Properties

Label 7803.2.a.bw.1.3
Level $7803$
Weight $2$
Character 7803.1
Self dual yes
Analytic conductor $62.307$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7803,2,Mod(1,7803)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7803.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7803, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7803 = 3^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7803.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,12,0,0,8,0,0,24,0,0,-4,0,0,20,0,0,-4,0,0,-28,0,0,0,0, 0,48,0,0,8,0,0,0,0,0,12,0,0,44,0,0,-20,0,0,36,0,0,28,0,0,8,0,0,-4,0,0, 28,0,0,48,0,0,40,0,0,-8,0,0,44,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(73)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.3072686972\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 18x^{10} + 115x^{8} - 318x^{6} + 395x^{4} - 208x^{2} + 34 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 459)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.61349\) of defining polynomial
Character \(\chi\) \(=\) 7803.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.61349 q^{2} +0.603350 q^{4} +0.815992 q^{5} -2.52607 q^{7} +2.25348 q^{8} -1.31659 q^{10} +3.58347 q^{11} -5.59275 q^{13} +4.07580 q^{14} -4.84267 q^{16} -2.56848 q^{19} +0.492329 q^{20} -5.78189 q^{22} -1.99832 q^{23} -4.33416 q^{25} +9.02385 q^{26} -1.52411 q^{28} -5.86529 q^{29} +1.18717 q^{31} +3.30664 q^{32} -2.06126 q^{35} -6.74227 q^{37} +4.14421 q^{38} +1.83882 q^{40} -9.52343 q^{41} +9.26834 q^{43} +2.16209 q^{44} +3.22426 q^{46} +9.21835 q^{47} -0.618947 q^{49} +6.99312 q^{50} -3.37439 q^{52} -1.17050 q^{53} +2.92408 q^{55} -5.69246 q^{56} +9.46358 q^{58} -7.67537 q^{59} +4.20080 q^{61} -1.91549 q^{62} +4.35011 q^{64} -4.56364 q^{65} -4.68034 q^{67} +3.32582 q^{70} -8.39819 q^{71} -0.552268 q^{73} +10.8786 q^{74} -1.54969 q^{76} -9.05211 q^{77} +13.1827 q^{79} -3.95158 q^{80} +15.3660 q^{82} +8.60839 q^{83} -14.9544 q^{86} +8.07528 q^{88} +10.5202 q^{89} +14.1277 q^{91} -1.20568 q^{92} -14.8737 q^{94} -2.09586 q^{95} -3.32331 q^{97} +0.998664 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{4} + 8 q^{7} + 24 q^{10} - 4 q^{13} + 20 q^{16} - 4 q^{19} - 28 q^{22} + 48 q^{28} + 8 q^{31} + 12 q^{37} + 44 q^{40} - 20 q^{43} + 36 q^{46} + 28 q^{49} + 8 q^{52} - 4 q^{55} + 28 q^{58} + 48 q^{61}+ \cdots + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.61349 −1.14091 −0.570455 0.821329i \(-0.693233\pi\)
−0.570455 + 0.821329i \(0.693233\pi\)
\(3\) 0 0
\(4\) 0.603350 0.301675
\(5\) 0.815992 0.364922 0.182461 0.983213i \(-0.441594\pi\)
0.182461 + 0.983213i \(0.441594\pi\)
\(6\) 0 0
\(7\) −2.52607 −0.954766 −0.477383 0.878695i \(-0.658415\pi\)
−0.477383 + 0.878695i \(0.658415\pi\)
\(8\) 2.25348 0.796726
\(9\) 0 0
\(10\) −1.31659 −0.416344
\(11\) 3.58347 1.08046 0.540228 0.841519i \(-0.318338\pi\)
0.540228 + 0.841519i \(0.318338\pi\)
\(12\) 0 0
\(13\) −5.59275 −1.55115 −0.775575 0.631255i \(-0.782540\pi\)
−0.775575 + 0.631255i \(0.782540\pi\)
\(14\) 4.07580 1.08930
\(15\) 0 0
\(16\) −4.84267 −1.21067
\(17\) 0 0
\(18\) 0 0
\(19\) −2.56848 −0.589249 −0.294625 0.955613i \(-0.595195\pi\)
−0.294625 + 0.955613i \(0.595195\pi\)
\(20\) 0.492329 0.110088
\(21\) 0 0
\(22\) −5.78189 −1.23270
\(23\) −1.99832 −0.416678 −0.208339 0.978057i \(-0.566806\pi\)
−0.208339 + 0.978057i \(0.566806\pi\)
\(24\) 0 0
\(25\) −4.33416 −0.866832
\(26\) 9.02385 1.76972
\(27\) 0 0
\(28\) −1.52411 −0.288029
\(29\) −5.86529 −1.08916 −0.544578 0.838710i \(-0.683310\pi\)
−0.544578 + 0.838710i \(0.683310\pi\)
\(30\) 0 0
\(31\) 1.18717 0.213222 0.106611 0.994301i \(-0.466000\pi\)
0.106611 + 0.994301i \(0.466000\pi\)
\(32\) 3.30664 0.584536
\(33\) 0 0
\(34\) 0 0
\(35\) −2.06126 −0.348416
\(36\) 0 0
\(37\) −6.74227 −1.10842 −0.554211 0.832376i \(-0.686980\pi\)
−0.554211 + 0.832376i \(0.686980\pi\)
\(38\) 4.14421 0.672280
\(39\) 0 0
\(40\) 1.83882 0.290743
\(41\) −9.52343 −1.48731 −0.743655 0.668563i \(-0.766910\pi\)
−0.743655 + 0.668563i \(0.766910\pi\)
\(42\) 0 0
\(43\) 9.26834 1.41341 0.706705 0.707509i \(-0.250181\pi\)
0.706705 + 0.707509i \(0.250181\pi\)
\(44\) 2.16209 0.325947
\(45\) 0 0
\(46\) 3.22426 0.475392
\(47\) 9.21835 1.34463 0.672317 0.740263i \(-0.265299\pi\)
0.672317 + 0.740263i \(0.265299\pi\)
\(48\) 0 0
\(49\) −0.618947 −0.0884209
\(50\) 6.99312 0.988977
\(51\) 0 0
\(52\) −3.37439 −0.467943
\(53\) −1.17050 −0.160781 −0.0803905 0.996763i \(-0.525617\pi\)
−0.0803905 + 0.996763i \(0.525617\pi\)
\(54\) 0 0
\(55\) 2.92408 0.394283
\(56\) −5.69246 −0.760687
\(57\) 0 0
\(58\) 9.46358 1.24263
\(59\) −7.67537 −0.999248 −0.499624 0.866242i \(-0.666529\pi\)
−0.499624 + 0.866242i \(0.666529\pi\)
\(60\) 0 0
\(61\) 4.20080 0.537857 0.268929 0.963160i \(-0.413330\pi\)
0.268929 + 0.963160i \(0.413330\pi\)
\(62\) −1.91549 −0.243267
\(63\) 0 0
\(64\) 4.35011 0.543764
\(65\) −4.56364 −0.566050
\(66\) 0 0
\(67\) −4.68034 −0.571794 −0.285897 0.958260i \(-0.592292\pi\)
−0.285897 + 0.958260i \(0.592292\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 3.32582 0.397511
\(71\) −8.39819 −0.996682 −0.498341 0.866981i \(-0.666057\pi\)
−0.498341 + 0.866981i \(0.666057\pi\)
\(72\) 0 0
\(73\) −0.552268 −0.0646381 −0.0323191 0.999478i \(-0.510289\pi\)
−0.0323191 + 0.999478i \(0.510289\pi\)
\(74\) 10.8786 1.26461
\(75\) 0 0
\(76\) −1.54969 −0.177762
\(77\) −9.05211 −1.03158
\(78\) 0 0
\(79\) 13.1827 1.48317 0.741586 0.670858i \(-0.234074\pi\)
0.741586 + 0.670858i \(0.234074\pi\)
\(80\) −3.95158 −0.441800
\(81\) 0 0
\(82\) 15.3660 1.69689
\(83\) 8.60839 0.944893 0.472447 0.881359i \(-0.343371\pi\)
0.472447 + 0.881359i \(0.343371\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −14.9544 −1.61257
\(87\) 0 0
\(88\) 8.07528 0.860827
\(89\) 10.5202 1.11514 0.557570 0.830130i \(-0.311734\pi\)
0.557570 + 0.830130i \(0.311734\pi\)
\(90\) 0 0
\(91\) 14.1277 1.48099
\(92\) −1.20568 −0.125701
\(93\) 0 0
\(94\) −14.8737 −1.53411
\(95\) −2.09586 −0.215030
\(96\) 0 0
\(97\) −3.32331 −0.337431 −0.168715 0.985665i \(-0.553962\pi\)
−0.168715 + 0.985665i \(0.553962\pi\)
\(98\) 0.998664 0.100880
\(99\) 0 0
\(100\) −2.61501 −0.261501
\(101\) 2.16031 0.214959 0.107479 0.994207i \(-0.465722\pi\)
0.107479 + 0.994207i \(0.465722\pi\)
\(102\) 0 0
\(103\) 5.73949 0.565529 0.282764 0.959189i \(-0.408749\pi\)
0.282764 + 0.959189i \(0.408749\pi\)
\(104\) −12.6032 −1.23584
\(105\) 0 0
\(106\) 1.88860 0.183437
\(107\) −11.0597 −1.06918 −0.534588 0.845113i \(-0.679533\pi\)
−0.534588 + 0.845113i \(0.679533\pi\)
\(108\) 0 0
\(109\) 10.2148 0.978404 0.489202 0.872170i \(-0.337288\pi\)
0.489202 + 0.872170i \(0.337288\pi\)
\(110\) −4.71797 −0.449841
\(111\) 0 0
\(112\) 12.2329 1.15590
\(113\) 15.2226 1.43202 0.716009 0.698091i \(-0.245967\pi\)
0.716009 + 0.698091i \(0.245967\pi\)
\(114\) 0 0
\(115\) −1.63061 −0.152055
\(116\) −3.53882 −0.328571
\(117\) 0 0
\(118\) 12.3841 1.14005
\(119\) 0 0
\(120\) 0 0
\(121\) 1.84124 0.167386
\(122\) −6.77795 −0.613647
\(123\) 0 0
\(124\) 0.716279 0.0643237
\(125\) −7.61659 −0.681249
\(126\) 0 0
\(127\) −4.45909 −0.395680 −0.197840 0.980234i \(-0.563393\pi\)
−0.197840 + 0.980234i \(0.563393\pi\)
\(128\) −13.6321 −1.20492
\(129\) 0 0
\(130\) 7.36339 0.645812
\(131\) 21.7414 1.89955 0.949775 0.312933i \(-0.101311\pi\)
0.949775 + 0.312933i \(0.101311\pi\)
\(132\) 0 0
\(133\) 6.48817 0.562595
\(134\) 7.55168 0.652366
\(135\) 0 0
\(136\) 0 0
\(137\) −12.8727 −1.09979 −0.549896 0.835233i \(-0.685333\pi\)
−0.549896 + 0.835233i \(0.685333\pi\)
\(138\) 0 0
\(139\) −13.4259 −1.13877 −0.569386 0.822070i \(-0.692819\pi\)
−0.569386 + 0.822070i \(0.692819\pi\)
\(140\) −1.24366 −0.105108
\(141\) 0 0
\(142\) 13.5504 1.13712
\(143\) −20.0415 −1.67595
\(144\) 0 0
\(145\) −4.78602 −0.397458
\(146\) 0.891079 0.0737462
\(147\) 0 0
\(148\) −4.06795 −0.334383
\(149\) −10.0770 −0.825541 −0.412770 0.910835i \(-0.635439\pi\)
−0.412770 + 0.910835i \(0.635439\pi\)
\(150\) 0 0
\(151\) −17.4518 −1.42021 −0.710104 0.704097i \(-0.751352\pi\)
−0.710104 + 0.704097i \(0.751352\pi\)
\(152\) −5.78801 −0.469470
\(153\) 0 0
\(154\) 14.6055 1.17694
\(155\) 0.968720 0.0778095
\(156\) 0 0
\(157\) 16.5280 1.31908 0.659538 0.751671i \(-0.270752\pi\)
0.659538 + 0.751671i \(0.270752\pi\)
\(158\) −21.2702 −1.69217
\(159\) 0 0
\(160\) 2.69819 0.213310
\(161\) 5.04790 0.397830
\(162\) 0 0
\(163\) 11.1138 0.870502 0.435251 0.900309i \(-0.356660\pi\)
0.435251 + 0.900309i \(0.356660\pi\)
\(164\) −5.74596 −0.448684
\(165\) 0 0
\(166\) −13.8895 −1.07804
\(167\) −2.19680 −0.169994 −0.0849969 0.996381i \(-0.527088\pi\)
−0.0849969 + 0.996381i \(0.527088\pi\)
\(168\) 0 0
\(169\) 18.2789 1.40607
\(170\) 0 0
\(171\) 0 0
\(172\) 5.59206 0.426390
\(173\) 7.63122 0.580191 0.290095 0.956998i \(-0.406313\pi\)
0.290095 + 0.956998i \(0.406313\pi\)
\(174\) 0 0
\(175\) 10.9484 0.827622
\(176\) −17.3535 −1.30807
\(177\) 0 0
\(178\) −16.9742 −1.27227
\(179\) −16.9787 −1.26905 −0.634525 0.772902i \(-0.718804\pi\)
−0.634525 + 0.772902i \(0.718804\pi\)
\(180\) 0 0
\(181\) −9.74474 −0.724321 −0.362160 0.932116i \(-0.617961\pi\)
−0.362160 + 0.932116i \(0.617961\pi\)
\(182\) −22.7949 −1.68967
\(183\) 0 0
\(184\) −4.50317 −0.331978
\(185\) −5.50163 −0.404488
\(186\) 0 0
\(187\) 0 0
\(188\) 5.56189 0.405643
\(189\) 0 0
\(190\) 3.38164 0.245330
\(191\) 26.1154 1.88964 0.944821 0.327588i \(-0.106236\pi\)
0.944821 + 0.327588i \(0.106236\pi\)
\(192\) 0 0
\(193\) −17.8318 −1.28356 −0.641781 0.766888i \(-0.721804\pi\)
−0.641781 + 0.766888i \(0.721804\pi\)
\(194\) 5.36212 0.384978
\(195\) 0 0
\(196\) −0.373442 −0.0266744
\(197\) 14.7297 1.04945 0.524725 0.851272i \(-0.324168\pi\)
0.524725 + 0.851272i \(0.324168\pi\)
\(198\) 0 0
\(199\) 10.4208 0.738712 0.369356 0.929288i \(-0.379578\pi\)
0.369356 + 0.929288i \(0.379578\pi\)
\(200\) −9.76694 −0.690627
\(201\) 0 0
\(202\) −3.48564 −0.245249
\(203\) 14.8162 1.03989
\(204\) 0 0
\(205\) −7.77104 −0.542753
\(206\) −9.26061 −0.645217
\(207\) 0 0
\(208\) 27.0839 1.87793
\(209\) −9.20406 −0.636658
\(210\) 0 0
\(211\) 13.9399 0.959664 0.479832 0.877360i \(-0.340698\pi\)
0.479832 + 0.877360i \(0.340698\pi\)
\(212\) −0.706224 −0.0485036
\(213\) 0 0
\(214\) 17.8446 1.21983
\(215\) 7.56289 0.515785
\(216\) 0 0
\(217\) −2.99888 −0.203577
\(218\) −16.4815 −1.11627
\(219\) 0 0
\(220\) 1.76424 0.118945
\(221\) 0 0
\(222\) 0 0
\(223\) 18.9731 1.27054 0.635268 0.772292i \(-0.280890\pi\)
0.635268 + 0.772292i \(0.280890\pi\)
\(224\) −8.35281 −0.558096
\(225\) 0 0
\(226\) −24.5615 −1.63380
\(227\) 9.42310 0.625433 0.312716 0.949847i \(-0.398761\pi\)
0.312716 + 0.949847i \(0.398761\pi\)
\(228\) 0 0
\(229\) −20.5779 −1.35982 −0.679912 0.733294i \(-0.737982\pi\)
−0.679912 + 0.733294i \(0.737982\pi\)
\(230\) 2.63097 0.173481
\(231\) 0 0
\(232\) −13.2173 −0.867759
\(233\) −25.0272 −1.63959 −0.819794 0.572658i \(-0.805912\pi\)
−0.819794 + 0.572658i \(0.805912\pi\)
\(234\) 0 0
\(235\) 7.52209 0.490687
\(236\) −4.63094 −0.301448
\(237\) 0 0
\(238\) 0 0
\(239\) 5.18719 0.335532 0.167766 0.985827i \(-0.446345\pi\)
0.167766 + 0.985827i \(0.446345\pi\)
\(240\) 0 0
\(241\) 1.27223 0.0819515 0.0409757 0.999160i \(-0.486953\pi\)
0.0409757 + 0.999160i \(0.486953\pi\)
\(242\) −2.97082 −0.190972
\(243\) 0 0
\(244\) 2.53455 0.162258
\(245\) −0.505055 −0.0322668
\(246\) 0 0
\(247\) 14.3649 0.914014
\(248\) 2.67526 0.169879
\(249\) 0 0
\(250\) 12.2893 0.777243
\(251\) −3.84757 −0.242857 −0.121428 0.992600i \(-0.538747\pi\)
−0.121428 + 0.992600i \(0.538747\pi\)
\(252\) 0 0
\(253\) −7.16090 −0.450202
\(254\) 7.19469 0.451435
\(255\) 0 0
\(256\) 13.2951 0.830943
\(257\) −30.3426 −1.89272 −0.946359 0.323118i \(-0.895269\pi\)
−0.946359 + 0.323118i \(0.895269\pi\)
\(258\) 0 0
\(259\) 17.0315 1.05828
\(260\) −2.75347 −0.170763
\(261\) 0 0
\(262\) −35.0795 −2.16722
\(263\) 27.1948 1.67690 0.838451 0.544977i \(-0.183461\pi\)
0.838451 + 0.544977i \(0.183461\pi\)
\(264\) 0 0
\(265\) −0.955121 −0.0586726
\(266\) −10.4686 −0.641870
\(267\) 0 0
\(268\) −2.82388 −0.172496
\(269\) 0.447683 0.0272957 0.0136478 0.999907i \(-0.495656\pi\)
0.0136478 + 0.999907i \(0.495656\pi\)
\(270\) 0 0
\(271\) −15.0696 −0.915411 −0.457705 0.889104i \(-0.651329\pi\)
−0.457705 + 0.889104i \(0.651329\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 20.7700 1.25476
\(275\) −15.5313 −0.936574
\(276\) 0 0
\(277\) 1.97884 0.118897 0.0594486 0.998231i \(-0.481066\pi\)
0.0594486 + 0.998231i \(0.481066\pi\)
\(278\) 21.6626 1.29924
\(279\) 0 0
\(280\) −4.64500 −0.277592
\(281\) 29.1820 1.74085 0.870427 0.492297i \(-0.163843\pi\)
0.870427 + 0.492297i \(0.163843\pi\)
\(282\) 0 0
\(283\) 20.7155 1.23141 0.615705 0.787977i \(-0.288871\pi\)
0.615705 + 0.787977i \(0.288871\pi\)
\(284\) −5.06705 −0.300674
\(285\) 0 0
\(286\) 32.3367 1.91211
\(287\) 24.0569 1.42003
\(288\) 0 0
\(289\) 0 0
\(290\) 7.72220 0.453463
\(291\) 0 0
\(292\) −0.333211 −0.0194997
\(293\) −5.05564 −0.295354 −0.147677 0.989036i \(-0.547180\pi\)
−0.147677 + 0.989036i \(0.547180\pi\)
\(294\) 0 0
\(295\) −6.26304 −0.364648
\(296\) −15.1936 −0.883109
\(297\) 0 0
\(298\) 16.2592 0.941867
\(299\) 11.1761 0.646330
\(300\) 0 0
\(301\) −23.4125 −1.34948
\(302\) 28.1583 1.62033
\(303\) 0 0
\(304\) 12.4383 0.713385
\(305\) 3.42782 0.196276
\(306\) 0 0
\(307\) −6.69816 −0.382284 −0.191142 0.981562i \(-0.561219\pi\)
−0.191142 + 0.981562i \(0.561219\pi\)
\(308\) −5.46159 −0.311203
\(309\) 0 0
\(310\) −1.56302 −0.0887736
\(311\) 5.27254 0.298978 0.149489 0.988763i \(-0.452237\pi\)
0.149489 + 0.988763i \(0.452237\pi\)
\(312\) 0 0
\(313\) 8.10801 0.458292 0.229146 0.973392i \(-0.426407\pi\)
0.229146 + 0.973392i \(0.426407\pi\)
\(314\) −26.6677 −1.50495
\(315\) 0 0
\(316\) 7.95380 0.447436
\(317\) −3.93073 −0.220772 −0.110386 0.993889i \(-0.535209\pi\)
−0.110386 + 0.993889i \(0.535209\pi\)
\(318\) 0 0
\(319\) −21.0181 −1.17679
\(320\) 3.54965 0.198432
\(321\) 0 0
\(322\) −8.14473 −0.453888
\(323\) 0 0
\(324\) 0 0
\(325\) 24.2399 1.34459
\(326\) −17.9320 −0.993164
\(327\) 0 0
\(328\) −21.4609 −1.18498
\(329\) −23.2862 −1.28381
\(330\) 0 0
\(331\) −19.9729 −1.09781 −0.548906 0.835884i \(-0.684955\pi\)
−0.548906 + 0.835884i \(0.684955\pi\)
\(332\) 5.19387 0.285051
\(333\) 0 0
\(334\) 3.54452 0.193947
\(335\) −3.81912 −0.208661
\(336\) 0 0
\(337\) 30.8390 1.67991 0.839955 0.542656i \(-0.182581\pi\)
0.839955 + 0.542656i \(0.182581\pi\)
\(338\) −29.4928 −1.60420
\(339\) 0 0
\(340\) 0 0
\(341\) 4.25418 0.230377
\(342\) 0 0
\(343\) 19.2460 1.03919
\(344\) 20.8860 1.12610
\(345\) 0 0
\(346\) −12.3129 −0.661945
\(347\) −16.8330 −0.903641 −0.451820 0.892109i \(-0.649225\pi\)
−0.451820 + 0.892109i \(0.649225\pi\)
\(348\) 0 0
\(349\) −27.9391 −1.49555 −0.747774 0.663954i \(-0.768877\pi\)
−0.747774 + 0.663954i \(0.768877\pi\)
\(350\) −17.6651 −0.944242
\(351\) 0 0
\(352\) 11.8492 0.631566
\(353\) −22.5616 −1.20083 −0.600416 0.799688i \(-0.704998\pi\)
−0.600416 + 0.799688i \(0.704998\pi\)
\(354\) 0 0
\(355\) −6.85285 −0.363712
\(356\) 6.34737 0.336410
\(357\) 0 0
\(358\) 27.3950 1.44787
\(359\) 2.62410 0.138495 0.0692474 0.997600i \(-0.477940\pi\)
0.0692474 + 0.997600i \(0.477940\pi\)
\(360\) 0 0
\(361\) −12.4029 −0.652786
\(362\) 15.7230 0.826385
\(363\) 0 0
\(364\) 8.52396 0.446777
\(365\) −0.450646 −0.0235879
\(366\) 0 0
\(367\) 16.6620 0.869747 0.434874 0.900492i \(-0.356793\pi\)
0.434874 + 0.900492i \(0.356793\pi\)
\(368\) 9.67719 0.504458
\(369\) 0 0
\(370\) 8.87683 0.461485
\(371\) 2.95678 0.153508
\(372\) 0 0
\(373\) 26.4354 1.36877 0.684386 0.729120i \(-0.260070\pi\)
0.684386 + 0.729120i \(0.260070\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 20.7734 1.07130
\(377\) 32.8031 1.68945
\(378\) 0 0
\(379\) −15.3138 −0.786615 −0.393307 0.919407i \(-0.628669\pi\)
−0.393307 + 0.919407i \(0.628669\pi\)
\(380\) −1.26453 −0.0648693
\(381\) 0 0
\(382\) −42.1369 −2.15591
\(383\) −21.9992 −1.12411 −0.562053 0.827101i \(-0.689988\pi\)
−0.562053 + 0.827101i \(0.689988\pi\)
\(384\) 0 0
\(385\) −7.38644 −0.376448
\(386\) 28.7715 1.46443
\(387\) 0 0
\(388\) −2.00512 −0.101794
\(389\) 29.0749 1.47415 0.737077 0.675809i \(-0.236206\pi\)
0.737077 + 0.675809i \(0.236206\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −1.39478 −0.0704472
\(393\) 0 0
\(394\) −23.7663 −1.19733
\(395\) 10.7570 0.541243
\(396\) 0 0
\(397\) 33.3302 1.67279 0.836397 0.548125i \(-0.184658\pi\)
0.836397 + 0.548125i \(0.184658\pi\)
\(398\) −16.8139 −0.842804
\(399\) 0 0
\(400\) 20.9889 1.04944
\(401\) −21.1160 −1.05448 −0.527241 0.849716i \(-0.676773\pi\)
−0.527241 + 0.849716i \(0.676773\pi\)
\(402\) 0 0
\(403\) −6.63955 −0.330739
\(404\) 1.30342 0.0648477
\(405\) 0 0
\(406\) −23.9057 −1.18642
\(407\) −24.1607 −1.19760
\(408\) 0 0
\(409\) −16.0388 −0.793066 −0.396533 0.918020i \(-0.629787\pi\)
−0.396533 + 0.918020i \(0.629787\pi\)
\(410\) 12.5385 0.619232
\(411\) 0 0
\(412\) 3.46292 0.170606
\(413\) 19.3886 0.954049
\(414\) 0 0
\(415\) 7.02437 0.344813
\(416\) −18.4932 −0.906704
\(417\) 0 0
\(418\) 14.8507 0.726369
\(419\) 30.3271 1.48157 0.740787 0.671739i \(-0.234453\pi\)
0.740787 + 0.671739i \(0.234453\pi\)
\(420\) 0 0
\(421\) −3.28147 −0.159929 −0.0799645 0.996798i \(-0.525481\pi\)
−0.0799645 + 0.996798i \(0.525481\pi\)
\(422\) −22.4919 −1.09489
\(423\) 0 0
\(424\) −2.63771 −0.128098
\(425\) 0 0
\(426\) 0 0
\(427\) −10.6115 −0.513528
\(428\) −6.67284 −0.322544
\(429\) 0 0
\(430\) −12.2026 −0.588464
\(431\) −0.636903 −0.0306786 −0.0153393 0.999882i \(-0.504883\pi\)
−0.0153393 + 0.999882i \(0.504883\pi\)
\(432\) 0 0
\(433\) 38.8945 1.86915 0.934576 0.355764i \(-0.115779\pi\)
0.934576 + 0.355764i \(0.115779\pi\)
\(434\) 4.83866 0.232263
\(435\) 0 0
\(436\) 6.16312 0.295160
\(437\) 5.13263 0.245527
\(438\) 0 0
\(439\) −18.2017 −0.868718 −0.434359 0.900740i \(-0.643025\pi\)
−0.434359 + 0.900740i \(0.643025\pi\)
\(440\) 6.58936 0.314135
\(441\) 0 0
\(442\) 0 0
\(443\) −14.4462 −0.686361 −0.343181 0.939269i \(-0.611504\pi\)
−0.343181 + 0.939269i \(0.611504\pi\)
\(444\) 0 0
\(445\) 8.58440 0.406939
\(446\) −30.6130 −1.44957
\(447\) 0 0
\(448\) −10.9887 −0.519168
\(449\) 37.0123 1.74672 0.873360 0.487076i \(-0.161937\pi\)
0.873360 + 0.487076i \(0.161937\pi\)
\(450\) 0 0
\(451\) −34.1269 −1.60697
\(452\) 9.18454 0.432004
\(453\) 0 0
\(454\) −15.2041 −0.713562
\(455\) 11.5281 0.540445
\(456\) 0 0
\(457\) 15.0383 0.703461 0.351731 0.936101i \(-0.385593\pi\)
0.351731 + 0.936101i \(0.385593\pi\)
\(458\) 33.2022 1.55144
\(459\) 0 0
\(460\) −0.983828 −0.0458712
\(461\) 13.9905 0.651604 0.325802 0.945438i \(-0.394366\pi\)
0.325802 + 0.945438i \(0.394366\pi\)
\(462\) 0 0
\(463\) 2.40768 0.111895 0.0559473 0.998434i \(-0.482182\pi\)
0.0559473 + 0.998434i \(0.482182\pi\)
\(464\) 28.4036 1.31861
\(465\) 0 0
\(466\) 40.3812 1.87062
\(467\) 12.7577 0.590354 0.295177 0.955443i \(-0.404621\pi\)
0.295177 + 0.955443i \(0.404621\pi\)
\(468\) 0 0
\(469\) 11.8229 0.545930
\(470\) −12.1368 −0.559830
\(471\) 0 0
\(472\) −17.2963 −0.796127
\(473\) 33.2128 1.52713
\(474\) 0 0
\(475\) 11.1322 0.510780
\(476\) 0 0
\(477\) 0 0
\(478\) −8.36949 −0.382811
\(479\) 32.9435 1.50523 0.752613 0.658463i \(-0.228793\pi\)
0.752613 + 0.658463i \(0.228793\pi\)
\(480\) 0 0
\(481\) 37.7078 1.71933
\(482\) −2.05273 −0.0934992
\(483\) 0 0
\(484\) 1.11091 0.0504961
\(485\) −2.71179 −0.123136
\(486\) 0 0
\(487\) 17.5577 0.795617 0.397809 0.917468i \(-0.369771\pi\)
0.397809 + 0.917468i \(0.369771\pi\)
\(488\) 9.46642 0.428525
\(489\) 0 0
\(490\) 0.814901 0.0368135
\(491\) −35.8504 −1.61790 −0.808952 0.587874i \(-0.799965\pi\)
−0.808952 + 0.587874i \(0.799965\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −23.1776 −1.04281
\(495\) 0 0
\(496\) −5.74907 −0.258141
\(497\) 21.2145 0.951599
\(498\) 0 0
\(499\) 27.9614 1.25172 0.625861 0.779934i \(-0.284748\pi\)
0.625861 + 0.779934i \(0.284748\pi\)
\(500\) −4.59547 −0.205516
\(501\) 0 0
\(502\) 6.20802 0.277077
\(503\) −25.7397 −1.14768 −0.573838 0.818969i \(-0.694546\pi\)
−0.573838 + 0.818969i \(0.694546\pi\)
\(504\) 0 0
\(505\) 1.76279 0.0784433
\(506\) 11.5540 0.513640
\(507\) 0 0
\(508\) −2.69039 −0.119367
\(509\) −39.9728 −1.77176 −0.885882 0.463910i \(-0.846446\pi\)
−0.885882 + 0.463910i \(0.846446\pi\)
\(510\) 0 0
\(511\) 1.39507 0.0617143
\(512\) 5.81277 0.256891
\(513\) 0 0
\(514\) 48.9574 2.15942
\(515\) 4.68337 0.206374
\(516\) 0 0
\(517\) 33.0336 1.45282
\(518\) −27.4801 −1.20741
\(519\) 0 0
\(520\) −10.2841 −0.450986
\(521\) −12.9910 −0.569144 −0.284572 0.958655i \(-0.591851\pi\)
−0.284572 + 0.958655i \(0.591851\pi\)
\(522\) 0 0
\(523\) 1.53869 0.0672822 0.0336411 0.999434i \(-0.489290\pi\)
0.0336411 + 0.999434i \(0.489290\pi\)
\(524\) 13.1176 0.573047
\(525\) 0 0
\(526\) −43.8785 −1.91319
\(527\) 0 0
\(528\) 0 0
\(529\) −19.0067 −0.826380
\(530\) 1.54108 0.0669402
\(531\) 0 0
\(532\) 3.91464 0.169721
\(533\) 53.2622 2.30704
\(534\) 0 0
\(535\) −9.02458 −0.390167
\(536\) −10.5471 −0.455563
\(537\) 0 0
\(538\) −0.722331 −0.0311419
\(539\) −2.21798 −0.0955350
\(540\) 0 0
\(541\) 28.8294 1.23947 0.619736 0.784810i \(-0.287240\pi\)
0.619736 + 0.784810i \(0.287240\pi\)
\(542\) 24.3146 1.04440
\(543\) 0 0
\(544\) 0 0
\(545\) 8.33522 0.357042
\(546\) 0 0
\(547\) −6.26865 −0.268028 −0.134014 0.990979i \(-0.542787\pi\)
−0.134014 + 0.990979i \(0.542787\pi\)
\(548\) −7.76677 −0.331780
\(549\) 0 0
\(550\) 25.0596 1.06855
\(551\) 15.0649 0.641784
\(552\) 0 0
\(553\) −33.3006 −1.41608
\(554\) −3.19284 −0.135651
\(555\) 0 0
\(556\) −8.10054 −0.343539
\(557\) −5.26768 −0.223199 −0.111599 0.993753i \(-0.535597\pi\)
−0.111599 + 0.993753i \(0.535597\pi\)
\(558\) 0 0
\(559\) −51.8356 −2.19241
\(560\) 9.98198 0.421816
\(561\) 0 0
\(562\) −47.0849 −1.98616
\(563\) 12.7777 0.538515 0.269257 0.963068i \(-0.413222\pi\)
0.269257 + 0.963068i \(0.413222\pi\)
\(564\) 0 0
\(565\) 12.4215 0.522576
\(566\) −33.4243 −1.40493
\(567\) 0 0
\(568\) −18.9252 −0.794082
\(569\) 6.91475 0.289881 0.144941 0.989440i \(-0.453701\pi\)
0.144941 + 0.989440i \(0.453701\pi\)
\(570\) 0 0
\(571\) 9.01348 0.377202 0.188601 0.982054i \(-0.439605\pi\)
0.188601 + 0.982054i \(0.439605\pi\)
\(572\) −12.0920 −0.505592
\(573\) 0 0
\(574\) −38.8156 −1.62013
\(575\) 8.66102 0.361189
\(576\) 0 0
\(577\) 37.5084 1.56149 0.780747 0.624848i \(-0.214839\pi\)
0.780747 + 0.624848i \(0.214839\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) −2.88765 −0.119903
\(581\) −21.7454 −0.902152
\(582\) 0 0
\(583\) −4.19446 −0.173717
\(584\) −1.24453 −0.0514988
\(585\) 0 0
\(586\) 8.15723 0.336972
\(587\) 20.8834 0.861950 0.430975 0.902364i \(-0.358170\pi\)
0.430975 + 0.902364i \(0.358170\pi\)
\(588\) 0 0
\(589\) −3.04922 −0.125641
\(590\) 10.1053 0.416031
\(591\) 0 0
\(592\) 32.6506 1.34193
\(593\) −27.8291 −1.14280 −0.571402 0.820670i \(-0.693600\pi\)
−0.571402 + 0.820670i \(0.693600\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −6.07996 −0.249045
\(597\) 0 0
\(598\) −18.0325 −0.737404
\(599\) −38.9632 −1.59199 −0.795997 0.605300i \(-0.793053\pi\)
−0.795997 + 0.605300i \(0.793053\pi\)
\(600\) 0 0
\(601\) 24.5350 1.00080 0.500402 0.865793i \(-0.333186\pi\)
0.500402 + 0.865793i \(0.333186\pi\)
\(602\) 37.7759 1.53963
\(603\) 0 0
\(604\) −10.5296 −0.428441
\(605\) 1.50244 0.0610828
\(606\) 0 0
\(607\) −15.7988 −0.641253 −0.320626 0.947206i \(-0.603893\pi\)
−0.320626 + 0.947206i \(0.603893\pi\)
\(608\) −8.49302 −0.344437
\(609\) 0 0
\(610\) −5.53075 −0.223934
\(611\) −51.5559 −2.08573
\(612\) 0 0
\(613\) 13.1247 0.530103 0.265052 0.964234i \(-0.414611\pi\)
0.265052 + 0.964234i \(0.414611\pi\)
\(614\) 10.8074 0.436152
\(615\) 0 0
\(616\) −20.3987 −0.821889
\(617\) −14.3978 −0.579635 −0.289817 0.957082i \(-0.593595\pi\)
−0.289817 + 0.957082i \(0.593595\pi\)
\(618\) 0 0
\(619\) −20.2851 −0.815325 −0.407663 0.913133i \(-0.633656\pi\)
−0.407663 + 0.913133i \(0.633656\pi\)
\(620\) 0.584477 0.0234732
\(621\) 0 0
\(622\) −8.50718 −0.341107
\(623\) −26.5748 −1.06470
\(624\) 0 0
\(625\) 15.4557 0.618229
\(626\) −13.0822 −0.522870
\(627\) 0 0
\(628\) 9.97216 0.397933
\(629\) 0 0
\(630\) 0 0
\(631\) −0.933597 −0.0371659 −0.0185830 0.999827i \(-0.505915\pi\)
−0.0185830 + 0.999827i \(0.505915\pi\)
\(632\) 29.7070 1.18168
\(633\) 0 0
\(634\) 6.34219 0.251881
\(635\) −3.63858 −0.144393
\(636\) 0 0
\(637\) 3.46162 0.137154
\(638\) 33.9124 1.34261
\(639\) 0 0
\(640\) −11.1237 −0.439703
\(641\) −5.69896 −0.225095 −0.112548 0.993646i \(-0.535901\pi\)
−0.112548 + 0.993646i \(0.535901\pi\)
\(642\) 0 0
\(643\) −2.74575 −0.108282 −0.0541408 0.998533i \(-0.517242\pi\)
−0.0541408 + 0.998533i \(0.517242\pi\)
\(644\) 3.04565 0.120015
\(645\) 0 0
\(646\) 0 0
\(647\) 8.48539 0.333595 0.166798 0.985991i \(-0.446657\pi\)
0.166798 + 0.985991i \(0.446657\pi\)
\(648\) 0 0
\(649\) −27.5044 −1.07964
\(650\) −39.1108 −1.53405
\(651\) 0 0
\(652\) 6.70553 0.262609
\(653\) 9.61573 0.376293 0.188146 0.982141i \(-0.439752\pi\)
0.188146 + 0.982141i \(0.439752\pi\)
\(654\) 0 0
\(655\) 17.7408 0.693189
\(656\) 46.1188 1.80064
\(657\) 0 0
\(658\) 37.5721 1.46471
\(659\) −16.9543 −0.660446 −0.330223 0.943903i \(-0.607124\pi\)
−0.330223 + 0.943903i \(0.607124\pi\)
\(660\) 0 0
\(661\) 22.8810 0.889968 0.444984 0.895539i \(-0.353209\pi\)
0.444984 + 0.895539i \(0.353209\pi\)
\(662\) 32.2261 1.25250
\(663\) 0 0
\(664\) 19.3988 0.752821
\(665\) 5.29429 0.205304
\(666\) 0 0
\(667\) 11.7207 0.453827
\(668\) −1.32544 −0.0512829
\(669\) 0 0
\(670\) 6.16211 0.238063
\(671\) 15.0534 0.581131
\(672\) 0 0
\(673\) 0.972535 0.0374885 0.0187442 0.999824i \(-0.494033\pi\)
0.0187442 + 0.999824i \(0.494033\pi\)
\(674\) −49.7585 −1.91663
\(675\) 0 0
\(676\) 11.0286 0.424176
\(677\) −20.6935 −0.795315 −0.397657 0.917534i \(-0.630177\pi\)
−0.397657 + 0.917534i \(0.630177\pi\)
\(678\) 0 0
\(679\) 8.39492 0.322167
\(680\) 0 0
\(681\) 0 0
\(682\) −6.86408 −0.262839
\(683\) 21.9329 0.839237 0.419619 0.907701i \(-0.362164\pi\)
0.419619 + 0.907701i \(0.362164\pi\)
\(684\) 0 0
\(685\) −10.5040 −0.401339
\(686\) −31.0533 −1.18562
\(687\) 0 0
\(688\) −44.8835 −1.71117
\(689\) 6.54634 0.249396
\(690\) 0 0
\(691\) 30.0105 1.14165 0.570826 0.821071i \(-0.306623\pi\)
0.570826 + 0.821071i \(0.306623\pi\)
\(692\) 4.60430 0.175029
\(693\) 0 0
\(694\) 27.1598 1.03097
\(695\) −10.9554 −0.415564
\(696\) 0 0
\(697\) 0 0
\(698\) 45.0795 1.70628
\(699\) 0 0
\(700\) 6.60572 0.249673
\(701\) −13.0830 −0.494140 −0.247070 0.968998i \(-0.579468\pi\)
−0.247070 + 0.968998i \(0.579468\pi\)
\(702\) 0 0
\(703\) 17.3174 0.653137
\(704\) 15.5885 0.587513
\(705\) 0 0
\(706\) 36.4029 1.37004
\(707\) −5.45711 −0.205236
\(708\) 0 0
\(709\) −32.8467 −1.23358 −0.616792 0.787126i \(-0.711568\pi\)
−0.616792 + 0.787126i \(0.711568\pi\)
\(710\) 11.0570 0.414962
\(711\) 0 0
\(712\) 23.7071 0.888460
\(713\) −2.37234 −0.0888448
\(714\) 0 0
\(715\) −16.3537 −0.611592
\(716\) −10.2441 −0.382841
\(717\) 0 0
\(718\) −4.23396 −0.158010
\(719\) 13.6307 0.508340 0.254170 0.967160i \(-0.418198\pi\)
0.254170 + 0.967160i \(0.418198\pi\)
\(720\) 0 0
\(721\) −14.4984 −0.539948
\(722\) 20.0120 0.744769
\(723\) 0 0
\(724\) −5.87949 −0.218510
\(725\) 25.4211 0.944115
\(726\) 0 0
\(727\) 8.12446 0.301320 0.150660 0.988586i \(-0.451860\pi\)
0.150660 + 0.988586i \(0.451860\pi\)
\(728\) 31.8365 1.17994
\(729\) 0 0
\(730\) 0.727113 0.0269117
\(731\) 0 0
\(732\) 0 0
\(733\) 31.1522 1.15063 0.575316 0.817931i \(-0.304879\pi\)
0.575316 + 0.817931i \(0.304879\pi\)
\(734\) −26.8839 −0.992303
\(735\) 0 0
\(736\) −6.60771 −0.243563
\(737\) −16.7718 −0.617799
\(738\) 0 0
\(739\) 34.6895 1.27607 0.638037 0.770005i \(-0.279747\pi\)
0.638037 + 0.770005i \(0.279747\pi\)
\(740\) −3.31941 −0.122024
\(741\) 0 0
\(742\) −4.77074 −0.175139
\(743\) 48.6272 1.78396 0.891979 0.452076i \(-0.149317\pi\)
0.891979 + 0.452076i \(0.149317\pi\)
\(744\) 0 0
\(745\) −8.22275 −0.301258
\(746\) −42.6532 −1.56164
\(747\) 0 0
\(748\) 0 0
\(749\) 27.9375 1.02081
\(750\) 0 0
\(751\) −41.9289 −1.53001 −0.765004 0.644025i \(-0.777263\pi\)
−0.765004 + 0.644025i \(0.777263\pi\)
\(752\) −44.6414 −1.62790
\(753\) 0 0
\(754\) −52.9275 −1.92751
\(755\) −14.2405 −0.518266
\(756\) 0 0
\(757\) 10.7455 0.390553 0.195277 0.980748i \(-0.437439\pi\)
0.195277 + 0.980748i \(0.437439\pi\)
\(758\) 24.7086 0.897456
\(759\) 0 0
\(760\) −4.72297 −0.171320
\(761\) 7.39335 0.268009 0.134004 0.990981i \(-0.457216\pi\)
0.134004 + 0.990981i \(0.457216\pi\)
\(762\) 0 0
\(763\) −25.8034 −0.934148
\(764\) 15.7567 0.570058
\(765\) 0 0
\(766\) 35.4955 1.28250
\(767\) 42.9265 1.54998
\(768\) 0 0
\(769\) −17.4382 −0.628838 −0.314419 0.949284i \(-0.601810\pi\)
−0.314419 + 0.949284i \(0.601810\pi\)
\(770\) 11.9180 0.429493
\(771\) 0 0
\(772\) −10.7588 −0.387219
\(773\) 31.1238 1.11945 0.559723 0.828680i \(-0.310907\pi\)
0.559723 + 0.828680i \(0.310907\pi\)
\(774\) 0 0
\(775\) −5.14538 −0.184827
\(776\) −7.48901 −0.268840
\(777\) 0 0
\(778\) −46.9120 −1.68188
\(779\) 24.4607 0.876396
\(780\) 0 0
\(781\) −30.0947 −1.07687
\(782\) 0 0
\(783\) 0 0
\(784\) 2.99735 0.107048
\(785\) 13.4867 0.481361
\(786\) 0 0
\(787\) −7.21080 −0.257037 −0.128519 0.991707i \(-0.541022\pi\)
−0.128519 + 0.991707i \(0.541022\pi\)
\(788\) 8.88719 0.316593
\(789\) 0 0
\(790\) −17.3563 −0.617509
\(791\) −38.4533 −1.36724
\(792\) 0 0
\(793\) −23.4940 −0.834298
\(794\) −53.7779 −1.90851
\(795\) 0 0
\(796\) 6.28740 0.222851
\(797\) 7.58702 0.268746 0.134373 0.990931i \(-0.457098\pi\)
0.134373 + 0.990931i \(0.457098\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −14.3315 −0.506695
\(801\) 0 0
\(802\) 34.0704 1.20307
\(803\) −1.97904 −0.0698386
\(804\) 0 0
\(805\) 4.11904 0.145177
\(806\) 10.7128 0.377344
\(807\) 0 0
\(808\) 4.86822 0.171263
\(809\) 5.33119 0.187435 0.0937174 0.995599i \(-0.470125\pi\)
0.0937174 + 0.995599i \(0.470125\pi\)
\(810\) 0 0
\(811\) 46.9291 1.64790 0.823951 0.566661i \(-0.191765\pi\)
0.823951 + 0.566661i \(0.191765\pi\)
\(812\) 8.93933 0.313709
\(813\) 0 0
\(814\) 38.9831 1.36636
\(815\) 9.06879 0.317666
\(816\) 0 0
\(817\) −23.8055 −0.832850
\(818\) 25.8784 0.904817
\(819\) 0 0
\(820\) −4.68866 −0.163735
\(821\) 20.4129 0.712416 0.356208 0.934407i \(-0.384069\pi\)
0.356208 + 0.934407i \(0.384069\pi\)
\(822\) 0 0
\(823\) 33.6464 1.17284 0.586419 0.810008i \(-0.300537\pi\)
0.586419 + 0.810008i \(0.300537\pi\)
\(824\) 12.9338 0.450571
\(825\) 0 0
\(826\) −31.2833 −1.08848
\(827\) 13.9070 0.483592 0.241796 0.970327i \(-0.422264\pi\)
0.241796 + 0.970327i \(0.422264\pi\)
\(828\) 0 0
\(829\) 41.0730 1.42652 0.713262 0.700897i \(-0.247217\pi\)
0.713262 + 0.700897i \(0.247217\pi\)
\(830\) −11.3338 −0.393400
\(831\) 0 0
\(832\) −24.3291 −0.843460
\(833\) 0 0
\(834\) 0 0
\(835\) −1.79257 −0.0620345
\(836\) −5.55327 −0.192064
\(837\) 0 0
\(838\) −48.9324 −1.69034
\(839\) 14.9174 0.515006 0.257503 0.966278i \(-0.417100\pi\)
0.257503 + 0.966278i \(0.417100\pi\)
\(840\) 0 0
\(841\) 5.40160 0.186262
\(842\) 5.29462 0.182465
\(843\) 0 0
\(844\) 8.41066 0.289507
\(845\) 14.9154 0.513106
\(846\) 0 0
\(847\) −4.65111 −0.159814
\(848\) 5.66836 0.194652
\(849\) 0 0
\(850\) 0 0
\(851\) 13.4732 0.461855
\(852\) 0 0
\(853\) −12.1679 −0.416621 −0.208311 0.978063i \(-0.566796\pi\)
−0.208311 + 0.978063i \(0.566796\pi\)
\(854\) 17.1216 0.585889
\(855\) 0 0
\(856\) −24.9227 −0.851841
\(857\) 45.4324 1.55194 0.775970 0.630770i \(-0.217261\pi\)
0.775970 + 0.630770i \(0.217261\pi\)
\(858\) 0 0
\(859\) 24.5741 0.838458 0.419229 0.907880i \(-0.362300\pi\)
0.419229 + 0.907880i \(0.362300\pi\)
\(860\) 4.56307 0.155599
\(861\) 0 0
\(862\) 1.02764 0.0350015
\(863\) −2.35798 −0.0802667 −0.0401334 0.999194i \(-0.512778\pi\)
−0.0401334 + 0.999194i \(0.512778\pi\)
\(864\) 0 0
\(865\) 6.22701 0.211725
\(866\) −62.7559 −2.13253
\(867\) 0 0
\(868\) −1.80937 −0.0614141
\(869\) 47.2399 1.60250
\(870\) 0 0
\(871\) 26.1760 0.886939
\(872\) 23.0189 0.779520
\(873\) 0 0
\(874\) −8.28145 −0.280124
\(875\) 19.2401 0.650434
\(876\) 0 0
\(877\) 37.0944 1.25259 0.626294 0.779587i \(-0.284571\pi\)
0.626294 + 0.779587i \(0.284571\pi\)
\(878\) 29.3682 0.991129
\(879\) 0 0
\(880\) −14.1603 −0.477345
\(881\) 35.0035 1.17930 0.589648 0.807660i \(-0.299266\pi\)
0.589648 + 0.807660i \(0.299266\pi\)
\(882\) 0 0
\(883\) −4.09966 −0.137964 −0.0689822 0.997618i \(-0.521975\pi\)
−0.0689822 + 0.997618i \(0.521975\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 23.3089 0.783076
\(887\) −4.54407 −0.152575 −0.0762874 0.997086i \(-0.524307\pi\)
−0.0762874 + 0.997086i \(0.524307\pi\)
\(888\) 0 0
\(889\) 11.2640 0.377782
\(890\) −13.8508 −0.464281
\(891\) 0 0
\(892\) 11.4474 0.383289
\(893\) −23.6771 −0.792324
\(894\) 0 0
\(895\) −13.8545 −0.463105
\(896\) 34.4358 1.15042
\(897\) 0 0
\(898\) −59.7190 −1.99285
\(899\) −6.96309 −0.232232
\(900\) 0 0
\(901\) 0 0
\(902\) 55.0634 1.83341
\(903\) 0 0
\(904\) 34.3038 1.14093
\(905\) −7.95163 −0.264321
\(906\) 0 0
\(907\) −8.69309 −0.288649 −0.144325 0.989530i \(-0.546101\pi\)
−0.144325 + 0.989530i \(0.546101\pi\)
\(908\) 5.68543 0.188677
\(909\) 0 0
\(910\) −18.6005 −0.616599
\(911\) −45.8572 −1.51932 −0.759658 0.650322i \(-0.774634\pi\)
−0.759658 + 0.650322i \(0.774634\pi\)
\(912\) 0 0
\(913\) 30.8479 1.02092
\(914\) −24.2641 −0.802586
\(915\) 0 0
\(916\) −12.4157 −0.410225
\(917\) −54.9203 −1.81363
\(918\) 0 0
\(919\) 36.9580 1.21913 0.609566 0.792735i \(-0.291344\pi\)
0.609566 + 0.792735i \(0.291344\pi\)
\(920\) −3.67455 −0.121146
\(921\) 0 0
\(922\) −22.5736 −0.743421
\(923\) 46.9690 1.54600
\(924\) 0 0
\(925\) 29.2221 0.960815
\(926\) −3.88477 −0.127662
\(927\) 0 0
\(928\) −19.3944 −0.636652
\(929\) 37.1359 1.21839 0.609195 0.793020i \(-0.291493\pi\)
0.609195 + 0.793020i \(0.291493\pi\)
\(930\) 0 0
\(931\) 1.58975 0.0521020
\(932\) −15.1002 −0.494623
\(933\) 0 0
\(934\) −20.5844 −0.673541
\(935\) 0 0
\(936\) 0 0
\(937\) −20.2047 −0.660058 −0.330029 0.943971i \(-0.607059\pi\)
−0.330029 + 0.943971i \(0.607059\pi\)
\(938\) −19.0761 −0.622857
\(939\) 0 0
\(940\) 4.53845 0.148028
\(941\) −48.0881 −1.56763 −0.783814 0.620996i \(-0.786728\pi\)
−0.783814 + 0.620996i \(0.786728\pi\)
\(942\) 0 0
\(943\) 19.0308 0.619729
\(944\) 37.1693 1.20976
\(945\) 0 0
\(946\) −53.5885 −1.74231
\(947\) 23.0130 0.747821 0.373911 0.927465i \(-0.378017\pi\)
0.373911 + 0.927465i \(0.378017\pi\)
\(948\) 0 0
\(949\) 3.08870 0.100263
\(950\) −17.9617 −0.582754
\(951\) 0 0
\(952\) 0 0
\(953\) 0.0564747 0.00182940 0.000914698 1.00000i \(-0.499709\pi\)
0.000914698 1.00000i \(0.499709\pi\)
\(954\) 0 0
\(955\) 21.3099 0.689573
\(956\) 3.12969 0.101222
\(957\) 0 0
\(958\) −53.1540 −1.71733
\(959\) 32.5175 1.05004
\(960\) 0 0
\(961\) −29.5906 −0.954536
\(962\) −60.8412 −1.96160
\(963\) 0 0
\(964\) 0.767599 0.0247227
\(965\) −14.5506 −0.468401
\(966\) 0 0
\(967\) 0.706923 0.0227331 0.0113666 0.999935i \(-0.496382\pi\)
0.0113666 + 0.999935i \(0.496382\pi\)
\(968\) 4.14920 0.133360
\(969\) 0 0
\(970\) 4.37545 0.140487
\(971\) −10.5257 −0.337785 −0.168892 0.985634i \(-0.554019\pi\)
−0.168892 + 0.985634i \(0.554019\pi\)
\(972\) 0 0
\(973\) 33.9149 1.08726
\(974\) −28.3293 −0.907728
\(975\) 0 0
\(976\) −20.3431 −0.651166
\(977\) 13.9176 0.445264 0.222632 0.974903i \(-0.428535\pi\)
0.222632 + 0.974903i \(0.428535\pi\)
\(978\) 0 0
\(979\) 37.6988 1.20486
\(980\) −0.304725 −0.00973409
\(981\) 0 0
\(982\) 57.8442 1.84588
\(983\) −18.7022 −0.596509 −0.298254 0.954486i \(-0.596404\pi\)
−0.298254 + 0.954486i \(0.596404\pi\)
\(984\) 0 0
\(985\) 12.0193 0.382968
\(986\) 0 0
\(987\) 0 0
\(988\) 8.66704 0.275735
\(989\) −18.5211 −0.588936
\(990\) 0 0
\(991\) 33.4227 1.06171 0.530854 0.847463i \(-0.321871\pi\)
0.530854 + 0.847463i \(0.321871\pi\)
\(992\) 3.92554 0.124636
\(993\) 0 0
\(994\) −34.2293 −1.08569
\(995\) 8.50330 0.269573
\(996\) 0 0
\(997\) 41.8141 1.32427 0.662133 0.749386i \(-0.269651\pi\)
0.662133 + 0.749386i \(0.269651\pi\)
\(998\) −45.1154 −1.42810
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7803.2.a.bw.1.3 12
3.2 odd 2 inner 7803.2.a.bw.1.10 12
17.2 even 8 459.2.f.c.55.3 24
17.9 even 8 459.2.f.c.217.10 yes 24
17.16 even 2 7803.2.a.bv.1.3 12
51.2 odd 8 459.2.f.c.55.10 yes 24
51.26 odd 8 459.2.f.c.217.3 yes 24
51.50 odd 2 7803.2.a.bv.1.10 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
459.2.f.c.55.3 24 17.2 even 8
459.2.f.c.55.10 yes 24 51.2 odd 8
459.2.f.c.217.3 yes 24 51.26 odd 8
459.2.f.c.217.10 yes 24 17.9 even 8
7803.2.a.bv.1.3 12 17.16 even 2
7803.2.a.bv.1.10 12 51.50 odd 2
7803.2.a.bw.1.3 12 1.1 even 1 trivial
7803.2.a.bw.1.10 12 3.2 odd 2 inner