0
\(382\) 11.1997 0.573025
\(383\) 27.9186 1.42658 0.713288 0.700871i \(-0.247205\pi\)
0.713288 + 0.700871i \(0.247205\pi\)
\(384\) 0 0
\(385\) 12.3961 0.631765
\(386\) 2.72730 0.138816
\(387\) 0 0
\(388\) −1.37729 −0.0699212
\(389\) 5.79580 0.293859 0.146929 0.989147i \(-0.453061\pi\)
0.146929 + 0.989147i \(0.453061\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 1.20777 0.0610016
\(393\) 0 0
\(394\) −2.04795 −0.103174
\(395\) 9.12358 0.459057
\(396\) 0 0
\(397\) −25.6588 −1.28778 −0.643889 0.765119i \(-0.722680\pi\)
−0.643889 + 0.765119i \(0.722680\pi\)
\(398\) −3.85474 −0.193221
\(399\) 0 0
\(400\) −2.22501 −0.111251
\(401\) 1.94594 0.0971755 0.0485877 0.998819i \(-0.484528\pi\)
0.0485877 + 0.998819i \(0.484528\pi\)
\(402\) 0 0
\(403\) 13.9757 0.696180
\(404\) 18.5048 0.920648
\(405\) 0 0
\(406\) 6.40622 0.317935
\(407\) −11.4026 −0.565205
\(408\) 0 0
\(409\) 9.72007 0.480627 0.240313 0.970695i \(-0.422750\pi\)
0.240313 + 0.970695i \(0.422750\pi\)
\(410\) −10.1000 −0.498803
\(411\) 0 0
\(412\) −22.7064 −1.11866
\(413\) 8.85972 0.435958
\(414\) 0 0
\(415\) 21.8202 1.07111
\(416\) 16.3603 0.802129
\(417\) 0 0
\(418\) −7.28921 −0.356527
\(419\) 4.92897 0.240796 0.120398 0.992726i \(-0.461583\pi\)
0.120398 + 0.992726i \(0.461583\pi\)
\(420\) 0 0
\(421\) −33.8369 −1.64911 −0.824554 0.565783i \(-0.808574\pi\)
−0.824554 + 0.565783i \(0.808574\pi\)
\(422\) −6.69878 −0.326092
\(423\) 0 0
\(424\) 5.62418 0.273134
\(425\) 0 0
\(426\) 0 0
\(427\) 19.9444 0.965177
\(428\) −14.0841 −0.680783
\(429\) 0 0
\(430\) −10.4326 −0.503104
\(431\) 14.9941 0.722242 0.361121 0.932519i \(-0.382394\pi\)
0.361121 + 0.932519i \(0.382394\pi\)
\(432\) 0 0
\(433\) 0.570805 0.0274311 0.0137156 0.999906i \(-0.495634\pi\)
0.0137156 + 0.999906i \(0.495634\pi\)
\(434\) −6.02350 −0.289137
\(435\) 0 0
\(436\) −0.392483 −0.0187965
\(437\) −12.2399 −0.585515
\(438\) 0 0
\(439\) −25.4402 −1.21419 −0.607097 0.794628i \(-0.707666\pi\)
−0.607097 + 0.794628i \(0.707666\pi\)
\(440\) 9.71760 0.463268
\(441\) 0 0
\(442\) 0 0
\(443\) −1.27194 −0.0604317 −0.0302158 0.999543i \(-0.509619\pi\)
−0.0302158 + 0.999543i \(0.509619\pi\)
\(444\) 0 0
\(445\) 32.6962 1.54995
\(446\) 2.55852 0.121150
\(447\) 0 0
\(448\) 4.95189 0.233955
\(449\) −30.7646 −1.45187 −0.725936 0.687762i \(-0.758593\pi\)
−0.725936 + 0.687762i \(0.758593\pi\)
\(450\) 0 0
\(451\) 22.8556 1.07623
\(452\) 20.6079 0.969313
\(453\) 0 0
\(454\) −11.9870 −0.562576
\(455\) −15.9403 −0.747293
\(456\) 0 0
\(457\) 23.4935 1.09898 0.549490 0.835500i \(-0.314822\pi\)
0.549490 + 0.835500i \(0.314822\pi\)
\(458\) −1.22119 −0.0570625
\(459\) 0 0
\(460\) 7.53416 0.351282
\(461\) 8.51912 0.396775 0.198387 0.980124i \(-0.436430\pi\)
0.198387 + 0.980124i \(0.436430\pi\)
\(462\) 0 0
\(463\) 17.6689 0.821143 0.410571 0.911828i \(-0.365329\pi\)
0.410571 + 0.911828i \(0.365329\pi\)
\(464\) −11.2799 −0.523658
\(465\) 0 0
\(466\) −13.3271 −0.617367
\(467\) −6.27728 −0.290478 −0.145239 0.989397i \(-0.546395\pi\)
−0.145239 + 0.989397i \(0.546395\pi\)
\(468\) 0 0
\(469\) 10.5381 0.486602
\(470\) 11.2757 0.520109
\(471\) 0 0
\(472\) 6.94533 0.319685
\(473\) 23.6083 1.08551
\(474\) 0 0
\(475\) −5.26491 −0.241571
\(476\) 0 0
\(477\) 0 0
\(478\) −9.00917 −0.412070
\(479\) −33.8395 −1.54617 −0.773083 0.634304i \(-0.781287\pi\)
−0.773083 + 0.634304i \(0.781287\pi\)
\(480\) 0 0
\(481\) 14.6627 0.668561
\(482\) −15.9959 −0.728592
\(483\) 0 0
\(484\) 8.71748 0.396249
\(485\) 1.61823 0.0734799
\(486\) 0 0
\(487\) −17.3297 −0.785283 −0.392641 0.919692i \(-0.628439\pi\)
−0.392641 + 0.919692i \(0.628439\pi\)
\(488\) 15.6349 0.707757
\(489\) 0 0
\(490\) −0.655204 −0.0295991
\(491\) 18.8939 0.852668 0.426334 0.904566i \(-0.359805\pi\)
0.426334 + 0.904566i \(0.359805\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 9.37326 0.421723
\(495\) 0 0
\(496\) 10.6061 0.476226
\(497\) −11.4022 −0.511458
\(498\) 0 0
\(499\) −6.48069 −0.290116 −0.145058 0.989423i \(-0.546337\pi\)
−0.145058 + 0.989423i \(0.546337\pi\)
\(500\) 20.5301 0.918136
\(501\) 0 0
\(502\) −12.8924 −0.575414
\(503\) −16.6622 −0.742930 −0.371465 0.928447i \(-0.621144\pi\)
−0.371465 + 0.928447i \(0.621144\pi\)
\(504\) 0 0
\(505\) −21.7420 −0.967506
\(506\) 2.82717 0.125683
\(507\) 0 0
\(508\) 16.3232 0.724226
\(509\) −19.1265 −0.847767 −0.423884 0.905717i \(-0.639333\pi\)
−0.423884 + 0.905717i \(0.639333\pi\)
\(510\) 0 0
\(511\) −31.6920 −1.40197
\(512\) 21.8252 0.964546
\(513\) 0 0
\(514\) 14.2627 0.629101
\(515\) 26.6786 1.17560
\(516\) 0 0
\(517\) −25.5161 −1.12220
\(518\) −6.31958 −0.277667
\(519\) 0 0
\(520\) −12.4960 −0.547984
\(521\) 14.3864 0.630279 0.315139 0.949045i \(-0.397949\pi\)
0.315139 + 0.949045i \(0.397949\pi\)
\(522\) 0 0
\(523\) −6.11004 −0.267173 −0.133587 0.991037i \(-0.542649\pi\)
−0.133587 + 0.991037i \(0.542649\pi\)
\(524\) 25.6015 1.11841
\(525\) 0 0
\(526\) −1.24944 −0.0544781
\(527\) 0 0
\(528\) 0 0
\(529\) −18.2527 −0.793594
\(530\) −3.05106 −0.132530
\(531\) 0 0
\(532\) 24.3624 1.05624
\(533\) −29.3902 −1.27303
\(534\) 0 0
\(535\) 16.5480 0.715432
\(536\) 8.26101 0.356821
\(537\) 0 0
\(538\) 9.18557 0.396018
\(539\) 1.48268 0.0638636
\(540\) 0 0
\(541\) 28.6602 1.23220 0.616099 0.787669i \(-0.288712\pi\)
0.616099 + 0.787669i \(0.288712\pi\)
\(542\) 13.2358 0.568526
\(543\) 0 0
\(544\) 0 0
\(545\) 0.461144 0.0197532
\(546\) 0 0
\(547\) −16.9731 −0.725716 −0.362858 0.931844i \(-0.618199\pi\)
−0.362858 + 0.931844i \(0.618199\pi\)
\(548\) 24.2968 1.03791
\(549\) 0 0
\(550\) 1.21609 0.0518540
\(551\) −26.6910 −1.13708
\(552\) 0 0
\(553\) −11.4425 −0.486586
\(554\) −9.87120 −0.419387
\(555\) 0 0
\(556\) 26.4277 1.12079
\(557\) −11.2465 −0.476530 −0.238265 0.971200i \(-0.576579\pi\)
−0.238265 + 0.971200i \(0.576579\pi\)
\(558\) 0 0
\(559\) −30.3581 −1.28401
\(560\) −12.0970 −0.511190
\(561\) 0 0
\(562\) 9.20724 0.388384
\(563\) 1.34971 0.0568836 0.0284418 0.999595i \(-0.490945\pi\)
0.0284418 + 0.999595i \(0.490945\pi\)
\(564\) 0 0
\(565\) −24.2130 −1.01865
\(566\) −11.0465 −0.464319
\(567\) 0 0
\(568\) −8.93842 −0.375048
\(569\) 0.494896 0.0207471 0.0103736 0.999946i \(-0.496698\pi\)
0.0103736 + 0.999946i \(0.496698\pi\)
\(570\) 0 0
\(571\) 24.9578 1.04445 0.522225 0.852808i \(-0.325102\pi\)
0.522225 + 0.852808i \(0.325102\pi\)
\(572\) 13.0562 0.545909
\(573\) 0 0
\(574\) 12.6671 0.528715
\(575\) 2.04203 0.0851586
\(576\) 0 0
\(577\) −23.0850 −0.961043 −0.480521 0.876983i \(-0.659553\pi\)
−0.480521 + 0.876983i \(0.659553\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 16.4294 0.682193
\(581\) −27.3663 −1.13534
\(582\) 0 0
\(583\) 6.90435 0.285949
\(584\) −24.8441 −1.02806
\(585\) 0 0
\(586\) −12.7154 −0.525267
\(587\) −20.9646 −0.865303 −0.432652 0.901561i \(-0.642422\pi\)
−0.432652 + 0.901561i \(0.642422\pi\)
\(588\) 0 0
\(589\) 25.0964 1.03408
\(590\) −3.76777 −0.155117
\(591\) 0 0
\(592\) 11.1274 0.457333
\(593\) 27.5149 1.12990 0.564951 0.825124i \(-0.308895\pi\)
0.564951 + 0.825124i \(0.308895\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 11.3601 0.465327
\(597\) 0 0
\(598\) −3.63549 −0.148666
\(599\) 43.8786 1.79283 0.896415 0.443215i \(-0.146162\pi\)
0.896415 + 0.443215i \(0.146162\pi\)
\(600\) 0 0
\(601\) 43.3759 1.76934 0.884670 0.466218i \(-0.154384\pi\)
0.884670 + 0.466218i \(0.154384\pi\)
\(602\) 13.0843 0.533275
\(603\) 0 0
\(604\) 29.2551 1.19037
\(605\) −10.2425 −0.416417
\(606\) 0 0
\(607\) 21.0232 0.853307 0.426653 0.904415i \(-0.359692\pi\)
0.426653 + 0.904415i \(0.359692\pi\)
\(608\) 29.3784 1.19145
\(609\) 0 0
\(610\) −8.48175 −0.343416
\(611\) 32.8114 1.32741
\(612\) 0 0
\(613\) 30.5509 1.23394 0.616969 0.786987i \(-0.288360\pi\)
0.616969 + 0.786987i \(0.288360\pi\)
\(614\) 7.45259 0.300762
\(615\) 0 0
\(616\) −12.1875 −0.491050
\(617\) 8.08373 0.325439 0.162719 0.986672i \(-0.447974\pi\)
0.162719 + 0.986672i \(0.447974\pi\)
\(618\) 0 0
\(619\) −7.34432 −0.295193 −0.147597 0.989048i \(-0.547154\pi\)
−0.147597 + 0.989048i \(0.547154\pi\)
\(620\) −15.4478 −0.620400
\(621\) 0 0
\(622\) 5.20276 0.208612
\(623\) −41.0066 −1.64289
\(624\) 0 0
\(625\) −19.4356 −0.777423
\(626\) 17.7297 0.708623
\(627\) 0 0
\(628\) −24.9957 −0.997438
\(629\) 0 0
\(630\) 0 0
\(631\) 43.2402 1.72137 0.860683 0.509141i \(-0.170037\pi\)
0.860683 + 0.509141i \(0.170037\pi\)
\(632\) −8.97005 −0.356810
\(633\) 0 0
\(634\) −3.91562 −0.155509
\(635\) −19.1788 −0.761086
\(636\) 0 0
\(637\) −1.90660 −0.0755421
\(638\) 6.16507 0.244078
\(639\) 0 0
\(640\) −23.1881 −0.916592
\(641\) −9.44281 −0.372969 −0.186484 0.982458i \(-0.559709\pi\)
−0.186484 + 0.982458i \(0.559709\pi\)
\(642\) 0 0
\(643\) −0.346171 −0.0136516 −0.00682582 0.999977i \(-0.502173\pi\)
−0.00682582 + 0.999977i \(0.502173\pi\)
\(644\) −9.44912 −0.372347
\(645\) 0 0
\(646\) 0 0
\(647\) −2.21802 −0.0871996 −0.0435998 0.999049i \(-0.513883\pi\)
−0.0435998 + 0.999049i \(0.513883\pi\)
\(648\) 0 0
\(649\) 8.52622 0.334683
\(650\) −1.56378 −0.0613363
\(651\) 0 0
\(652\) −9.25625 −0.362503
\(653\) 3.81435 0.149267 0.0746336 0.997211i \(-0.476221\pi\)
0.0746336 + 0.997211i \(0.476221\pi\)
\(654\) 0 0
\(655\) −30.0802 −1.17533
\(656\) −22.3040 −0.870824
\(657\) 0 0
\(658\) −14.1416 −0.551299
\(659\) 29.3352 1.14274 0.571368 0.820694i \(-0.306413\pi\)
0.571368 + 0.820694i \(0.306413\pi\)
\(660\) 0 0
\(661\) −6.32915 −0.246175 −0.123088 0.992396i \(-0.539280\pi\)
−0.123088 + 0.992396i \(0.539280\pi\)
\(662\) 1.09455 0.0425410
\(663\) 0 0
\(664\) −21.4530 −0.832538
\(665\) −28.6243 −1.11000
\(666\) 0 0
\(667\) 10.3523 0.400843
\(668\) 21.3712 0.826877
\(669\) 0 0
\(670\) −4.48152 −0.173136
\(671\) 19.1936 0.740962
\(672\) 0 0
\(673\) −27.6869 −1.06725 −0.533627 0.845720i \(-0.679171\pi\)
−0.533627 + 0.845720i \(0.679171\pi\)
\(674\) −3.25332 −0.125313
\(675\) 0 0
\(676\) 5.51269 0.212026
\(677\) −38.8370 −1.49263 −0.746314 0.665594i \(-0.768178\pi\)
−0.746314 + 0.665594i \(0.768178\pi\)
\(678\) 0 0
\(679\) −2.02953 −0.0778864
\(680\) 0 0
\(681\) 0 0
\(682\) −5.79675 −0.221969
\(683\) −3.74165 −0.143170 −0.0715852 0.997434i \(-0.522806\pi\)
−0.0715852 + 0.997434i \(0.522806\pi\)
\(684\) 0 0
\(685\) −28.5472 −1.09073
\(686\) 10.2599 0.391726
\(687\) 0 0
\(688\) −23.0385 −0.878334
\(689\) −8.87837 −0.338239
\(690\) 0 0
\(691\) 33.9745 1.29245 0.646226 0.763146i \(-0.276346\pi\)
0.646226 + 0.763146i \(0.276346\pi\)
\(692\) 4.58695 0.174370
\(693\) 0 0
\(694\) −18.3554 −0.696763
\(695\) −31.0509 −1.17783
\(696\) 0 0
\(697\) 0 0
\(698\) −9.29618 −0.351866
\(699\) 0 0
\(700\) −4.06447 −0.153622
\(701\) −19.8395 −0.749327 −0.374663 0.927161i \(-0.622242\pi\)
−0.374663 + 0.927161i \(0.622242\pi\)
\(702\) 0 0
\(703\) 26.3301 0.993057
\(704\) 4.76548 0.179606
\(705\) 0 0
\(706\) −19.1949 −0.722410
\(707\) 27.2682 1.02553
\(708\) 0 0
\(709\) 48.8784 1.83567 0.917833 0.396967i \(-0.129937\pi\)
0.917833 + 0.396967i \(0.129937\pi\)
\(710\) 4.84901 0.181980
\(711\) 0 0
\(712\) −32.1460 −1.20472
\(713\) −9.73382 −0.364535
\(714\) 0 0
\(715\) −15.3403 −0.573694
\(716\) 24.0318 0.898111
\(717\) 0 0
\(718\) −9.98736 −0.372725
\(719\) −4.65960 −0.173774 −0.0868869 0.996218i \(-0.527692\pi\)
−0.0868869 + 0.996218i \(0.527692\pi\)
\(720\) 0 0
\(721\) −33.4595 −1.24610
\(722\) 6.69787 0.249269
\(723\) 0 0
\(724\) 22.9252 0.852008
\(725\) 4.45296 0.165379
\(726\) 0 0
\(727\) 34.8089 1.29099 0.645495 0.763765i \(-0.276651\pi\)
0.645495 + 0.763765i \(0.276651\pi\)
\(728\) 15.6721 0.580846
\(729\) 0 0
\(730\) 13.4777 0.498831
\(731\) 0 0
\(732\) 0 0
\(733\) −20.2207 −0.746867 −0.373434 0.927657i \(-0.621820\pi\)
−0.373434 + 0.927657i \(0.621820\pi\)
\(734\) 12.9475 0.477899
\(735\) 0 0
\(736\) −11.3946 −0.420011
\(737\) 10.1414 0.373562
\(738\) 0 0
\(739\) −20.7563 −0.763533 −0.381767 0.924259i \(-0.624684\pi\)
−0.381767 + 0.924259i \(0.624684\pi\)
\(740\) −16.2072 −0.595788
\(741\) 0 0
\(742\) 3.82655 0.140477
\(743\) 14.0213 0.514391 0.257196 0.966359i \(-0.417202\pi\)
0.257196 + 0.966359i \(0.417202\pi\)
\(744\) 0 0
\(745\) −13.3474 −0.489010
\(746\) 0.814517 0.0298216
\(747\) 0 0
\(748\) 0 0
\(749\) −20.7540 −0.758335
\(750\) 0 0
\(751\) 33.7354 1.23102 0.615512 0.788128i \(-0.288949\pi\)
0.615512 + 0.788128i \(0.288949\pi\)
\(752\) 24.9003 0.908022
\(753\) 0 0
\(754\) −7.92773 −0.288711
\(755\) −34.3729 −1.25096
\(756\) 0 0
\(757\) 37.1888 1.35165 0.675824 0.737063i \(-0.263788\pi\)
0.675824 + 0.737063i \(0.263788\pi\)
\(758\) −3.08550 −0.112071
\(759\) 0 0
\(760\) −22.4392 −0.813956
\(761\) 10.1020 0.366198 0.183099 0.983094i \(-0.441387\pi\)
0.183099 + 0.983094i \(0.441387\pi\)
\(762\) 0 0
\(763\) −0.578353 −0.0209378
\(764\) −36.0231 −1.30327
\(765\) 0 0
\(766\) 14.8907 0.538023
\(767\) −10.9639 −0.395885
\(768\) 0 0
\(769\) −51.1798 −1.84559 −0.922796 0.385288i \(-0.874102\pi\)
−0.922796 + 0.385288i \(0.874102\pi\)
\(770\) 6.61162 0.238266
\(771\) 0 0
\(772\) −8.77219 −0.315718
\(773\) −21.0914 −0.758604 −0.379302 0.925273i \(-0.623836\pi\)
−0.379302 + 0.925273i \(0.623836\pi\)
\(774\) 0 0
\(775\) −4.18693 −0.150399
\(776\) −1.59100 −0.0571135
\(777\) 0 0
\(778\) 3.09125 0.110827
\(779\) −52.7765 −1.89092
\(780\) 0 0
\(781\) −10.9730 −0.392644
\(782\) 0 0
\(783\) 0 0
\(784\) −1.44690 −0.0516750
\(785\) 29.3684 1.04820
\(786\) 0 0
\(787\) 17.8351 0.635753 0.317877 0.948132i \(-0.397030\pi\)
0.317877 + 0.948132i \(0.397030\pi\)
\(788\) 6.58713 0.234657
\(789\) 0 0
\(790\) 4.86617 0.173130
\(791\) 30.3672 1.07973
\(792\) 0 0
\(793\) −24.6813 −0.876458
\(794\) −13.6854 −0.485677
\(795\) 0 0
\(796\) 12.3985 0.439455
\(797\) 18.8627 0.668150 0.334075 0.942547i \(-0.391576\pi\)
0.334075 + 0.942547i \(0.391576\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −4.90131 −0.173288
\(801\) 0 0
\(802\) 1.03789 0.0366491
\(803\) −30.4990 −1.07629
\(804\) 0 0
\(805\) 11.1021 0.391299
\(806\) 7.45410 0.262560
\(807\) 0 0
\(808\) 21.3761 0.752009
\(809\) 3.14126 0.110441 0.0552205 0.998474i \(-0.482414\pi\)
0.0552205 + 0.998474i \(0.482414\pi\)
\(810\) 0 0
\(811\) −47.4960 −1.66781 −0.833905 0.551907i \(-0.813900\pi\)
−0.833905 + 0.551907i \(0.813900\pi\)
\(812\) −20.6052 −0.723102
\(813\) 0 0
\(814\) −6.08169 −0.213163
\(815\) 10.8755 0.380953
\(816\) 0 0
\(817\) −54.5145 −1.90722
\(818\) 5.18431 0.181265
\(819\) 0 0
\(820\) 32.4860 1.13446
\(821\) −14.7130 −0.513486 −0.256743 0.966480i \(-0.582649\pi\)
−0.256743 + 0.966480i \(0.582649\pi\)
\(822\) 0 0
\(823\) 28.3774 0.989173 0.494587 0.869128i \(-0.335319\pi\)
0.494587 + 0.869128i \(0.335319\pi\)
\(824\) −26.2297 −0.913753
\(825\) 0 0
\(826\) 4.72543 0.164419
\(827\) 16.8952 0.587504 0.293752 0.955882i \(-0.405096\pi\)
0.293752 + 0.955882i \(0.405096\pi\)
\(828\) 0 0
\(829\) 3.03136 0.105283 0.0526417 0.998613i \(-0.483236\pi\)
0.0526417 + 0.998613i \(0.483236\pi\)
\(830\) 11.6380 0.403963
\(831\) 0 0
\(832\) −6.12798 −0.212450
\(833\) 0 0
\(834\) 0 0
\(835\) −25.1098 −0.868962
\(836\) 23.4453 0.810873
\(837\) 0 0
\(838\) 2.62892 0.0908146
\(839\) 37.4875 1.29421 0.647106 0.762400i \(-0.275979\pi\)
0.647106 + 0.762400i \(0.275979\pi\)
\(840\) 0 0
\(841\) −6.42523 −0.221560
\(842\) −18.0473 −0.621950
\(843\) 0 0
\(844\) 21.5462 0.741652
\(845\) −6.47706 −0.222818
\(846\) 0 0
\(847\) 12.8458 0.441388
\(848\) −6.73772 −0.231374
\(849\) 0 0
\(850\) 0 0
\(851\) −10.2123 −0.350073
\(852\) 0 0
\(853\) −31.7823 −1.08821 −0.544103 0.839018i \(-0.683130\pi\)
−0.544103 + 0.839018i \(0.683130\pi\)
\(854\) 10.6376 0.364010
\(855\) 0 0
\(856\) −16.2695 −0.556081
\(857\) −22.6117 −0.772402 −0.386201 0.922415i \(-0.626213\pi\)
−0.386201 + 0.922415i \(0.626213\pi\)
\(858\) 0 0
\(859\) 36.9481 1.26065 0.630327 0.776330i \(-0.282921\pi\)
0.630327 + 0.776330i \(0.282921\pi\)
\(860\) 33.5558 1.14424
\(861\) 0 0
\(862\) 7.99729 0.272389
\(863\) −32.8262 −1.11742 −0.558709 0.829364i \(-0.688703\pi\)
−0.558709 + 0.829364i \(0.688703\pi\)
\(864\) 0 0
\(865\) −5.38938 −0.183245
\(866\) 0.304445 0.0103455
\(867\) 0 0
\(868\) 19.3742 0.657604
\(869\) −11.0118 −0.373550
\(870\) 0 0
\(871\) −13.0409 −0.441874
\(872\) −0.453384 −0.0153535
\(873\) 0 0
\(874\) −6.52830 −0.220823
\(875\) 30.2527 1.02273
\(876\) 0 0
\(877\) −25.2628 −0.853065 −0.426532 0.904472i \(-0.640265\pi\)
−0.426532 + 0.904472i \(0.640265\pi\)
\(878\) −13.5688 −0.457925
\(879\) 0 0
\(880\) −11.6416 −0.392438
\(881\) −11.4521 −0.385832 −0.192916 0.981215i \(-0.561794\pi\)
−0.192916 + 0.981215i \(0.561794\pi\)
\(882\) 0 0
\(883\) −37.1590 −1.25050 −0.625251 0.780424i \(-0.715003\pi\)
−0.625251 + 0.780424i \(0.715003\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −0.678403 −0.0227914
\(887\) 20.5460 0.689868 0.344934 0.938627i \(-0.387901\pi\)
0.344934 + 0.938627i \(0.387901\pi\)
\(888\) 0 0
\(889\) 24.0535 0.806727
\(890\) 17.4389 0.584552
\(891\) 0 0
\(892\) −8.22934 −0.275539
\(893\) 58.9201 1.97169
\(894\) 0 0
\(895\) −28.2359 −0.943821
\(896\) 29.0819 0.971558
\(897\) 0 0
\(898\) −16.4087 −0.547564
\(899\) −21.2261 −0.707930
\(900\) 0 0
\(901\) 0 0
\(902\) 12.1903 0.405892
\(903\) 0 0
\(904\) 23.8055 0.791760
\(905\) −26.9357 −0.895372
\(906\) 0 0
\(907\) −32.9972 −1.09565 −0.547827 0.836592i \(-0.684545\pi\)
−0.547827 + 0.836592i \(0.684545\pi\)
\(908\) 38.5554 1.27951
\(909\) 0 0
\(910\) −8.50194 −0.281837
\(911\) 6.63185 0.219723 0.109861 0.993947i \(-0.464959\pi\)
0.109861 + 0.993947i \(0.464959\pi\)
\(912\) 0 0
\(913\) −26.3361 −0.871598
\(914\) 12.5305 0.414473
\(915\) 0 0
\(916\) 3.92789 0.129781
\(917\) 37.7257 1.24581
\(918\) 0 0
\(919\) 58.7318 1.93738 0.968692 0.248265i \(-0.0798604\pi\)
0.968692 + 0.248265i \(0.0798604\pi\)
\(920\) 8.70320 0.286936
\(921\) 0 0
\(922\) 4.54377 0.149641
\(923\) 14.1103 0.464445
\(924\) 0 0
\(925\) −4.39274 −0.144432
\(926\) 9.42390 0.309689
\(927\) 0 0
\(928\) −24.8477 −0.815666
\(929\) −49.7859 −1.63342 −0.816711 0.577047i \(-0.804205\pi\)
−0.816711 + 0.577047i \(0.804205\pi\)
\(930\) 0 0
\(931\) −3.42371 −0.112207
\(932\) 42.8659 1.40412
\(933\) 0 0
\(934\) −3.34806 −0.109552
\(935\) 0 0
\(936\) 0 0
\(937\) −22.6222 −0.739035 −0.369517 0.929224i \(-0.620477\pi\)
−0.369517 + 0.929224i \(0.620477\pi\)
\(938\) 5.62059 0.183519
\(939\) 0 0
\(940\) −36.2676 −1.18292
\(941\) 33.9667 1.10728 0.553642 0.832755i \(-0.313238\pi\)
0.553642 + 0.832755i \(0.313238\pi\)
\(942\) 0 0
\(943\) 20.4697 0.666586
\(944\) −8.32045 −0.270807
\(945\) 0 0
\(946\) 12.5917 0.409392
\(947\) −11.6328 −0.378016 −0.189008 0.981976i \(-0.560527\pi\)
−0.189008 + 0.981976i \(0.560527\pi\)
\(948\) 0 0
\(949\) 39.2190 1.27310
\(950\) −2.80810 −0.0911068
\(951\) 0 0
\(952\) 0 0
\(953\) −57.8467 −1.87384 −0.936919 0.349547i \(-0.886336\pi\)
−0.936919 + 0.349547i \(0.886336\pi\)
\(954\) 0 0
\(955\) 42.3249 1.36960
\(956\) 28.9775 0.937199
\(957\) 0 0
\(958\) −18.0487 −0.583127
\(959\) 35.8031 1.15614
\(960\) 0 0
\(961\) −11.0420 −0.356194
\(962\) 7.82051 0.252143
\(963\) 0 0
\(964\) 51.4498 1.65709
\(965\) 10.3068 0.331787
\(966\) 0 0
\(967\) 27.3184 0.878501 0.439250 0.898365i \(-0.355244\pi\)
0.439250 + 0.898365i \(0.355244\pi\)
\(968\) 10.0701 0.323666
\(969\) 0 0
\(970\) 0.863100 0.0277125
\(971\) 10.0632 0.322943 0.161471 0.986877i \(-0.448376\pi\)
0.161471 + 0.986877i \(0.448376\pi\)
\(972\) 0 0
\(973\) 38.9432 1.24846
\(974\) −9.24298 −0.296164
\(975\) 0 0
\(976\) −18.7304 −0.599546
\(977\) −26.5667 −0.849945 −0.424973 0.905206i \(-0.639716\pi\)
−0.424973 + 0.905206i \(0.639716\pi\)
\(978\) 0 0
\(979\) −39.4630 −1.26124
\(980\) 2.10743 0.0673192
\(981\) 0 0
\(982\) 10.0773 0.321578
\(983\) −30.5443 −0.974213 −0.487106 0.873343i \(-0.661948\pi\)
−0.487106 + 0.873343i \(0.661948\pi\)
\(984\) 0 0
\(985\) −7.73947 −0.246600
\(986\) 0 0
\(987\) 0 0
\(988\) −30.1486 −0.959154
\(989\) 21.1438 0.672335
\(990\) 0 0
\(991\) −2.06918 −0.0657298 −0.0328649 0.999460i \(-0.510463\pi\)
−0.0328649 + 0.999460i \(0.510463\pi\)
\(992\) 23.3632 0.741784
\(993\) 0 0
\(994\) −6.08148 −0.192893
\(995\) −14.5675 −0.461821
\(996\) 0 0
\(997\) 29.7880 0.943395 0.471697 0.881761i \(-0.343642\pi\)
0.471697 + 0.881761i \(0.343642\pi\)
\(998\) −3.45655 −0.109415
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7803.2.a.cd.1.15 24
3.2 odd 2 7803.2.a.cg.1.10 24
17.10 odd 16 459.2.l.a.406.5 48
17.12 odd 16 459.2.l.a.433.5 yes 48
17.16 even 2 7803.2.a.cg.1.15 24
51.29 even 16 459.2.l.a.433.8 yes 48
51.44 even 16 459.2.l.a.406.8 yes 48
51.50 odd 2 inner 7803.2.a.cd.1.10 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
459.2.l.a.406.5 48 17.10 odd 16
459.2.l.a.406.8 yes 48 51.44 even 16
459.2.l.a.433.5 yes 48 17.12 odd 16
459.2.l.a.433.8 yes 48 51.29 even 16
7803.2.a.cd.1.10 24 51.50 odd 2 inner
7803.2.a.cd.1.15 24 1.1 even 1 trivial
7803.2.a.cg.1.10 24 3.2 odd 2
7803.2.a.cg.1.15 24 17.16 even 2