Properties

Label 7803.2.a.bv.1.10
Level $7803$
Weight $2$
Character 7803.1
Self dual yes
Analytic conductor $62.307$
Analytic rank $1$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7803,2,Mod(1,7803)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7803.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7803, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7803 = 3^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7803.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,12,0,0,-8,0,0,-24,0,0,-4,0,0,20,0,0,-4,0,0,28,0,0,0,0, 0,-48,0,0,-8,0,0,0,0,0,-12,0,0,-44,0,0,-20,0,0,-36,0,0,28,0,0,8,0,0,-4, 0,0,-28,0,0,-48,0,0,40,0,0,-8,0,0,44,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(73)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.3072686972\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 18x^{10} + 115x^{8} - 318x^{6} + 395x^{4} - 208x^{2} + 34 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 459)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(1.61349\) of defining polynomial
Character \(\chi\) \(=\) 7803.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.61349 q^{2} +0.603350 q^{4} +0.815992 q^{5} +2.52607 q^{7} -2.25348 q^{8} +1.31659 q^{10} +3.58347 q^{11} -5.59275 q^{13} +4.07580 q^{14} -4.84267 q^{16} -2.56848 q^{19} +0.492329 q^{20} +5.78189 q^{22} -1.99832 q^{23} -4.33416 q^{25} -9.02385 q^{26} +1.52411 q^{28} -5.86529 q^{29} -1.18717 q^{31} -3.30664 q^{32} +2.06126 q^{35} +6.74227 q^{37} -4.14421 q^{38} -1.83882 q^{40} -9.52343 q^{41} +9.26834 q^{43} +2.16209 q^{44} -3.22426 q^{46} -9.21835 q^{47} -0.618947 q^{49} -6.99312 q^{50} -3.37439 q^{52} +1.17050 q^{53} +2.92408 q^{55} -5.69246 q^{56} -9.46358 q^{58} +7.67537 q^{59} -4.20080 q^{61} -1.91549 q^{62} +4.35011 q^{64} -4.56364 q^{65} -4.68034 q^{67} +3.32582 q^{70} -8.39819 q^{71} +0.552268 q^{73} +10.8786 q^{74} -1.54969 q^{76} +9.05211 q^{77} -13.1827 q^{79} -3.95158 q^{80} -15.3660 q^{82} -8.60839 q^{83} +14.9544 q^{86} -8.07528 q^{88} -10.5202 q^{89} -14.1277 q^{91} -1.20568 q^{92} -14.8737 q^{94} -2.09586 q^{95} +3.32331 q^{97} -0.998664 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{4} - 8 q^{7} - 24 q^{10} - 4 q^{13} + 20 q^{16} - 4 q^{19} + 28 q^{22} - 48 q^{28} - 8 q^{31} - 12 q^{37} - 44 q^{40} - 20 q^{43} - 36 q^{46} + 28 q^{49} + 8 q^{52} - 4 q^{55} - 28 q^{58} - 48 q^{61}+ \cdots - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.61349 1.14091 0.570455 0.821329i \(-0.306767\pi\)
0.570455 + 0.821329i \(0.306767\pi\)
\(3\) 0 0
\(4\) 0.603350 0.301675
\(5\) 0.815992 0.364922 0.182461 0.983213i \(-0.441594\pi\)
0.182461 + 0.983213i \(0.441594\pi\)
\(6\) 0 0
\(7\) 2.52607 0.954766 0.477383 0.878695i \(-0.341585\pi\)
0.477383 + 0.878695i \(0.341585\pi\)
\(8\) −2.25348 −0.796726
\(9\) 0 0
\(10\) 1.31659 0.416344
\(11\) 3.58347 1.08046 0.540228 0.841519i \(-0.318338\pi\)
0.540228 + 0.841519i \(0.318338\pi\)
\(12\) 0 0
\(13\) −5.59275 −1.55115 −0.775575 0.631255i \(-0.782540\pi\)
−0.775575 + 0.631255i \(0.782540\pi\)
\(14\) 4.07580 1.08930
\(15\) 0 0
\(16\) −4.84267 −1.21067
\(17\) 0 0
\(18\) 0 0
\(19\) −2.56848 −0.589249 −0.294625 0.955613i \(-0.595195\pi\)
−0.294625 + 0.955613i \(0.595195\pi\)
\(20\) 0.492329 0.110088
\(21\) 0 0
\(22\) 5.78189 1.23270
\(23\) −1.99832 −0.416678 −0.208339 0.978057i \(-0.566806\pi\)
−0.208339 + 0.978057i \(0.566806\pi\)
\(24\) 0 0
\(25\) −4.33416 −0.866832
\(26\) −9.02385 −1.76972
\(27\) 0 0
\(28\) 1.52411 0.288029
\(29\) −5.86529 −1.08916 −0.544578 0.838710i \(-0.683310\pi\)
−0.544578 + 0.838710i \(0.683310\pi\)
\(30\) 0 0
\(31\) −1.18717 −0.213222 −0.106611 0.994301i \(-0.534000\pi\)
−0.106611 + 0.994301i \(0.534000\pi\)
\(32\) −3.30664 −0.584536
\(33\) 0 0
\(34\) 0 0
\(35\) 2.06126 0.348416
\(36\) 0 0
\(37\) 6.74227 1.10842 0.554211 0.832376i \(-0.313020\pi\)
0.554211 + 0.832376i \(0.313020\pi\)
\(38\) −4.14421 −0.672280
\(39\) 0 0
\(40\) −1.83882 −0.290743
\(41\) −9.52343 −1.48731 −0.743655 0.668563i \(-0.766910\pi\)
−0.743655 + 0.668563i \(0.766910\pi\)
\(42\) 0 0
\(43\) 9.26834 1.41341 0.706705 0.707509i \(-0.250181\pi\)
0.706705 + 0.707509i \(0.250181\pi\)
\(44\) 2.16209 0.325947
\(45\) 0 0
\(46\) −3.22426 −0.475392
\(47\) −9.21835 −1.34463 −0.672317 0.740263i \(-0.734701\pi\)
−0.672317 + 0.740263i \(0.734701\pi\)
\(48\) 0 0
\(49\) −0.618947 −0.0884209
\(50\) −6.99312 −0.988977
\(51\) 0 0
\(52\) −3.37439 −0.467943
\(53\) 1.17050 0.160781 0.0803905 0.996763i \(-0.474383\pi\)
0.0803905 + 0.996763i \(0.474383\pi\)
\(54\) 0 0
\(55\) 2.92408 0.394283
\(56\) −5.69246 −0.760687
\(57\) 0 0
\(58\) −9.46358 −1.24263
\(59\) 7.67537 0.999248 0.499624 0.866242i \(-0.333471\pi\)
0.499624 + 0.866242i \(0.333471\pi\)
\(60\) 0 0
\(61\) −4.20080 −0.537857 −0.268929 0.963160i \(-0.586670\pi\)
−0.268929 + 0.963160i \(0.586670\pi\)
\(62\) −1.91549 −0.243267
\(63\) 0 0
\(64\) 4.35011 0.543764
\(65\) −4.56364 −0.566050
\(66\) 0 0
\(67\) −4.68034 −0.571794 −0.285897 0.958260i \(-0.592292\pi\)
−0.285897 + 0.958260i \(0.592292\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 3.32582 0.397511
\(71\) −8.39819 −0.996682 −0.498341 0.866981i \(-0.666057\pi\)
−0.498341 + 0.866981i \(0.666057\pi\)
\(72\) 0 0
\(73\) 0.552268 0.0646381 0.0323191 0.999478i \(-0.489711\pi\)
0.0323191 + 0.999478i \(0.489711\pi\)
\(74\) 10.8786 1.26461
\(75\) 0 0
\(76\) −1.54969 −0.177762
\(77\) 9.05211 1.03158
\(78\) 0 0
\(79\) −13.1827 −1.48317 −0.741586 0.670858i \(-0.765926\pi\)
−0.741586 + 0.670858i \(0.765926\pi\)
\(80\) −3.95158 −0.441800
\(81\) 0 0
\(82\) −15.3660 −1.69689
\(83\) −8.60839 −0.944893 −0.472447 0.881359i \(-0.656629\pi\)
−0.472447 + 0.881359i \(0.656629\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 14.9544 1.61257
\(87\) 0 0
\(88\) −8.07528 −0.860827
\(89\) −10.5202 −1.11514 −0.557570 0.830130i \(-0.688266\pi\)
−0.557570 + 0.830130i \(0.688266\pi\)
\(90\) 0 0
\(91\) −14.1277 −1.48099
\(92\) −1.20568 −0.125701
\(93\) 0 0
\(94\) −14.8737 −1.53411
\(95\) −2.09586 −0.215030
\(96\) 0 0
\(97\) 3.32331 0.337431 0.168715 0.985665i \(-0.446038\pi\)
0.168715 + 0.985665i \(0.446038\pi\)
\(98\) −0.998664 −0.100880
\(99\) 0 0
\(100\) −2.61501 −0.261501
\(101\) −2.16031 −0.214959 −0.107479 0.994207i \(-0.534278\pi\)
−0.107479 + 0.994207i \(0.534278\pi\)
\(102\) 0 0
\(103\) 5.73949 0.565529 0.282764 0.959189i \(-0.408749\pi\)
0.282764 + 0.959189i \(0.408749\pi\)
\(104\) 12.6032 1.23584
\(105\) 0 0
\(106\) 1.88860 0.183437
\(107\) −11.0597 −1.06918 −0.534588 0.845113i \(-0.679533\pi\)
−0.534588 + 0.845113i \(0.679533\pi\)
\(108\) 0 0
\(109\) −10.2148 −0.978404 −0.489202 0.872170i \(-0.662712\pi\)
−0.489202 + 0.872170i \(0.662712\pi\)
\(110\) 4.71797 0.449841
\(111\) 0 0
\(112\) −12.2329 −1.15590
\(113\) 15.2226 1.43202 0.716009 0.698091i \(-0.245967\pi\)
0.716009 + 0.698091i \(0.245967\pi\)
\(114\) 0 0
\(115\) −1.63061 −0.152055
\(116\) −3.53882 −0.328571
\(117\) 0 0
\(118\) 12.3841 1.14005
\(119\) 0 0
\(120\) 0 0
\(121\) 1.84124 0.167386
\(122\) −6.77795 −0.613647
\(123\) 0 0
\(124\) −0.716279 −0.0643237
\(125\) −7.61659 −0.681249
\(126\) 0 0
\(127\) −4.45909 −0.395680 −0.197840 0.980234i \(-0.563393\pi\)
−0.197840 + 0.980234i \(0.563393\pi\)
\(128\) 13.6321 1.20492
\(129\) 0 0
\(130\) −7.36339 −0.645812
\(131\) 21.7414 1.89955 0.949775 0.312933i \(-0.101311\pi\)
0.949775 + 0.312933i \(0.101311\pi\)
\(132\) 0 0
\(133\) −6.48817 −0.562595
\(134\) −7.55168 −0.652366
\(135\) 0 0
\(136\) 0 0
\(137\) 12.8727 1.09979 0.549896 0.835233i \(-0.314667\pi\)
0.549896 + 0.835233i \(0.314667\pi\)
\(138\) 0 0
\(139\) 13.4259 1.13877 0.569386 0.822070i \(-0.307181\pi\)
0.569386 + 0.822070i \(0.307181\pi\)
\(140\) 1.24366 0.105108
\(141\) 0 0
\(142\) −13.5504 −1.13712
\(143\) −20.0415 −1.67595
\(144\) 0 0
\(145\) −4.78602 −0.397458
\(146\) 0.891079 0.0737462
\(147\) 0 0
\(148\) 4.06795 0.334383
\(149\) 10.0770 0.825541 0.412770 0.910835i \(-0.364561\pi\)
0.412770 + 0.910835i \(0.364561\pi\)
\(150\) 0 0
\(151\) −17.4518 −1.42021 −0.710104 0.704097i \(-0.751352\pi\)
−0.710104 + 0.704097i \(0.751352\pi\)
\(152\) 5.78801 0.469470
\(153\) 0 0
\(154\) 14.6055 1.17694
\(155\) −0.968720 −0.0778095
\(156\) 0 0
\(157\) 16.5280 1.31908 0.659538 0.751671i \(-0.270752\pi\)
0.659538 + 0.751671i \(0.270752\pi\)
\(158\) −21.2702 −1.69217
\(159\) 0 0
\(160\) −2.69819 −0.213310
\(161\) −5.04790 −0.397830
\(162\) 0 0
\(163\) −11.1138 −0.870502 −0.435251 0.900309i \(-0.643340\pi\)
−0.435251 + 0.900309i \(0.643340\pi\)
\(164\) −5.74596 −0.448684
\(165\) 0 0
\(166\) −13.8895 −1.07804
\(167\) −2.19680 −0.169994 −0.0849969 0.996381i \(-0.527088\pi\)
−0.0849969 + 0.996381i \(0.527088\pi\)
\(168\) 0 0
\(169\) 18.2789 1.40607
\(170\) 0 0
\(171\) 0 0
\(172\) 5.59206 0.426390
\(173\) 7.63122 0.580191 0.290095 0.956998i \(-0.406313\pi\)
0.290095 + 0.956998i \(0.406313\pi\)
\(174\) 0 0
\(175\) −10.9484 −0.827622
\(176\) −17.3535 −1.30807
\(177\) 0 0
\(178\) −16.9742 −1.27227
\(179\) 16.9787 1.26905 0.634525 0.772902i \(-0.281196\pi\)
0.634525 + 0.772902i \(0.281196\pi\)
\(180\) 0 0
\(181\) 9.74474 0.724321 0.362160 0.932116i \(-0.382039\pi\)
0.362160 + 0.932116i \(0.382039\pi\)
\(182\) −22.7949 −1.68967
\(183\) 0 0
\(184\) 4.50317 0.331978
\(185\) 5.50163 0.404488
\(186\) 0 0
\(187\) 0 0
\(188\) −5.56189 −0.405643
\(189\) 0 0
\(190\) −3.38164 −0.245330
\(191\) −26.1154 −1.88964 −0.944821 0.327588i \(-0.893764\pi\)
−0.944821 + 0.327588i \(0.893764\pi\)
\(192\) 0 0
\(193\) 17.8318 1.28356 0.641781 0.766888i \(-0.278196\pi\)
0.641781 + 0.766888i \(0.278196\pi\)
\(194\) 5.36212 0.384978
\(195\) 0 0
\(196\) −0.373442 −0.0266744
\(197\) 14.7297 1.04945 0.524725 0.851272i \(-0.324168\pi\)
0.524725 + 0.851272i \(0.324168\pi\)
\(198\) 0 0
\(199\) −10.4208 −0.738712 −0.369356 0.929288i \(-0.620422\pi\)
−0.369356 + 0.929288i \(0.620422\pi\)
\(200\) 9.76694 0.690627
\(201\) 0 0
\(202\) −3.48564 −0.245249
\(203\) −14.8162 −1.03989
\(204\) 0 0
\(205\) −7.77104 −0.542753
\(206\) 9.26061 0.645217
\(207\) 0 0
\(208\) 27.0839 1.87793
\(209\) −9.20406 −0.636658
\(210\) 0 0
\(211\) −13.9399 −0.959664 −0.479832 0.877360i \(-0.659302\pi\)
−0.479832 + 0.877360i \(0.659302\pi\)
\(212\) 0.706224 0.0485036
\(213\) 0 0
\(214\) −17.8446 −1.21983
\(215\) 7.56289 0.515785
\(216\) 0 0
\(217\) −2.99888 −0.203577
\(218\) −16.4815 −1.11627
\(219\) 0 0
\(220\) 1.76424 0.118945
\(221\) 0 0
\(222\) 0 0
\(223\) 18.9731 1.27054 0.635268 0.772292i \(-0.280890\pi\)
0.635268 + 0.772292i \(0.280890\pi\)
\(224\) −8.35281 −0.558096
\(225\) 0 0
\(226\) 24.5615 1.63380
\(227\) 9.42310 0.625433 0.312716 0.949847i \(-0.398761\pi\)
0.312716 + 0.949847i \(0.398761\pi\)
\(228\) 0 0
\(229\) −20.5779 −1.35982 −0.679912 0.733294i \(-0.737982\pi\)
−0.679912 + 0.733294i \(0.737982\pi\)
\(230\) −2.63097 −0.173481
\(231\) 0 0
\(232\) 13.2173 0.867759
\(233\) −25.0272 −1.63959 −0.819794 0.572658i \(-0.805912\pi\)
−0.819794 + 0.572658i \(0.805912\pi\)
\(234\) 0 0
\(235\) −7.52209 −0.490687
\(236\) 4.63094 0.301448
\(237\) 0 0
\(238\) 0 0
\(239\) −5.18719 −0.335532 −0.167766 0.985827i \(-0.553655\pi\)
−0.167766 + 0.985827i \(0.553655\pi\)
\(240\) 0 0
\(241\) −1.27223 −0.0819515 −0.0409757 0.999160i \(-0.513047\pi\)
−0.0409757 + 0.999160i \(0.513047\pi\)
\(242\) 2.97082 0.190972
\(243\) 0 0
\(244\) −2.53455 −0.162258
\(245\) −0.505055 −0.0322668
\(246\) 0 0
\(247\) 14.3649 0.914014
\(248\) 2.67526 0.169879
\(249\) 0 0
\(250\) −12.2893 −0.777243
\(251\) 3.84757 0.242857 0.121428 0.992600i \(-0.461253\pi\)
0.121428 + 0.992600i \(0.461253\pi\)
\(252\) 0 0
\(253\) −7.16090 −0.450202
\(254\) −7.19469 −0.451435
\(255\) 0 0
\(256\) 13.2951 0.830943
\(257\) 30.3426 1.89272 0.946359 0.323118i \(-0.104731\pi\)
0.946359 + 0.323118i \(0.104731\pi\)
\(258\) 0 0
\(259\) 17.0315 1.05828
\(260\) −2.75347 −0.170763
\(261\) 0 0
\(262\) 35.0795 2.16722
\(263\) −27.1948 −1.67690 −0.838451 0.544977i \(-0.816539\pi\)
−0.838451 + 0.544977i \(0.816539\pi\)
\(264\) 0 0
\(265\) 0.955121 0.0586726
\(266\) −10.4686 −0.641870
\(267\) 0 0
\(268\) −2.82388 −0.172496
\(269\) 0.447683 0.0272957 0.0136478 0.999907i \(-0.495656\pi\)
0.0136478 + 0.999907i \(0.495656\pi\)
\(270\) 0 0
\(271\) −15.0696 −0.915411 −0.457705 0.889104i \(-0.651329\pi\)
−0.457705 + 0.889104i \(0.651329\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 20.7700 1.25476
\(275\) −15.5313 −0.936574
\(276\) 0 0
\(277\) −1.97884 −0.118897 −0.0594486 0.998231i \(-0.518934\pi\)
−0.0594486 + 0.998231i \(0.518934\pi\)
\(278\) 21.6626 1.29924
\(279\) 0 0
\(280\) −4.64500 −0.277592
\(281\) −29.1820 −1.74085 −0.870427 0.492297i \(-0.836157\pi\)
−0.870427 + 0.492297i \(0.836157\pi\)
\(282\) 0 0
\(283\) −20.7155 −1.23141 −0.615705 0.787977i \(-0.711129\pi\)
−0.615705 + 0.787977i \(0.711129\pi\)
\(284\) −5.06705 −0.300674
\(285\) 0 0
\(286\) −32.3367 −1.91211
\(287\) −24.0569 −1.42003
\(288\) 0 0
\(289\) 0 0
\(290\) −7.72220 −0.453463
\(291\) 0 0
\(292\) 0.333211 0.0194997
\(293\) 5.05564 0.295354 0.147677 0.989036i \(-0.452820\pi\)
0.147677 + 0.989036i \(0.452820\pi\)
\(294\) 0 0
\(295\) 6.26304 0.364648
\(296\) −15.1936 −0.883109
\(297\) 0 0
\(298\) 16.2592 0.941867
\(299\) 11.1761 0.646330
\(300\) 0 0
\(301\) 23.4125 1.34948
\(302\) −28.1583 −1.62033
\(303\) 0 0
\(304\) 12.4383 0.713385
\(305\) −3.42782 −0.196276
\(306\) 0 0
\(307\) −6.69816 −0.382284 −0.191142 0.981562i \(-0.561219\pi\)
−0.191142 + 0.981562i \(0.561219\pi\)
\(308\) 5.46159 0.311203
\(309\) 0 0
\(310\) −1.56302 −0.0887736
\(311\) 5.27254 0.298978 0.149489 0.988763i \(-0.452237\pi\)
0.149489 + 0.988763i \(0.452237\pi\)
\(312\) 0 0
\(313\) −8.10801 −0.458292 −0.229146 0.973392i \(-0.573593\pi\)
−0.229146 + 0.973392i \(0.573593\pi\)
\(314\) 26.6677 1.50495
\(315\) 0 0
\(316\) −7.95380 −0.447436
\(317\) −3.93073 −0.220772 −0.110386 0.993889i \(-0.535209\pi\)
−0.110386 + 0.993889i \(0.535209\pi\)
\(318\) 0 0
\(319\) −21.0181 −1.17679
\(320\) 3.54965 0.198432
\(321\) 0 0
\(322\) −8.14473 −0.453888
\(323\) 0 0
\(324\) 0 0
\(325\) 24.2399 1.34459
\(326\) −17.9320 −0.993164
\(327\) 0 0
\(328\) 21.4609 1.18498
\(329\) −23.2862 −1.28381
\(330\) 0 0
\(331\) −19.9729 −1.09781 −0.548906 0.835884i \(-0.684955\pi\)
−0.548906 + 0.835884i \(0.684955\pi\)
\(332\) −5.19387 −0.285051
\(333\) 0 0
\(334\) −3.54452 −0.193947
\(335\) −3.81912 −0.208661
\(336\) 0 0
\(337\) −30.8390 −1.67991 −0.839955 0.542656i \(-0.817419\pi\)
−0.839955 + 0.542656i \(0.817419\pi\)
\(338\) 29.4928 1.60420
\(339\) 0 0
\(340\) 0 0
\(341\) −4.25418 −0.230377
\(342\) 0 0
\(343\) −19.2460 −1.03919
\(344\) −20.8860 −1.12610
\(345\) 0 0
\(346\) 12.3129 0.661945
\(347\) −16.8330 −0.903641 −0.451820 0.892109i \(-0.649225\pi\)
−0.451820 + 0.892109i \(0.649225\pi\)
\(348\) 0 0
\(349\) −27.9391 −1.49555 −0.747774 0.663954i \(-0.768877\pi\)
−0.747774 + 0.663954i \(0.768877\pi\)
\(350\) −17.6651 −0.944242
\(351\) 0 0
\(352\) −11.8492 −0.631566
\(353\) 22.5616 1.20083 0.600416 0.799688i \(-0.295002\pi\)
0.600416 + 0.799688i \(0.295002\pi\)
\(354\) 0 0
\(355\) −6.85285 −0.363712
\(356\) −6.34737 −0.336410
\(357\) 0 0
\(358\) 27.3950 1.44787
\(359\) −2.62410 −0.138495 −0.0692474 0.997600i \(-0.522060\pi\)
−0.0692474 + 0.997600i \(0.522060\pi\)
\(360\) 0 0
\(361\) −12.4029 −0.652786
\(362\) 15.7230 0.826385
\(363\) 0 0
\(364\) −8.52396 −0.446777
\(365\) 0.450646 0.0235879
\(366\) 0 0
\(367\) −16.6620 −0.869747 −0.434874 0.900492i \(-0.643207\pi\)
−0.434874 + 0.900492i \(0.643207\pi\)
\(368\) 9.67719 0.504458
\(369\) 0 0
\(370\) 8.87683 0.461485
\(371\) 2.95678 0.153508
\(372\) 0 0
\(373\) 26.4354 1.36877 0.684386 0.729120i \(-0.260070\pi\)
0.684386 + 0.729120i \(0.260070\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 20.7734 1.07130
\(377\) 32.8031 1.68945
\(378\) 0 0
\(379\) 15.3138 0.786615 0.393307 0.919407i \(-0.371331\pi\)
0.393307 + 0.919407i \(0.371331\pi\)
\(380\) −1.26453 −0.0648693
\(381\) 0 0
\(382\) −42.1369 −2.15591
\(383\) 21.9992 1.12411 0.562053 0.827101i \(-0.310012\pi\)
0.562053 + 0.827101i \(0.310012\pi\)
\(384\) 0 0
\(385\) 7.38644 0.376448
\(386\) 28.7715 1.46443
\(387\) 0 0
\(388\) 2.00512 0.101794
\(389\) −29.0749 −1.47415 −0.737077 0.675809i \(-0.763794\pi\)
−0.737077 + 0.675809i \(0.763794\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 1.39478 0.0704472
\(393\) 0 0
\(394\) 23.7663 1.19733
\(395\) −10.7570 −0.541243
\(396\) 0 0
\(397\) −33.3302 −1.67279 −0.836397 0.548125i \(-0.815342\pi\)
−0.836397 + 0.548125i \(0.815342\pi\)
\(398\) −16.8139 −0.842804
\(399\) 0 0
\(400\) 20.9889 1.04944
\(401\) −21.1160 −1.05448 −0.527241 0.849716i \(-0.676773\pi\)
−0.527241 + 0.849716i \(0.676773\pi\)
\(402\) 0 0
\(403\) 6.63955 0.330739
\(404\) −1.30342 −0.0648477
\(405\) 0 0
\(406\) −23.9057 −1.18642
\(407\) 24.1607 1.19760
\(408\) 0 0
\(409\) −16.0388 −0.793066 −0.396533 0.918020i \(-0.629787\pi\)
−0.396533 + 0.918020i \(0.629787\pi\)
\(410\) −12.5385 −0.619232
\(411\) 0 0
\(412\) 3.46292 0.170606
\(413\) 19.3886 0.954049
\(414\) 0 0
\(415\) −7.02437 −0.344813
\(416\) 18.4932 0.906704
\(417\) 0 0
\(418\) −14.8507 −0.726369
\(419\) 30.3271 1.48157 0.740787 0.671739i \(-0.234453\pi\)
0.740787 + 0.671739i \(0.234453\pi\)
\(420\) 0 0
\(421\) −3.28147 −0.159929 −0.0799645 0.996798i \(-0.525481\pi\)
−0.0799645 + 0.996798i \(0.525481\pi\)
\(422\) −22.4919 −1.09489
\(423\) 0 0
\(424\) −2.63771 −0.128098
\(425\) 0 0
\(426\) 0 0
\(427\) −10.6115 −0.513528
\(428\) −6.67284 −0.322544
\(429\) 0 0
\(430\) 12.2026 0.588464
\(431\) −0.636903 −0.0306786 −0.0153393 0.999882i \(-0.504883\pi\)
−0.0153393 + 0.999882i \(0.504883\pi\)
\(432\) 0 0
\(433\) 38.8945 1.86915 0.934576 0.355764i \(-0.115779\pi\)
0.934576 + 0.355764i \(0.115779\pi\)
\(434\) −4.83866 −0.232263
\(435\) 0 0
\(436\) −6.16312 −0.295160
\(437\) 5.13263 0.245527
\(438\) 0 0
\(439\) 18.2017 0.868718 0.434359 0.900740i \(-0.356975\pi\)
0.434359 + 0.900740i \(0.356975\pi\)
\(440\) −6.58936 −0.314135
\(441\) 0 0
\(442\) 0 0
\(443\) 14.4462 0.686361 0.343181 0.939269i \(-0.388496\pi\)
0.343181 + 0.939269i \(0.388496\pi\)
\(444\) 0 0
\(445\) −8.58440 −0.406939
\(446\) 30.6130 1.44957
\(447\) 0 0
\(448\) 10.9887 0.519168
\(449\) 37.0123 1.74672 0.873360 0.487076i \(-0.161937\pi\)
0.873360 + 0.487076i \(0.161937\pi\)
\(450\) 0 0
\(451\) −34.1269 −1.60697
\(452\) 9.18454 0.432004
\(453\) 0 0
\(454\) 15.2041 0.713562
\(455\) −11.5281 −0.540445
\(456\) 0 0
\(457\) 15.0383 0.703461 0.351731 0.936101i \(-0.385593\pi\)
0.351731 + 0.936101i \(0.385593\pi\)
\(458\) −33.2022 −1.55144
\(459\) 0 0
\(460\) −0.983828 −0.0458712
\(461\) −13.9905 −0.651604 −0.325802 0.945438i \(-0.605634\pi\)
−0.325802 + 0.945438i \(0.605634\pi\)
\(462\) 0 0
\(463\) 2.40768 0.111895 0.0559473 0.998434i \(-0.482182\pi\)
0.0559473 + 0.998434i \(0.482182\pi\)
\(464\) 28.4036 1.31861
\(465\) 0 0
\(466\) −40.3812 −1.87062
\(467\) −12.7577 −0.590354 −0.295177 0.955443i \(-0.595379\pi\)
−0.295177 + 0.955443i \(0.595379\pi\)
\(468\) 0 0
\(469\) −11.8229 −0.545930
\(470\) −12.1368 −0.559830
\(471\) 0 0
\(472\) −17.2963 −0.796127
\(473\) 33.2128 1.52713
\(474\) 0 0
\(475\) 11.1322 0.510780
\(476\) 0 0
\(477\) 0 0
\(478\) −8.36949 −0.382811
\(479\) 32.9435 1.50523 0.752613 0.658463i \(-0.228793\pi\)
0.752613 + 0.658463i \(0.228793\pi\)
\(480\) 0 0
\(481\) −37.7078 −1.71933
\(482\) −2.05273 −0.0934992
\(483\) 0 0
\(484\) 1.11091 0.0504961
\(485\) 2.71179 0.123136
\(486\) 0 0
\(487\) −17.5577 −0.795617 −0.397809 0.917468i \(-0.630229\pi\)
−0.397809 + 0.917468i \(0.630229\pi\)
\(488\) 9.46642 0.428525
\(489\) 0 0
\(490\) −0.814901 −0.0368135
\(491\) 35.8504 1.61790 0.808952 0.587874i \(-0.200035\pi\)
0.808952 + 0.587874i \(0.200035\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 23.1776 1.04281
\(495\) 0 0
\(496\) 5.74907 0.258141
\(497\) −21.2145 −0.951599
\(498\) 0 0
\(499\) −27.9614 −1.25172 −0.625861 0.779934i \(-0.715252\pi\)
−0.625861 + 0.779934i \(0.715252\pi\)
\(500\) −4.59547 −0.205516
\(501\) 0 0
\(502\) 6.20802 0.277077
\(503\) −25.7397 −1.14768 −0.573838 0.818969i \(-0.694546\pi\)
−0.573838 + 0.818969i \(0.694546\pi\)
\(504\) 0 0
\(505\) −1.76279 −0.0784433
\(506\) −11.5540 −0.513640
\(507\) 0 0
\(508\) −2.69039 −0.119367
\(509\) 39.9728 1.77176 0.885882 0.463910i \(-0.153554\pi\)
0.885882 + 0.463910i \(0.153554\pi\)
\(510\) 0 0
\(511\) 1.39507 0.0617143
\(512\) −5.81277 −0.256891
\(513\) 0 0
\(514\) 48.9574 2.15942
\(515\) 4.68337 0.206374
\(516\) 0 0
\(517\) −33.0336 −1.45282
\(518\) 27.4801 1.20741
\(519\) 0 0
\(520\) 10.2841 0.450986
\(521\) −12.9910 −0.569144 −0.284572 0.958655i \(-0.591851\pi\)
−0.284572 + 0.958655i \(0.591851\pi\)
\(522\) 0 0
\(523\) 1.53869 0.0672822 0.0336411 0.999434i \(-0.489290\pi\)
0.0336411 + 0.999434i \(0.489290\pi\)
\(524\) 13.1176 0.573047
\(525\) 0 0
\(526\) −43.8785 −1.91319
\(527\) 0 0
\(528\) 0 0
\(529\) −19.0067 −0.826380
\(530\) 1.54108 0.0669402
\(531\) 0 0
\(532\) −3.91464 −0.169721
\(533\) 53.2622 2.30704
\(534\) 0 0
\(535\) −9.02458 −0.390167
\(536\) 10.5471 0.455563
\(537\) 0 0
\(538\) 0.722331 0.0311419
\(539\) −2.21798 −0.0955350
\(540\) 0 0
\(541\) −28.8294 −1.23947 −0.619736 0.784810i \(-0.712760\pi\)
−0.619736 + 0.784810i \(0.712760\pi\)
\(542\) −24.3146 −1.04440
\(543\) 0 0
\(544\) 0 0
\(545\) −8.33522 −0.357042
\(546\) 0 0
\(547\) 6.26865 0.268028 0.134014 0.990979i \(-0.457213\pi\)
0.134014 + 0.990979i \(0.457213\pi\)
\(548\) 7.76677 0.331780
\(549\) 0 0
\(550\) −25.0596 −1.06855
\(551\) 15.0649 0.641784
\(552\) 0 0
\(553\) −33.3006 −1.41608
\(554\) −3.19284 −0.135651
\(555\) 0 0
\(556\) 8.10054 0.343539
\(557\) 5.26768 0.223199 0.111599 0.993753i \(-0.464403\pi\)
0.111599 + 0.993753i \(0.464403\pi\)
\(558\) 0 0
\(559\) −51.8356 −2.19241
\(560\) −9.98198 −0.421816
\(561\) 0 0
\(562\) −47.0849 −1.98616
\(563\) −12.7777 −0.538515 −0.269257 0.963068i \(-0.586778\pi\)
−0.269257 + 0.963068i \(0.586778\pi\)
\(564\) 0 0
\(565\) 12.4215 0.522576
\(566\) −33.4243 −1.40493
\(567\) 0 0
\(568\) 18.9252 0.794082
\(569\) −6.91475 −0.289881 −0.144941 0.989440i \(-0.546299\pi\)
−0.144941 + 0.989440i \(0.546299\pi\)
\(570\) 0 0
\(571\) −9.01348 −0.377202 −0.188601 0.982054i \(-0.560395\pi\)
−0.188601 + 0.982054i \(0.560395\pi\)
\(572\) −12.0920 −0.505592
\(573\) 0 0
\(574\) −38.8156 −1.62013
\(575\) 8.66102 0.361189
\(576\) 0 0
\(577\) 37.5084 1.56149 0.780747 0.624848i \(-0.214839\pi\)
0.780747 + 0.624848i \(0.214839\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) −2.88765 −0.119903
\(581\) −21.7454 −0.902152
\(582\) 0 0
\(583\) 4.19446 0.173717
\(584\) −1.24453 −0.0514988
\(585\) 0 0
\(586\) 8.15723 0.336972
\(587\) −20.8834 −0.861950 −0.430975 0.902364i \(-0.641830\pi\)
−0.430975 + 0.902364i \(0.641830\pi\)
\(588\) 0 0
\(589\) 3.04922 0.125641
\(590\) 10.1053 0.416031
\(591\) 0 0
\(592\) −32.6506 −1.34193
\(593\) 27.8291 1.14280 0.571402 0.820670i \(-0.306400\pi\)
0.571402 + 0.820670i \(0.306400\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6.07996 0.249045
\(597\) 0 0
\(598\) 18.0325 0.737404
\(599\) 38.9632 1.59199 0.795997 0.605300i \(-0.206947\pi\)
0.795997 + 0.605300i \(0.206947\pi\)
\(600\) 0 0
\(601\) −24.5350 −1.00080 −0.500402 0.865793i \(-0.666814\pi\)
−0.500402 + 0.865793i \(0.666814\pi\)
\(602\) 37.7759 1.53963
\(603\) 0 0
\(604\) −10.5296 −0.428441
\(605\) 1.50244 0.0610828
\(606\) 0 0
\(607\) 15.7988 0.641253 0.320626 0.947206i \(-0.396107\pi\)
0.320626 + 0.947206i \(0.396107\pi\)
\(608\) 8.49302 0.344437
\(609\) 0 0
\(610\) −5.53075 −0.223934
\(611\) 51.5559 2.08573
\(612\) 0 0
\(613\) 13.1247 0.530103 0.265052 0.964234i \(-0.414611\pi\)
0.265052 + 0.964234i \(0.414611\pi\)
\(614\) −10.8074 −0.436152
\(615\) 0 0
\(616\) −20.3987 −0.821889
\(617\) −14.3978 −0.579635 −0.289817 0.957082i \(-0.593595\pi\)
−0.289817 + 0.957082i \(0.593595\pi\)
\(618\) 0 0
\(619\) 20.2851 0.815325 0.407663 0.913133i \(-0.366344\pi\)
0.407663 + 0.913133i \(0.366344\pi\)
\(620\) −0.584477 −0.0234732
\(621\) 0 0
\(622\) 8.50718 0.341107
\(623\) −26.5748 −1.06470
\(624\) 0 0
\(625\) 15.4557 0.618229
\(626\) −13.0822 −0.522870
\(627\) 0 0
\(628\) 9.97216 0.397933
\(629\) 0 0
\(630\) 0 0
\(631\) −0.933597 −0.0371659 −0.0185830 0.999827i \(-0.505915\pi\)
−0.0185830 + 0.999827i \(0.505915\pi\)
\(632\) 29.7070 1.18168
\(633\) 0 0
\(634\) −6.34219 −0.251881
\(635\) −3.63858 −0.144393
\(636\) 0 0
\(637\) 3.46162 0.137154
\(638\) −33.9124 −1.34261
\(639\) 0 0
\(640\) 11.1237 0.439703
\(641\) −5.69896 −0.225095 −0.112548 0.993646i \(-0.535901\pi\)
−0.112548 + 0.993646i \(0.535901\pi\)
\(642\) 0 0
\(643\) 2.74575 0.108282 0.0541408 0.998533i \(-0.482758\pi\)
0.0541408 + 0.998533i \(0.482758\pi\)
\(644\) −3.04565 −0.120015
\(645\) 0 0
\(646\) 0 0
\(647\) −8.48539 −0.333595 −0.166798 0.985991i \(-0.553343\pi\)
−0.166798 + 0.985991i \(0.553343\pi\)
\(648\) 0 0
\(649\) 27.5044 1.07964
\(650\) 39.1108 1.53405
\(651\) 0 0
\(652\) −6.70553 −0.262609
\(653\) 9.61573 0.376293 0.188146 0.982141i \(-0.439752\pi\)
0.188146 + 0.982141i \(0.439752\pi\)
\(654\) 0 0
\(655\) 17.7408 0.693189
\(656\) 46.1188 1.80064
\(657\) 0 0
\(658\) −37.5721 −1.46471
\(659\) 16.9543 0.660446 0.330223 0.943903i \(-0.392876\pi\)
0.330223 + 0.943903i \(0.392876\pi\)
\(660\) 0 0
\(661\) 22.8810 0.889968 0.444984 0.895539i \(-0.353209\pi\)
0.444984 + 0.895539i \(0.353209\pi\)
\(662\) −32.2261 −1.25250
\(663\) 0 0
\(664\) 19.3988 0.752821
\(665\) −5.29429 −0.205304
\(666\) 0 0
\(667\) 11.7207 0.453827
\(668\) −1.32544 −0.0512829
\(669\) 0 0
\(670\) −6.16211 −0.238063
\(671\) −15.0534 −0.581131
\(672\) 0 0
\(673\) −0.972535 −0.0374885 −0.0187442 0.999824i \(-0.505967\pi\)
−0.0187442 + 0.999824i \(0.505967\pi\)
\(674\) −49.7585 −1.91663
\(675\) 0 0
\(676\) 11.0286 0.424176
\(677\) −20.6935 −0.795315 −0.397657 0.917534i \(-0.630177\pi\)
−0.397657 + 0.917534i \(0.630177\pi\)
\(678\) 0 0
\(679\) 8.39492 0.322167
\(680\) 0 0
\(681\) 0 0
\(682\) −6.86408 −0.262839
\(683\) 21.9329 0.839237 0.419619 0.907701i \(-0.362164\pi\)
0.419619 + 0.907701i \(0.362164\pi\)
\(684\) 0 0
\(685\) 10.5040 0.401339
\(686\) −31.0533 −1.18562
\(687\) 0 0
\(688\) −44.8835 −1.71117
\(689\) −6.54634 −0.249396
\(690\) 0 0
\(691\) −30.0105 −1.14165 −0.570826 0.821071i \(-0.693377\pi\)
−0.570826 + 0.821071i \(0.693377\pi\)
\(692\) 4.60430 0.175029
\(693\) 0 0
\(694\) −27.1598 −1.03097
\(695\) 10.9554 0.415564
\(696\) 0 0
\(697\) 0 0
\(698\) −45.0795 −1.70628
\(699\) 0 0
\(700\) −6.60572 −0.249673
\(701\) 13.0830 0.494140 0.247070 0.968998i \(-0.420532\pi\)
0.247070 + 0.968998i \(0.420532\pi\)
\(702\) 0 0
\(703\) −17.3174 −0.653137
\(704\) 15.5885 0.587513
\(705\) 0 0
\(706\) 36.4029 1.37004
\(707\) −5.45711 −0.205236
\(708\) 0 0
\(709\) 32.8467 1.23358 0.616792 0.787126i \(-0.288432\pi\)
0.616792 + 0.787126i \(0.288432\pi\)
\(710\) −11.0570 −0.414962
\(711\) 0 0
\(712\) 23.7071 0.888460
\(713\) 2.37234 0.0888448
\(714\) 0 0
\(715\) −16.3537 −0.611592
\(716\) 10.2441 0.382841
\(717\) 0 0
\(718\) −4.23396 −0.158010
\(719\) 13.6307 0.508340 0.254170 0.967160i \(-0.418198\pi\)
0.254170 + 0.967160i \(0.418198\pi\)
\(720\) 0 0
\(721\) 14.4984 0.539948
\(722\) −20.0120 −0.744769
\(723\) 0 0
\(724\) 5.87949 0.218510
\(725\) 25.4211 0.944115
\(726\) 0 0
\(727\) 8.12446 0.301320 0.150660 0.988586i \(-0.451860\pi\)
0.150660 + 0.988586i \(0.451860\pi\)
\(728\) 31.8365 1.17994
\(729\) 0 0
\(730\) 0.727113 0.0269117
\(731\) 0 0
\(732\) 0 0
\(733\) 31.1522 1.15063 0.575316 0.817931i \(-0.304879\pi\)
0.575316 + 0.817931i \(0.304879\pi\)
\(734\) −26.8839 −0.992303
\(735\) 0 0
\(736\) 6.60771 0.243563
\(737\) −16.7718 −0.617799
\(738\) 0 0
\(739\) 34.6895 1.27607 0.638037 0.770005i \(-0.279747\pi\)
0.638037 + 0.770005i \(0.279747\pi\)
\(740\) 3.31941 0.122024
\(741\) 0 0
\(742\) 4.77074 0.175139
\(743\) 48.6272 1.78396 0.891979 0.452076i \(-0.149317\pi\)
0.891979 + 0.452076i \(0.149317\pi\)
\(744\) 0 0
\(745\) 8.22275 0.301258
\(746\) 42.6532 1.56164
\(747\) 0 0
\(748\) 0 0
\(749\) −27.9375 −1.02081
\(750\) 0 0
\(751\) 41.9289 1.53001 0.765004 0.644025i \(-0.222737\pi\)
0.765004 + 0.644025i \(0.222737\pi\)
\(752\) 44.6414 1.62790
\(753\) 0 0
\(754\) 52.9275 1.92751
\(755\) −14.2405 −0.518266
\(756\) 0 0
\(757\) 10.7455 0.390553 0.195277 0.980748i \(-0.437439\pi\)
0.195277 + 0.980748i \(0.437439\pi\)
\(758\) 24.7086 0.897456
\(759\) 0 0
\(760\) 4.72297 0.171320
\(761\) −7.39335 −0.268009 −0.134004 0.990981i \(-0.542784\pi\)
−0.134004 + 0.990981i \(0.542784\pi\)
\(762\) 0 0
\(763\) −25.8034 −0.934148
\(764\) −15.7567 −0.570058
\(765\) 0 0
\(766\) 35.4955 1.28250
\(767\) −42.9265 −1.54998
\(768\) 0 0
\(769\) −17.4382 −0.628838 −0.314419 0.949284i \(-0.601810\pi\)
−0.314419 + 0.949284i \(0.601810\pi\)
\(770\) 11.9180 0.429493
\(771\) 0 0
\(772\) 10.7588 0.387219
\(773\) −31.1238 −1.11945 −0.559723 0.828680i \(-0.689093\pi\)
−0.559723 + 0.828680i \(0.689093\pi\)
\(774\) 0 0
\(775\) 5.14538 0.184827
\(776\) −7.48901 −0.268840
\(777\) 0 0
\(778\) −46.9120 −1.68188
\(779\) 24.4607 0.876396
\(780\) 0 0
\(781\) −30.0947 −1.07687
\(782\) 0 0
\(783\) 0 0
\(784\) 2.99735 0.107048
\(785\) 13.4867 0.481361
\(786\) 0 0
\(787\) 7.21080 0.257037 0.128519 0.991707i \(-0.458978\pi\)
0.128519 + 0.991707i \(0.458978\pi\)
\(788\) 8.88719 0.316593
\(789\) 0 0
\(790\) −17.3563 −0.617509
\(791\) 38.4533 1.36724
\(792\) 0 0
\(793\) 23.4940 0.834298
\(794\) −53.7779 −1.90851
\(795\) 0 0
\(796\) −6.28740 −0.222851
\(797\) −7.58702 −0.268746 −0.134373 0.990931i \(-0.542902\pi\)
−0.134373 + 0.990931i \(0.542902\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 14.3315 0.506695
\(801\) 0 0
\(802\) −34.0704 −1.20307
\(803\) 1.97904 0.0698386
\(804\) 0 0
\(805\) −4.11904 −0.145177
\(806\) 10.7128 0.377344
\(807\) 0 0
\(808\) 4.86822 0.171263
\(809\) 5.33119 0.187435 0.0937174 0.995599i \(-0.470125\pi\)
0.0937174 + 0.995599i \(0.470125\pi\)
\(810\) 0 0
\(811\) −46.9291 −1.64790 −0.823951 0.566661i \(-0.808235\pi\)
−0.823951 + 0.566661i \(0.808235\pi\)
\(812\) −8.93933 −0.313709
\(813\) 0 0
\(814\) 38.9831 1.36636
\(815\) −9.06879 −0.317666
\(816\) 0 0
\(817\) −23.8055 −0.832850
\(818\) −25.8784 −0.904817
\(819\) 0 0
\(820\) −4.68866 −0.163735
\(821\) 20.4129 0.712416 0.356208 0.934407i \(-0.384069\pi\)
0.356208 + 0.934407i \(0.384069\pi\)
\(822\) 0 0
\(823\) −33.6464 −1.17284 −0.586419 0.810008i \(-0.699463\pi\)
−0.586419 + 0.810008i \(0.699463\pi\)
\(824\) −12.9338 −0.450571
\(825\) 0 0
\(826\) 31.2833 1.08848
\(827\) 13.9070 0.483592 0.241796 0.970327i \(-0.422264\pi\)
0.241796 + 0.970327i \(0.422264\pi\)
\(828\) 0 0
\(829\) 41.0730 1.42652 0.713262 0.700897i \(-0.247217\pi\)
0.713262 + 0.700897i \(0.247217\pi\)
\(830\) −11.3338 −0.393400
\(831\) 0 0
\(832\) −24.3291 −0.843460
\(833\) 0 0
\(834\) 0 0
\(835\) −1.79257 −0.0620345
\(836\) −5.55327 −0.192064
\(837\) 0 0
\(838\) 48.9324 1.69034
\(839\) 14.9174 0.515006 0.257503 0.966278i \(-0.417100\pi\)
0.257503 + 0.966278i \(0.417100\pi\)
\(840\) 0 0
\(841\) 5.40160 0.186262
\(842\) −5.29462 −0.182465
\(843\) 0 0
\(844\) −8.41066 −0.289507
\(845\) 14.9154 0.513106
\(846\) 0 0
\(847\) 4.65111 0.159814
\(848\) −5.66836 −0.194652
\(849\) 0 0
\(850\) 0 0
\(851\) −13.4732 −0.461855
\(852\) 0 0
\(853\) 12.1679 0.416621 0.208311 0.978063i \(-0.433204\pi\)
0.208311 + 0.978063i \(0.433204\pi\)
\(854\) −17.1216 −0.585889
\(855\) 0 0
\(856\) 24.9227 0.851841
\(857\) 45.4324 1.55194 0.775970 0.630770i \(-0.217261\pi\)
0.775970 + 0.630770i \(0.217261\pi\)
\(858\) 0 0
\(859\) 24.5741 0.838458 0.419229 0.907880i \(-0.362300\pi\)
0.419229 + 0.907880i \(0.362300\pi\)
\(860\) 4.56307 0.155599
\(861\) 0 0
\(862\) −1.02764 −0.0350015
\(863\) 2.35798 0.0802667 0.0401334 0.999194i \(-0.487222\pi\)
0.0401334 + 0.999194i \(0.487222\pi\)
\(864\) 0 0
\(865\) 6.22701 0.211725
\(866\) 62.7559 2.13253
\(867\) 0 0
\(868\) −1.80937 −0.0614141
\(869\) −47.2399 −1.60250
\(870\) 0 0
\(871\) 26.1760 0.886939
\(872\) 23.0189 0.779520
\(873\) 0 0
\(874\) 8.28145 0.280124
\(875\) −19.2401 −0.650434
\(876\) 0 0
\(877\) −37.0944 −1.25259 −0.626294 0.779587i \(-0.715429\pi\)
−0.626294 + 0.779587i \(0.715429\pi\)
\(878\) 29.3682 0.991129
\(879\) 0 0
\(880\) −14.1603 −0.477345
\(881\) 35.0035 1.17930 0.589648 0.807660i \(-0.299266\pi\)
0.589648 + 0.807660i \(0.299266\pi\)
\(882\) 0 0
\(883\) −4.09966 −0.137964 −0.0689822 0.997618i \(-0.521975\pi\)
−0.0689822 + 0.997618i \(0.521975\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 23.3089 0.783076
\(887\) −4.54407 −0.152575 −0.0762874 0.997086i \(-0.524307\pi\)
−0.0762874 + 0.997086i \(0.524307\pi\)
\(888\) 0 0
\(889\) −11.2640 −0.377782
\(890\) −13.8508 −0.464281
\(891\) 0 0
\(892\) 11.4474 0.383289
\(893\) 23.6771 0.792324
\(894\) 0 0
\(895\) 13.8545 0.463105
\(896\) 34.4358 1.15042
\(897\) 0 0
\(898\) 59.7190 1.99285
\(899\) 6.96309 0.232232
\(900\) 0 0
\(901\) 0 0
\(902\) −55.0634 −1.83341
\(903\) 0 0
\(904\) −34.3038 −1.14093
\(905\) 7.95163 0.264321
\(906\) 0 0
\(907\) 8.69309 0.288649 0.144325 0.989530i \(-0.453899\pi\)
0.144325 + 0.989530i \(0.453899\pi\)
\(908\) 5.68543 0.188677
\(909\) 0 0
\(910\) −18.6005 −0.616599
\(911\) −45.8572 −1.51932 −0.759658 0.650322i \(-0.774634\pi\)
−0.759658 + 0.650322i \(0.774634\pi\)
\(912\) 0 0
\(913\) −30.8479 −1.02092
\(914\) 24.2641 0.802586
\(915\) 0 0
\(916\) −12.4157 −0.410225
\(917\) 54.9203 1.81363
\(918\) 0 0
\(919\) 36.9580 1.21913 0.609566 0.792735i \(-0.291344\pi\)
0.609566 + 0.792735i \(0.291344\pi\)
\(920\) 3.67455 0.121146
\(921\) 0 0
\(922\) −22.5736 −0.743421
\(923\) 46.9690 1.54600
\(924\) 0 0
\(925\) −29.2221 −0.960815
\(926\) 3.88477 0.127662
\(927\) 0 0
\(928\) 19.3944 0.636652
\(929\) 37.1359 1.21839 0.609195 0.793020i \(-0.291493\pi\)
0.609195 + 0.793020i \(0.291493\pi\)
\(930\) 0 0
\(931\) 1.58975 0.0521020
\(932\) −15.1002 −0.494623
\(933\) 0 0
\(934\) −20.5844 −0.673541
\(935\) 0 0
\(936\) 0 0
\(937\) −20.2047 −0.660058 −0.330029 0.943971i \(-0.607059\pi\)
−0.330029 + 0.943971i \(0.607059\pi\)
\(938\) −19.0761 −0.622857
\(939\) 0 0
\(940\) −4.53845 −0.148028
\(941\) −48.0881 −1.56763 −0.783814 0.620996i \(-0.786728\pi\)
−0.783814 + 0.620996i \(0.786728\pi\)
\(942\) 0 0
\(943\) 19.0308 0.619729
\(944\) −37.1693 −1.20976
\(945\) 0 0
\(946\) 53.5885 1.74231
\(947\) 23.0130 0.747821 0.373911 0.927465i \(-0.378017\pi\)
0.373911 + 0.927465i \(0.378017\pi\)
\(948\) 0 0
\(949\) −3.08870 −0.100263
\(950\) 17.9617 0.582754
\(951\) 0 0
\(952\) 0 0
\(953\) −0.0564747 −0.00182940 −0.000914698 1.00000i \(-0.500291\pi\)
−0.000914698 1.00000i \(0.500291\pi\)
\(954\) 0 0
\(955\) −21.3099 −0.689573
\(956\) −3.12969 −0.101222
\(957\) 0 0
\(958\) 53.1540 1.71733
\(959\) 32.5175 1.05004
\(960\) 0 0
\(961\) −29.5906 −0.954536
\(962\) −60.8412 −1.96160
\(963\) 0 0
\(964\) −0.767599 −0.0247227
\(965\) 14.5506 0.468401
\(966\) 0 0
\(967\) 0.706923 0.0227331 0.0113666 0.999935i \(-0.496382\pi\)
0.0113666 + 0.999935i \(0.496382\pi\)
\(968\) −4.14920 −0.133360
\(969\) 0 0
\(970\) 4.37545 0.140487
\(971\) 10.5257 0.337785 0.168892 0.985634i \(-0.445981\pi\)
0.168892 + 0.985634i \(0.445981\pi\)
\(972\) 0 0
\(973\) 33.9149 1.08726
\(974\) −28.3293 −0.907728
\(975\) 0 0
\(976\) 20.3431 0.651166
\(977\) −13.9176 −0.445264 −0.222632 0.974903i \(-0.571465\pi\)
−0.222632 + 0.974903i \(0.571465\pi\)
\(978\) 0 0
\(979\) −37.6988 −1.20486
\(980\) −0.304725 −0.00973409
\(981\) 0 0
\(982\) 57.8442 1.84588
\(983\) −18.7022 −0.596509 −0.298254 0.954486i \(-0.596404\pi\)
−0.298254 + 0.954486i \(0.596404\pi\)
\(984\) 0 0
\(985\) 12.0193 0.382968
\(986\) 0 0
\(987\) 0 0
\(988\) 8.66704 0.275735
\(989\) −18.5211 −0.588936
\(990\) 0 0
\(991\) −33.4227 −1.06171 −0.530854 0.847463i \(-0.678129\pi\)
−0.530854 + 0.847463i \(0.678129\pi\)
\(992\) 3.92554 0.124636
\(993\) 0 0
\(994\) −34.2293 −1.08569
\(995\) −8.50330 −0.269573
\(996\) 0 0
\(997\) −41.8141 −1.32427 −0.662133 0.749386i \(-0.730349\pi\)
−0.662133 + 0.749386i \(0.730349\pi\)
\(998\) −45.1154 −1.42810
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7803.2.a.bv.1.10 12
3.2 odd 2 inner 7803.2.a.bv.1.3 12
17.8 even 8 459.2.f.c.217.3 yes 24
17.15 even 8 459.2.f.c.55.10 yes 24
17.16 even 2 7803.2.a.bw.1.10 12
51.8 odd 8 459.2.f.c.217.10 yes 24
51.32 odd 8 459.2.f.c.55.3 24
51.50 odd 2 7803.2.a.bw.1.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
459.2.f.c.55.3 24 51.32 odd 8
459.2.f.c.55.10 yes 24 17.15 even 8
459.2.f.c.217.3 yes 24 17.8 even 8
459.2.f.c.217.10 yes 24 51.8 odd 8
7803.2.a.bv.1.3 12 3.2 odd 2 inner
7803.2.a.bv.1.10 12 1.1 even 1 trivial
7803.2.a.bw.1.3 12 51.50 odd 2
7803.2.a.bw.1.10 12 17.16 even 2