Properties

Label 459.2.f.c.217.10
Level $459$
Weight $2$
Character 459.217
Analytic conductor $3.665$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [459,2,Mod(55,459)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("459.55"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 459.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.66513345278\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 217.10
Character \(\chi\) \(=\) 459.217
Dual form 459.2.f.c.55.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.61349i q^{2} -0.603350 q^{4} +(-0.576993 - 0.576993i) q^{5} +(1.78620 - 1.78620i) q^{7} +2.25348i q^{8} +(0.930973 - 0.930973i) q^{10} +(2.53389 - 2.53389i) q^{11} +5.59275 q^{13} +(2.88202 + 2.88202i) q^{14} -4.84267 q^{16} +(-1.62990 + 3.78727i) q^{17} +2.56848i q^{19} +(0.348129 + 0.348129i) q^{20} +(4.08841 + 4.08841i) q^{22} +(-1.41302 + 1.41302i) q^{23} -4.33416i q^{25} +9.02385i q^{26} +(-1.07771 + 1.07771i) q^{28} +(4.14738 + 4.14738i) q^{29} +(0.839455 + 0.839455i) q^{31} -3.30664i q^{32} +(-6.11072 - 2.62983i) q^{34} -2.06126 q^{35} +(-4.76750 - 4.76750i) q^{37} -4.14421 q^{38} +(1.30024 - 1.30024i) q^{40} +(6.73408 - 6.73408i) q^{41} +9.26834i q^{43} +(-1.52883 + 1.52883i) q^{44} +(-2.27990 - 2.27990i) q^{46} -9.21835 q^{47} +0.618947i q^{49} +6.99312 q^{50} -3.37439 q^{52} +1.17050i q^{53} -2.92408 q^{55} +(4.02518 + 4.02518i) q^{56} +(-6.69176 + 6.69176i) q^{58} -7.67537i q^{59} +(-2.97041 + 2.97041i) q^{61} +(-1.35445 + 1.35445i) q^{62} -4.35011 q^{64} +(-3.22698 - 3.22698i) q^{65} -4.68034 q^{67} +(0.983402 - 2.28505i) q^{68} -3.32582i q^{70} +(-5.93842 - 5.93842i) q^{71} +(0.390513 + 0.390513i) q^{73} +(7.69232 - 7.69232i) q^{74} -1.54969i q^{76} -9.05211i q^{77} +(9.32159 - 9.32159i) q^{79} +(2.79419 + 2.79419i) q^{80} +(10.8654 + 10.8654i) q^{82} -8.60839i q^{83} +(3.12567 - 1.24479i) q^{85} -14.9544 q^{86} +(5.71008 + 5.71008i) q^{88} -10.5202 q^{89} +(9.98980 - 9.98980i) q^{91} +(0.852548 - 0.852548i) q^{92} -14.8737i q^{94} +(1.48199 - 1.48199i) q^{95} +(2.34993 + 2.34993i) q^{97} -0.998664 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 24 q^{4} + 16 q^{10} + 8 q^{13} + 40 q^{16} - 32 q^{22} - 40 q^{28} + 16 q^{31} + 40 q^{34} - 24 q^{37} - 40 q^{40} - 24 q^{46} + 16 q^{52} + 8 q^{55} - 40 q^{58} - 56 q^{61} - 80 q^{64} - 16 q^{67}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.61349i 1.14091i 0.821329 + 0.570455i \(0.193233\pi\)
−0.821329 + 0.570455i \(0.806767\pi\)
\(3\) 0 0
\(4\) −0.603350 −0.301675
\(5\) −0.576993 0.576993i −0.258039 0.258039i 0.566217 0.824256i \(-0.308406\pi\)
−0.824256 + 0.566217i \(0.808406\pi\)
\(6\) 0 0
\(7\) 1.78620 1.78620i 0.675122 0.675122i −0.283770 0.958892i \(-0.591585\pi\)
0.958892 + 0.283770i \(0.0915854\pi\)
\(8\) 2.25348i 0.796726i
\(9\) 0 0
\(10\) 0.930973 0.930973i 0.294399 0.294399i
\(11\) 2.53389 2.53389i 0.763998 0.763998i −0.213045 0.977042i \(-0.568338\pi\)
0.977042 + 0.213045i \(0.0683380\pi\)
\(12\) 0 0
\(13\) 5.59275 1.55115 0.775575 0.631255i \(-0.217460\pi\)
0.775575 + 0.631255i \(0.217460\pi\)
\(14\) 2.88202 + 2.88202i 0.770253 + 0.770253i
\(15\) 0 0
\(16\) −4.84267 −1.21067
\(17\) −1.62990 + 3.78727i −0.395309 + 0.918548i
\(18\) 0 0
\(19\) 2.56848i 0.589249i 0.955613 + 0.294625i \(0.0951946\pi\)
−0.955613 + 0.294625i \(0.904805\pi\)
\(20\) 0.348129 + 0.348129i 0.0778440 + 0.0778440i
\(21\) 0 0
\(22\) 4.08841 + 4.08841i 0.871653 + 0.871653i
\(23\) −1.41302 + 1.41302i −0.294636 + 0.294636i −0.838908 0.544273i \(-0.816806\pi\)
0.544273 + 0.838908i \(0.316806\pi\)
\(24\) 0 0
\(25\) 4.33416i 0.866832i
\(26\) 9.02385i 1.76972i
\(27\) 0 0
\(28\) −1.07771 + 1.07771i −0.203667 + 0.203667i
\(29\) 4.14738 + 4.14738i 0.770150 + 0.770150i 0.978133 0.207983i \(-0.0666897\pi\)
−0.207983 + 0.978133i \(0.566690\pi\)
\(30\) 0 0
\(31\) 0.839455 + 0.839455i 0.150771 + 0.150771i 0.778462 0.627692i \(-0.216000\pi\)
−0.627692 + 0.778462i \(0.716000\pi\)
\(32\) 3.30664i 0.584536i
\(33\) 0 0
\(34\) −6.11072 2.62983i −1.04798 0.451012i
\(35\) −2.06126 −0.348416
\(36\) 0 0
\(37\) −4.76750 4.76750i −0.783773 0.783773i 0.196692 0.980465i \(-0.436980\pi\)
−0.980465 + 0.196692i \(0.936980\pi\)
\(38\) −4.14421 −0.672280
\(39\) 0 0
\(40\) 1.30024 1.30024i 0.205586 0.205586i
\(41\) 6.73408 6.73408i 1.05169 1.05169i 0.0530979 0.998589i \(-0.483090\pi\)
0.998589 0.0530979i \(-0.0169095\pi\)
\(42\) 0 0
\(43\) 9.26834i 1.41341i 0.707509 + 0.706705i \(0.249819\pi\)
−0.707509 + 0.706705i \(0.750181\pi\)
\(44\) −1.52883 + 1.52883i −0.230479 + 0.230479i
\(45\) 0 0
\(46\) −2.27990 2.27990i −0.336153 0.336153i
\(47\) −9.21835 −1.34463 −0.672317 0.740263i \(-0.734701\pi\)
−0.672317 + 0.740263i \(0.734701\pi\)
\(48\) 0 0
\(49\) 0.618947i 0.0884209i
\(50\) 6.99312 0.988977
\(51\) 0 0
\(52\) −3.37439 −0.467943
\(53\) 1.17050i 0.160781i 0.996763 + 0.0803905i \(0.0256167\pi\)
−0.996763 + 0.0803905i \(0.974383\pi\)
\(54\) 0 0
\(55\) −2.92408 −0.394283
\(56\) 4.02518 + 4.02518i 0.537887 + 0.537887i
\(57\) 0 0
\(58\) −6.69176 + 6.69176i −0.878672 + 0.878672i
\(59\) 7.67537i 0.999248i −0.866242 0.499624i \(-0.833471\pi\)
0.866242 0.499624i \(-0.166529\pi\)
\(60\) 0 0
\(61\) −2.97041 + 2.97041i −0.380323 + 0.380323i −0.871218 0.490896i \(-0.836670\pi\)
0.490896 + 0.871218i \(0.336670\pi\)
\(62\) −1.35445 + 1.35445i −0.172016 + 0.172016i
\(63\) 0 0
\(64\) −4.35011 −0.543764
\(65\) −3.22698 3.22698i −0.400258 0.400258i
\(66\) 0 0
\(67\) −4.68034 −0.571794 −0.285897 0.958260i \(-0.592292\pi\)
−0.285897 + 0.958260i \(0.592292\pi\)
\(68\) 0.983402 2.28505i 0.119255 0.277103i
\(69\) 0 0
\(70\) 3.32582i 0.397511i
\(71\) −5.93842 5.93842i −0.704761 0.704761i 0.260668 0.965429i \(-0.416057\pi\)
−0.965429 + 0.260668i \(0.916057\pi\)
\(72\) 0 0
\(73\) 0.390513 + 0.390513i 0.0457060 + 0.0457060i 0.729590 0.683884i \(-0.239711\pi\)
−0.683884 + 0.729590i \(0.739711\pi\)
\(74\) 7.69232 7.69232i 0.894214 0.894214i
\(75\) 0 0
\(76\) 1.54969i 0.177762i
\(77\) 9.05211i 1.03158i
\(78\) 0 0
\(79\) 9.32159 9.32159i 1.04876 1.04876i 0.0500128 0.998749i \(-0.484074\pi\)
0.998749 0.0500128i \(-0.0159262\pi\)
\(80\) 2.79419 + 2.79419i 0.312400 + 0.312400i
\(81\) 0 0
\(82\) 10.8654 + 10.8654i 1.19988 + 1.19988i
\(83\) 8.60839i 0.944893i −0.881359 0.472447i \(-0.843371\pi\)
0.881359 0.472447i \(-0.156629\pi\)
\(84\) 0 0
\(85\) 3.12567 1.24479i 0.339027 0.135016i
\(86\) −14.9544 −1.61257
\(87\) 0 0
\(88\) 5.71008 + 5.71008i 0.608697 + 0.608697i
\(89\) −10.5202 −1.11514 −0.557570 0.830130i \(-0.688266\pi\)
−0.557570 + 0.830130i \(0.688266\pi\)
\(90\) 0 0
\(91\) 9.98980 9.98980i 1.04722 1.04722i
\(92\) 0.852548 0.852548i 0.0888842 0.0888842i
\(93\) 0 0
\(94\) 14.8737i 1.53411i
\(95\) 1.48199 1.48199i 0.152049 0.152049i
\(96\) 0 0
\(97\) 2.34993 + 2.34993i 0.238599 + 0.238599i 0.816270 0.577671i \(-0.196038\pi\)
−0.577671 + 0.816270i \(0.696038\pi\)
\(98\) −0.998664 −0.100880
\(99\) 0 0
\(100\) 2.61501i 0.261501i
\(101\) 2.16031 0.214959 0.107479 0.994207i \(-0.465722\pi\)
0.107479 + 0.994207i \(0.465722\pi\)
\(102\) 0 0
\(103\) 5.73949 0.565529 0.282764 0.959189i \(-0.408749\pi\)
0.282764 + 0.959189i \(0.408749\pi\)
\(104\) 12.6032i 1.23584i
\(105\) 0 0
\(106\) −1.88860 −0.183437
\(107\) 7.82035 + 7.82035i 0.756022 + 0.756022i 0.975596 0.219574i \(-0.0704666\pi\)
−0.219574 + 0.975596i \(0.570467\pi\)
\(108\) 0 0
\(109\) −7.22298 + 7.22298i −0.691836 + 0.691836i −0.962636 0.270800i \(-0.912712\pi\)
0.270800 + 0.962636i \(0.412712\pi\)
\(110\) 4.71797i 0.449841i
\(111\) 0 0
\(112\) −8.65000 + 8.65000i −0.817348 + 0.817348i
\(113\) 10.7640 10.7640i 1.01259 1.01259i 0.0126702 0.999920i \(-0.495967\pi\)
0.999920 0.0126702i \(-0.00403316\pi\)
\(114\) 0 0
\(115\) 1.63061 0.152055
\(116\) −2.50232 2.50232i −0.232335 0.232335i
\(117\) 0 0
\(118\) 12.3841 1.14005
\(119\) 3.85350 + 9.67618i 0.353250 + 0.887014i
\(120\) 0 0
\(121\) 1.84124i 0.167386i
\(122\) −4.79273 4.79273i −0.433914 0.433914i
\(123\) 0 0
\(124\) −0.506486 0.506486i −0.0454837 0.0454837i
\(125\) −5.38574 + 5.38574i −0.481716 + 0.481716i
\(126\) 0 0
\(127\) 4.45909i 0.395680i −0.980234 0.197840i \(-0.936607\pi\)
0.980234 0.197840i \(-0.0633927\pi\)
\(128\) 13.6321i 1.20492i
\(129\) 0 0
\(130\) 5.20670 5.20670i 0.456658 0.456658i
\(131\) −15.3735 15.3735i −1.34319 1.34319i −0.892869 0.450316i \(-0.851311\pi\)
−0.450316 0.892869i \(-0.648689\pi\)
\(132\) 0 0
\(133\) 4.58783 + 4.58783i 0.397815 + 0.397815i
\(134\) 7.55168i 0.652366i
\(135\) 0 0
\(136\) −8.53454 3.67295i −0.731831 0.314953i
\(137\) −12.8727 −1.09979 −0.549896 0.835233i \(-0.685333\pi\)
−0.549896 + 0.835233i \(0.685333\pi\)
\(138\) 0 0
\(139\) −9.49356 9.49356i −0.805234 0.805234i 0.178675 0.983908i \(-0.442819\pi\)
−0.983908 + 0.178675i \(0.942819\pi\)
\(140\) 1.24366 0.105108
\(141\) 0 0
\(142\) 9.58158 9.58158i 0.804068 0.804068i
\(143\) 14.1714 14.1714i 1.18508 1.18508i
\(144\) 0 0
\(145\) 4.78602i 0.397458i
\(146\) −0.630088 + 0.630088i −0.0521465 + 0.0521465i
\(147\) 0 0
\(148\) 2.87647 + 2.87647i 0.236445 + 0.236445i
\(149\) 10.0770 0.825541 0.412770 0.910835i \(-0.364561\pi\)
0.412770 + 0.910835i \(0.364561\pi\)
\(150\) 0 0
\(151\) 17.4518i 1.42021i 0.704097 + 0.710104i \(0.251352\pi\)
−0.704097 + 0.710104i \(0.748648\pi\)
\(152\) −5.78801 −0.469470
\(153\) 0 0
\(154\) 14.6055 1.17694
\(155\) 0.968720i 0.0778095i
\(156\) 0 0
\(157\) −16.5280 −1.31908 −0.659538 0.751671i \(-0.729248\pi\)
−0.659538 + 0.751671i \(0.729248\pi\)
\(158\) 15.0403 + 15.0403i 1.19654 + 1.19654i
\(159\) 0 0
\(160\) −1.90791 + 1.90791i −0.150833 + 0.150833i
\(161\) 5.04790i 0.397830i
\(162\) 0 0
\(163\) −7.85866 + 7.85866i −0.615538 + 0.615538i −0.944384 0.328846i \(-0.893340\pi\)
0.328846 + 0.944384i \(0.393340\pi\)
\(164\) −4.06301 + 4.06301i −0.317268 + 0.317268i
\(165\) 0 0
\(166\) 13.8895 1.07804
\(167\) −1.55337 1.55337i −0.120204 0.120204i 0.644446 0.764650i \(-0.277088\pi\)
−0.764650 + 0.644446i \(0.777088\pi\)
\(168\) 0 0
\(169\) 18.2789 1.40607
\(170\) 2.00845 + 5.04324i 0.154041 + 0.386799i
\(171\) 0 0
\(172\) 5.59206i 0.426390i
\(173\) 5.39609 + 5.39609i 0.410257 + 0.410257i 0.881828 0.471571i \(-0.156313\pi\)
−0.471571 + 0.881828i \(0.656313\pi\)
\(174\) 0 0
\(175\) −7.74169 7.74169i −0.585217 0.585217i
\(176\) −12.2708 + 12.2708i −0.924947 + 0.924947i
\(177\) 0 0
\(178\) 16.9742i 1.27227i
\(179\) 16.9787i 1.26905i −0.772902 0.634525i \(-0.781196\pi\)
0.772902 0.634525i \(-0.218804\pi\)
\(180\) 0 0
\(181\) −6.89057 + 6.89057i −0.512172 + 0.512172i −0.915191 0.403019i \(-0.867961\pi\)
0.403019 + 0.915191i \(0.367961\pi\)
\(182\) 16.1184 + 16.1184i 1.19478 + 1.19478i
\(183\) 0 0
\(184\) −3.18422 3.18422i −0.234744 0.234744i
\(185\) 5.50163i 0.404488i
\(186\) 0 0
\(187\) 5.46654 + 13.7265i 0.399753 + 1.00378i
\(188\) 5.56189 0.405643
\(189\) 0 0
\(190\) 2.39118 + 2.39118i 0.173475 + 0.173475i
\(191\) −26.1154 −1.88964 −0.944821 0.327588i \(-0.893764\pi\)
−0.944821 + 0.327588i \(0.893764\pi\)
\(192\) 0 0
\(193\) −12.6090 + 12.6090i −0.907615 + 0.907615i −0.996079 0.0884639i \(-0.971804\pi\)
0.0884639 + 0.996079i \(0.471804\pi\)
\(194\) −3.79159 + 3.79159i −0.272220 + 0.272220i
\(195\) 0 0
\(196\) 0.373442i 0.0266744i
\(197\) −10.4155 + 10.4155i −0.742073 + 0.742073i −0.972977 0.230903i \(-0.925832\pi\)
0.230903 + 0.972977i \(0.425832\pi\)
\(198\) 0 0
\(199\) −7.36863 7.36863i −0.522349 0.522349i 0.395932 0.918280i \(-0.370422\pi\)
−0.918280 + 0.395932i \(0.870422\pi\)
\(200\) 9.76694 0.690627
\(201\) 0 0
\(202\) 3.48564i 0.245249i
\(203\) 14.8162 1.03989
\(204\) 0 0
\(205\) −7.77104 −0.542753
\(206\) 9.26061i 0.645217i
\(207\) 0 0
\(208\) −27.0839 −1.87793
\(209\) 6.50825 + 6.50825i 0.450185 + 0.450185i
\(210\) 0 0
\(211\) −9.85702 + 9.85702i −0.678585 + 0.678585i −0.959680 0.281095i \(-0.909302\pi\)
0.281095 + 0.959680i \(0.409302\pi\)
\(212\) 0.706224i 0.0485036i
\(213\) 0 0
\(214\) −12.6181 + 12.6181i −0.862553 + 0.862553i
\(215\) 5.34777 5.34777i 0.364715 0.364715i
\(216\) 0 0
\(217\) 2.99888 0.203577
\(218\) −11.6542 11.6542i −0.789323 0.789323i
\(219\) 0 0
\(220\) 1.76424 0.118945
\(221\) −9.11564 + 21.1813i −0.613184 + 1.42481i
\(222\) 0 0
\(223\) 18.9731i 1.27054i −0.772292 0.635268i \(-0.780890\pi\)
0.772292 0.635268i \(-0.219110\pi\)
\(224\) −5.90633 5.90633i −0.394633 0.394633i
\(225\) 0 0
\(226\) 17.3676 + 17.3676i 1.15527 + 1.15527i
\(227\) 6.66313 6.66313i 0.442248 0.442248i −0.450519 0.892767i \(-0.648761\pi\)
0.892767 + 0.450519i \(0.148761\pi\)
\(228\) 0 0
\(229\) 20.5779i 1.35982i −0.733294 0.679912i \(-0.762018\pi\)
0.733294 0.679912i \(-0.237982\pi\)
\(230\) 2.63097i 0.173481i
\(231\) 0 0
\(232\) −9.34605 + 9.34605i −0.613598 + 0.613598i
\(233\) 17.6969 + 17.6969i 1.15936 + 1.15936i 0.984613 + 0.174751i \(0.0559121\pi\)
0.174751 + 0.984613i \(0.444088\pi\)
\(234\) 0 0
\(235\) 5.31892 + 5.31892i 0.346968 + 0.346968i
\(236\) 4.63094i 0.301448i
\(237\) 0 0
\(238\) −15.6124 + 6.21759i −1.01200 + 0.403026i
\(239\) 5.18719 0.335532 0.167766 0.985827i \(-0.446345\pi\)
0.167766 + 0.985827i \(0.446345\pi\)
\(240\) 0 0
\(241\) 0.899602 + 0.899602i 0.0579484 + 0.0579484i 0.735487 0.677539i \(-0.236953\pi\)
−0.677539 + 0.735487i \(0.736953\pi\)
\(242\) 2.97082 0.190972
\(243\) 0 0
\(244\) 1.79220 1.79220i 0.114734 0.114734i
\(245\) 0.357128 0.357128i 0.0228161 0.0228161i
\(246\) 0 0
\(247\) 14.3649i 0.914014i
\(248\) −1.89170 + 1.89170i −0.120123 + 0.120123i
\(249\) 0 0
\(250\) −8.68985 8.68985i −0.549594 0.549594i
\(251\) 3.84757 0.242857 0.121428 0.992600i \(-0.461253\pi\)
0.121428 + 0.992600i \(0.461253\pi\)
\(252\) 0 0
\(253\) 7.16090i 0.450202i
\(254\) 7.19469 0.451435
\(255\) 0 0
\(256\) 13.2951 0.830943
\(257\) 30.3426i 1.89272i 0.323118 + 0.946359i \(0.395269\pi\)
−0.323118 + 0.946359i \(0.604731\pi\)
\(258\) 0 0
\(259\) −17.0315 −1.05828
\(260\) 1.94700 + 1.94700i 0.120748 + 0.120748i
\(261\) 0 0
\(262\) 24.8049 24.8049i 1.53245 1.53245i
\(263\) 27.1948i 1.67690i 0.544977 + 0.838451i \(0.316539\pi\)
−0.544977 + 0.838451i \(0.683461\pi\)
\(264\) 0 0
\(265\) 0.675373 0.675373i 0.0414878 0.0414878i
\(266\) −7.40241 + 7.40241i −0.453871 + 0.453871i
\(267\) 0 0
\(268\) 2.82388 0.172496
\(269\) 0.316559 + 0.316559i 0.0193010 + 0.0193010i 0.716691 0.697390i \(-0.245656\pi\)
−0.697390 + 0.716691i \(0.745656\pi\)
\(270\) 0 0
\(271\) −15.0696 −0.915411 −0.457705 0.889104i \(-0.651329\pi\)
−0.457705 + 0.889104i \(0.651329\pi\)
\(272\) 7.89308 18.3405i 0.478588 1.11206i
\(273\) 0 0
\(274\) 20.7700i 1.25476i
\(275\) −10.9823 10.9823i −0.662258 0.662258i
\(276\) 0 0
\(277\) −1.39925 1.39925i −0.0840730 0.0840730i 0.663820 0.747893i \(-0.268934\pi\)
−0.747893 + 0.663820i \(0.768934\pi\)
\(278\) 15.3178 15.3178i 0.918699 0.918699i
\(279\) 0 0
\(280\) 4.64500i 0.277592i
\(281\) 29.1820i 1.74085i 0.492297 + 0.870427i \(0.336157\pi\)
−0.492297 + 0.870427i \(0.663843\pi\)
\(282\) 0 0
\(283\) 14.6481 14.6481i 0.870738 0.870738i −0.121815 0.992553i \(-0.538871\pi\)
0.992553 + 0.121815i \(0.0388714\pi\)
\(284\) 3.58295 + 3.58295i 0.212609 + 0.212609i
\(285\) 0 0
\(286\) 22.8655 + 22.8655i 1.35206 + 1.35206i
\(287\) 24.0569i 1.42003i
\(288\) 0 0
\(289\) −11.6868 12.3458i −0.687461 0.726221i
\(290\) 7.72220 0.453463
\(291\) 0 0
\(292\) −0.235616 0.235616i −0.0137884 0.0137884i
\(293\) 5.05564 0.295354 0.147677 0.989036i \(-0.452820\pi\)
0.147677 + 0.989036i \(0.452820\pi\)
\(294\) 0 0
\(295\) −4.42864 + 4.42864i −0.257845 + 0.257845i
\(296\) 10.7435 10.7435i 0.624452 0.624452i
\(297\) 0 0
\(298\) 16.2592i 0.941867i
\(299\) −7.90269 + 7.90269i −0.457024 + 0.457024i
\(300\) 0 0
\(301\) 16.5552 + 16.5552i 0.954223 + 0.954223i
\(302\) −28.1583 −1.62033
\(303\) 0 0
\(304\) 12.4383i 0.713385i
\(305\) 3.42782 0.196276
\(306\) 0 0
\(307\) −6.69816 −0.382284 −0.191142 0.981562i \(-0.561219\pi\)
−0.191142 + 0.981562i \(0.561219\pi\)
\(308\) 5.46159i 0.311203i
\(309\) 0 0
\(310\) 1.56302 0.0887736
\(311\) −3.72825 3.72825i −0.211409 0.211409i 0.593457 0.804866i \(-0.297763\pi\)
−0.804866 + 0.593457i \(0.797763\pi\)
\(312\) 0 0
\(313\) −5.73323 + 5.73323i −0.324061 + 0.324061i −0.850323 0.526261i \(-0.823593\pi\)
0.526261 + 0.850323i \(0.323593\pi\)
\(314\) 26.6677i 1.50495i
\(315\) 0 0
\(316\) −5.62419 + 5.62419i −0.316385 + 0.316385i
\(317\) −2.77944 + 2.77944i −0.156109 + 0.156109i −0.780840 0.624731i \(-0.785209\pi\)
0.624731 + 0.780840i \(0.285209\pi\)
\(318\) 0 0
\(319\) 21.0181 1.17679
\(320\) 2.50998 + 2.50998i 0.140312 + 0.140312i
\(321\) 0 0
\(322\) −8.14473 −0.453888
\(323\) −9.72752 4.18637i −0.541254 0.232936i
\(324\) 0 0
\(325\) 24.2399i 1.34459i
\(326\) −12.6799 12.6799i −0.702273 0.702273i
\(327\) 0 0
\(328\) 15.1751 + 15.1751i 0.837906 + 0.837906i
\(329\) −16.4659 + 16.4659i −0.907792 + 0.907792i
\(330\) 0 0
\(331\) 19.9729i 1.09781i −0.835884 0.548906i \(-0.815045\pi\)
0.835884 0.548906i \(-0.184955\pi\)
\(332\) 5.19387i 0.285051i
\(333\) 0 0
\(334\) 2.50635 2.50635i 0.137142 0.137142i
\(335\) 2.70052 + 2.70052i 0.147545 + 0.147545i
\(336\) 0 0
\(337\) 21.8065 + 21.8065i 1.18788 + 1.18788i 0.977654 + 0.210222i \(0.0674186\pi\)
0.210222 + 0.977654i \(0.432581\pi\)
\(338\) 29.4928i 1.60420i
\(339\) 0 0
\(340\) −1.88587 + 0.751042i −0.102276 + 0.0407310i
\(341\) 4.25418 0.230377
\(342\) 0 0
\(343\) 13.6090 + 13.6090i 0.734817 + 0.734817i
\(344\) −20.8860 −1.12610
\(345\) 0 0
\(346\) −8.70653 + 8.70653i −0.468066 + 0.468066i
\(347\) 11.9027 11.9027i 0.638971 0.638971i −0.311331 0.950302i \(-0.600775\pi\)
0.950302 + 0.311331i \(0.100775\pi\)
\(348\) 0 0
\(349\) 27.9391i 1.49555i −0.663954 0.747774i \(-0.731123\pi\)
0.663954 0.747774i \(-0.268877\pi\)
\(350\) 12.4911 12.4911i 0.667680 0.667680i
\(351\) 0 0
\(352\) −8.37867 8.37867i −0.446585 0.446585i
\(353\) 22.5616 1.20083 0.600416 0.799688i \(-0.295002\pi\)
0.600416 + 0.799688i \(0.295002\pi\)
\(354\) 0 0
\(355\) 6.85285i 0.363712i
\(356\) 6.34737 0.336410
\(357\) 0 0
\(358\) 27.3950 1.44787
\(359\) 2.62410i 0.138495i −0.997600 0.0692474i \(-0.977940\pi\)
0.997600 0.0692474i \(-0.0220598\pi\)
\(360\) 0 0
\(361\) 12.4029 0.652786
\(362\) −11.1179 11.1179i −0.584342 0.584342i
\(363\) 0 0
\(364\) −6.02735 + 6.02735i −0.315919 + 0.315919i
\(365\) 0.450646i 0.0235879i
\(366\) 0 0
\(367\) −11.7818 + 11.7818i −0.615004 + 0.615004i −0.944246 0.329242i \(-0.893207\pi\)
0.329242 + 0.944246i \(0.393207\pi\)
\(368\) 6.84280 6.84280i 0.356706 0.356706i
\(369\) 0 0
\(370\) −8.87683 −0.461485
\(371\) 2.09076 + 2.09076i 0.108547 + 0.108547i
\(372\) 0 0
\(373\) 26.4354 1.36877 0.684386 0.729120i \(-0.260070\pi\)
0.684386 + 0.729120i \(0.260070\pi\)
\(374\) −22.1476 + 8.82021i −1.14523 + 0.456082i
\(375\) 0 0
\(376\) 20.7734i 1.07130i
\(377\) 23.1953 + 23.1953i 1.19462 + 1.19462i
\(378\) 0 0
\(379\) 10.8285 + 10.8285i 0.556221 + 0.556221i 0.928229 0.372009i \(-0.121331\pi\)
−0.372009 + 0.928229i \(0.621331\pi\)
\(380\) −0.894161 + 0.894161i −0.0458695 + 0.0458695i
\(381\) 0 0
\(382\) 42.1369i 2.15591i
\(383\) 21.9992i 1.12411i −0.827101 0.562053i \(-0.810012\pi\)
0.827101 0.562053i \(-0.189988\pi\)
\(384\) 0 0
\(385\) −5.22300 + 5.22300i −0.266189 + 0.266189i
\(386\) −20.3445 20.3445i −1.03551 1.03551i
\(387\) 0 0
\(388\) −1.41783 1.41783i −0.0719795 0.0719795i
\(389\) 29.0749i 1.47415i −0.675809 0.737077i \(-0.736206\pi\)
0.675809 0.737077i \(-0.263794\pi\)
\(390\) 0 0
\(391\) −3.04841 7.65459i −0.154165 0.387109i
\(392\) −1.39478 −0.0704472
\(393\) 0 0
\(394\) −16.8053 16.8053i −0.846639 0.846639i
\(395\) −10.7570 −0.541243
\(396\) 0 0
\(397\) 23.5680 23.5680i 1.18284 1.18284i 0.203839 0.979004i \(-0.434658\pi\)
0.979004 0.203839i \(-0.0653419\pi\)
\(398\) 11.8892 11.8892i 0.595953 0.595953i
\(399\) 0 0
\(400\) 20.9889i 1.04944i
\(401\) 14.9313 14.9313i 0.745631 0.745631i −0.228024 0.973655i \(-0.573227\pi\)
0.973655 + 0.228024i \(0.0732265\pi\)
\(402\) 0 0
\(403\) 4.69487 + 4.69487i 0.233868 + 0.233868i
\(404\) −1.30342 −0.0648477
\(405\) 0 0
\(406\) 23.9057i 1.18642i
\(407\) −24.1607 −1.19760
\(408\) 0 0
\(409\) −16.0388 −0.793066 −0.396533 0.918020i \(-0.629787\pi\)
−0.396533 + 0.918020i \(0.629787\pi\)
\(410\) 12.5385i 0.619232i
\(411\) 0 0
\(412\) −3.46292 −0.170606
\(413\) −13.7098 13.7098i −0.674614 0.674614i
\(414\) 0 0
\(415\) −4.96698 + 4.96698i −0.243819 + 0.243819i
\(416\) 18.4932i 0.906704i
\(417\) 0 0
\(418\) −10.5010 + 10.5010i −0.513621 + 0.513621i
\(419\) 21.4445 21.4445i 1.04763 1.04763i 0.0488243 0.998807i \(-0.484453\pi\)
0.998807 0.0488243i \(-0.0155475\pi\)
\(420\) 0 0
\(421\) 3.28147 0.159929 0.0799645 0.996798i \(-0.474519\pi\)
0.0799645 + 0.996798i \(0.474519\pi\)
\(422\) −15.9042 15.9042i −0.774204 0.774204i
\(423\) 0 0
\(424\) −2.63771 −0.128098
\(425\) 16.4146 + 7.06425i 0.796226 + 0.342667i
\(426\) 0 0
\(427\) 10.6115i 0.513528i
\(428\) −4.71841 4.71841i −0.228073 0.228073i
\(429\) 0 0
\(430\) 8.62857 + 8.62857i 0.416107 + 0.416107i
\(431\) −0.450359 + 0.450359i −0.0216930 + 0.0216930i −0.717870 0.696177i \(-0.754883\pi\)
0.696177 + 0.717870i \(0.254883\pi\)
\(432\) 0 0
\(433\) 38.8945i 1.86915i 0.355764 + 0.934576i \(0.384221\pi\)
−0.355764 + 0.934576i \(0.615779\pi\)
\(434\) 4.83866i 0.232263i
\(435\) 0 0
\(436\) 4.35799 4.35799i 0.208710 0.208710i
\(437\) −3.62932 3.62932i −0.173614 0.173614i
\(438\) 0 0
\(439\) −12.8705 12.8705i −0.614276 0.614276i 0.329781 0.944057i \(-0.393025\pi\)
−0.944057 + 0.329781i \(0.893025\pi\)
\(440\) 6.58936i 0.314135i
\(441\) 0 0
\(442\) −34.1758 14.7080i −1.62558 0.699588i
\(443\) −14.4462 −0.686361 −0.343181 0.939269i \(-0.611504\pi\)
−0.343181 + 0.939269i \(0.611504\pi\)
\(444\) 0 0
\(445\) 6.07009 + 6.07009i 0.287750 + 0.287750i
\(446\) 30.6130 1.44957
\(447\) 0 0
\(448\) −7.77019 + 7.77019i −0.367107 + 0.367107i
\(449\) −26.1717 + 26.1717i −1.23512 + 1.23512i −0.273144 + 0.961973i \(0.588063\pi\)
−0.961973 + 0.273144i \(0.911937\pi\)
\(450\) 0 0
\(451\) 34.1269i 1.60697i
\(452\) −6.49445 + 6.49445i −0.305473 + 0.305473i
\(453\) 0 0
\(454\) 10.7509 + 10.7509i 0.504565 + 0.504565i
\(455\) −11.5281 −0.540445
\(456\) 0 0
\(457\) 15.0383i 0.703461i −0.936101 0.351731i \(-0.885593\pi\)
0.936101 0.351731i \(-0.114407\pi\)
\(458\) 33.2022 1.55144
\(459\) 0 0
\(460\) −0.983828 −0.0458712
\(461\) 13.9905i 0.651604i −0.945438 0.325802i \(-0.894366\pi\)
0.945438 0.325802i \(-0.105634\pi\)
\(462\) 0 0
\(463\) −2.40768 −0.111895 −0.0559473 0.998434i \(-0.517818\pi\)
−0.0559473 + 0.998434i \(0.517818\pi\)
\(464\) −20.0844 20.0844i −0.932395 0.932395i
\(465\) 0 0
\(466\) −28.5538 + 28.5538i −1.32273 + 1.32273i
\(467\) 12.7577i 0.590354i 0.955443 + 0.295177i \(0.0953786\pi\)
−0.955443 + 0.295177i \(0.904621\pi\)
\(468\) 0 0
\(469\) −8.36004 + 8.36004i −0.386031 + 0.386031i
\(470\) −8.58203 + 8.58203i −0.395859 + 0.395859i
\(471\) 0 0
\(472\) 17.2963 0.796127
\(473\) 23.4850 + 23.4850i 1.07984 + 1.07984i
\(474\) 0 0
\(475\) 11.1322 0.510780
\(476\) −2.32501 5.83812i −0.106567 0.267590i
\(477\) 0 0
\(478\) 8.36949i 0.382811i
\(479\) 23.2946 + 23.2946i 1.06436 + 1.06436i 0.997781 + 0.0665743i \(0.0212069\pi\)
0.0665743 + 0.997781i \(0.478793\pi\)
\(480\) 0 0
\(481\) −26.6635 26.6635i −1.21575 1.21575i
\(482\) −1.45150 + 1.45150i −0.0661139 + 0.0661139i
\(483\) 0 0
\(484\) 1.11091i 0.0504961i
\(485\) 2.71179i 0.123136i
\(486\) 0 0
\(487\) 12.4152 12.4152i 0.562587 0.562587i −0.367455 0.930041i \(-0.619771\pi\)
0.930041 + 0.367455i \(0.119771\pi\)
\(488\) −6.69377 6.69377i −0.303013 0.303013i
\(489\) 0 0
\(490\) 0.576222 + 0.576222i 0.0260311 + 0.0260311i
\(491\) 35.8504i 1.61790i 0.587874 + 0.808952i \(0.299965\pi\)
−0.587874 + 0.808952i \(0.700035\pi\)
\(492\) 0 0
\(493\) −22.4671 + 8.94743i −1.01187 + 0.402972i
\(494\) −23.1776 −1.04281
\(495\) 0 0
\(496\) −4.06520 4.06520i −0.182533 0.182533i
\(497\) −21.2145 −0.951599
\(498\) 0 0
\(499\) 19.7717 19.7717i 0.885102 0.885102i −0.108946 0.994048i \(-0.534748\pi\)
0.994048 + 0.108946i \(0.0347476\pi\)
\(500\) 3.24949 3.24949i 0.145322 0.145322i
\(501\) 0 0
\(502\) 6.20802i 0.277077i
\(503\) 18.2007 18.2007i 0.811529 0.811529i −0.173334 0.984863i \(-0.555454\pi\)
0.984863 + 0.173334i \(0.0554540\pi\)
\(504\) 0 0
\(505\) −1.24648 1.24648i −0.0554678 0.0554678i
\(506\) −11.5540 −0.513640
\(507\) 0 0
\(508\) 2.69039i 0.119367i
\(509\) −39.9728 −1.77176 −0.885882 0.463910i \(-0.846446\pi\)
−0.885882 + 0.463910i \(0.846446\pi\)
\(510\) 0 0
\(511\) 1.39507 0.0617143
\(512\) 5.81277i 0.256891i
\(513\) 0 0
\(514\) −48.9574 −2.15942
\(515\) −3.31165 3.31165i −0.145929 0.145929i
\(516\) 0 0
\(517\) −23.3583 + 23.3583i −1.02730 + 1.02730i
\(518\) 27.4801i 1.20741i
\(519\) 0 0
\(520\) 7.27194 7.27194i 0.318896 0.318896i
\(521\) −9.18599 + 9.18599i −0.402446 + 0.402446i −0.879094 0.476648i \(-0.841851\pi\)
0.476648 + 0.879094i \(0.341851\pi\)
\(522\) 0 0
\(523\) −1.53869 −0.0672822 −0.0336411 0.999434i \(-0.510710\pi\)
−0.0336411 + 0.999434i \(0.510710\pi\)
\(524\) 9.27558 + 9.27558i 0.405205 + 0.405205i
\(525\) 0 0
\(526\) −43.8785 −1.91319
\(527\) −4.54748 + 1.81101i −0.198091 + 0.0788890i
\(528\) 0 0
\(529\) 19.0067i 0.826380i
\(530\) 1.08971 + 1.08971i 0.0473339 + 0.0473339i
\(531\) 0 0
\(532\) −2.76807 2.76807i −0.120011 0.120011i
\(533\) 37.6621 37.6621i 1.63133 1.63133i
\(534\) 0 0
\(535\) 9.02458i 0.390167i
\(536\) 10.5471i 0.455563i
\(537\) 0 0
\(538\) −0.510765 + 0.510765i −0.0220207 + 0.0220207i
\(539\) 1.56835 + 1.56835i 0.0675534 + 0.0675534i
\(540\) 0 0
\(541\) 20.3855 + 20.3855i 0.876439 + 0.876439i 0.993164 0.116725i \(-0.0372396\pi\)
−0.116725 + 0.993164i \(0.537240\pi\)
\(542\) 24.3146i 1.04440i
\(543\) 0 0
\(544\) 12.5231 + 5.38950i 0.536925 + 0.231073i
\(545\) 8.33522 0.357042
\(546\) 0 0
\(547\) −4.43261 4.43261i −0.189525 0.189525i 0.605966 0.795491i \(-0.292787\pi\)
−0.795491 + 0.605966i \(0.792787\pi\)
\(548\) 7.76677 0.331780
\(549\) 0 0
\(550\) 17.7198 17.7198i 0.755576 0.755576i
\(551\) −10.6525 + 10.6525i −0.453810 + 0.453810i
\(552\) 0 0
\(553\) 33.3006i 1.41608i
\(554\) 2.25768 2.25768i 0.0959197 0.0959197i
\(555\) 0 0
\(556\) 5.72794 + 5.72794i 0.242919 + 0.242919i
\(557\) 5.26768 0.223199 0.111599 0.993753i \(-0.464403\pi\)
0.111599 + 0.993753i \(0.464403\pi\)
\(558\) 0 0
\(559\) 51.8356i 2.19241i
\(560\) 9.98198 0.421816
\(561\) 0 0
\(562\) −47.0849 −1.98616
\(563\) 12.7777i 0.538515i −0.963068 0.269257i \(-0.913222\pi\)
0.963068 0.269257i \(-0.0867782\pi\)
\(564\) 0 0
\(565\) −12.4215 −0.522576
\(566\) 23.6345 + 23.6345i 0.993433 + 0.993433i
\(567\) 0 0
\(568\) 13.3821 13.3821i 0.561501 0.561501i
\(569\) 6.91475i 0.289881i 0.989440 + 0.144941i \(0.0462991\pi\)
−0.989440 + 0.144941i \(0.953701\pi\)
\(570\) 0 0
\(571\) −6.37349 + 6.37349i −0.266722 + 0.266722i −0.827778 0.561056i \(-0.810395\pi\)
0.561056 + 0.827778i \(0.310395\pi\)
\(572\) −8.55034 + 8.55034i −0.357508 + 0.357508i
\(573\) 0 0
\(574\) 38.8156 1.62013
\(575\) 6.12427 + 6.12427i 0.255400 + 0.255400i
\(576\) 0 0
\(577\) 37.5084 1.56149 0.780747 0.624848i \(-0.214839\pi\)
0.780747 + 0.624848i \(0.214839\pi\)
\(578\) 19.9198 18.8566i 0.828553 0.784331i
\(579\) 0 0
\(580\) 2.88765i 0.119903i
\(581\) −15.3763 15.3763i −0.637918 0.637918i
\(582\) 0 0
\(583\) 2.96593 + 2.96593i 0.122836 + 0.122836i
\(584\) −0.880013 + 0.880013i −0.0364152 + 0.0364152i
\(585\) 0 0
\(586\) 8.15723i 0.336972i
\(587\) 20.8834i 0.861950i 0.902364 + 0.430975i \(0.141830\pi\)
−0.902364 + 0.430975i \(0.858170\pi\)
\(588\) 0 0
\(589\) −2.15612 + 2.15612i −0.0888415 + 0.0888415i
\(590\) −7.14556 7.14556i −0.294178 0.294178i
\(591\) 0 0
\(592\) 23.0874 + 23.0874i 0.948888 + 0.948888i
\(593\) 27.8291i 1.14280i 0.820670 + 0.571402i \(0.193600\pi\)
−0.820670 + 0.571402i \(0.806400\pi\)
\(594\) 0 0
\(595\) 3.35965 7.80653i 0.137732 0.320037i
\(596\) −6.07996 −0.249045
\(597\) 0 0
\(598\) −12.7509 12.7509i −0.521424 0.521424i
\(599\) 38.9632 1.59199 0.795997 0.605300i \(-0.206947\pi\)
0.795997 + 0.605300i \(0.206947\pi\)
\(600\) 0 0
\(601\) 17.3489 17.3489i 0.707675 0.707675i −0.258371 0.966046i \(-0.583186\pi\)
0.966046 + 0.258371i \(0.0831856\pi\)
\(602\) −26.7116 + 26.7116i −1.08868 + 1.08868i
\(603\) 0 0
\(604\) 10.5296i 0.428441i
\(605\) −1.06238 + 1.06238i −0.0431920 + 0.0431920i
\(606\) 0 0
\(607\) 11.1714 + 11.1714i 0.453434 + 0.453434i 0.896493 0.443058i \(-0.146107\pi\)
−0.443058 + 0.896493i \(0.646107\pi\)
\(608\) 8.49302 0.344437
\(609\) 0 0
\(610\) 5.53075i 0.223934i
\(611\) −51.5559 −2.08573
\(612\) 0 0
\(613\) 13.1247 0.530103 0.265052 0.964234i \(-0.414611\pi\)
0.265052 + 0.964234i \(0.414611\pi\)
\(614\) 10.8074i 0.436152i
\(615\) 0 0
\(616\) 20.3987 0.821889
\(617\) 10.1808 + 10.1808i 0.409864 + 0.409864i 0.881691 0.471827i \(-0.156405\pi\)
−0.471827 + 0.881691i \(0.656405\pi\)
\(618\) 0 0
\(619\) 14.3437 14.3437i 0.576522 0.576522i −0.357421 0.933943i \(-0.616344\pi\)
0.933943 + 0.357421i \(0.116344\pi\)
\(620\) 0.584477i 0.0234732i
\(621\) 0 0
\(622\) 6.01549 6.01549i 0.241199 0.241199i
\(623\) −18.7912 + 18.7912i −0.752855 + 0.752855i
\(624\) 0 0
\(625\) −15.4557 −0.618229
\(626\) −9.25051 9.25051i −0.369725 0.369725i
\(627\) 0 0
\(628\) 9.97216 0.397933
\(629\) 25.8264 10.2853i 1.02977 0.410100i
\(630\) 0 0
\(631\) 0.933597i 0.0371659i 0.999827 + 0.0185830i \(0.00591548\pi\)
−0.999827 + 0.0185830i \(0.994085\pi\)
\(632\) 21.0060 + 21.0060i 0.835575 + 0.835575i
\(633\) 0 0
\(634\) −4.48461 4.48461i −0.178106 0.178106i
\(635\) −2.57286 + 2.57286i −0.102101 + 0.102101i
\(636\) 0 0
\(637\) 3.46162i 0.137154i
\(638\) 33.9124i 1.34261i
\(639\) 0 0
\(640\) −7.86565 + 7.86565i −0.310917 + 0.310917i
\(641\) 4.02977 + 4.02977i 0.159166 + 0.159166i 0.782197 0.623031i \(-0.214099\pi\)
−0.623031 + 0.782197i \(0.714099\pi\)
\(642\) 0 0
\(643\) −1.94154 1.94154i −0.0765667 0.0765667i 0.667786 0.744353i \(-0.267242\pi\)
−0.744353 + 0.667786i \(0.767242\pi\)
\(644\) 3.04565i 0.120015i
\(645\) 0 0
\(646\) 6.75466 15.6953i 0.265759 0.617521i
\(647\) 8.48539 0.333595 0.166798 0.985991i \(-0.446657\pi\)
0.166798 + 0.985991i \(0.446657\pi\)
\(648\) 0 0
\(649\) −19.4486 19.4486i −0.763424 0.763424i
\(650\) 39.1108 1.53405
\(651\) 0 0
\(652\) 4.74152 4.74152i 0.185692 0.185692i
\(653\) −6.79935 + 6.79935i −0.266079 + 0.266079i −0.827518 0.561439i \(-0.810248\pi\)
0.561439 + 0.827518i \(0.310248\pi\)
\(654\) 0 0
\(655\) 17.7408i 0.693189i
\(656\) −32.6109 + 32.6109i −1.27324 + 1.27324i
\(657\) 0 0
\(658\) −26.5675 26.5675i −1.03571 1.03571i
\(659\) 16.9543 0.660446 0.330223 0.943903i \(-0.392876\pi\)
0.330223 + 0.943903i \(0.392876\pi\)
\(660\) 0 0
\(661\) 22.8810i 0.889968i −0.895539 0.444984i \(-0.853209\pi\)
0.895539 0.444984i \(-0.146791\pi\)
\(662\) 32.2261 1.25250
\(663\) 0 0
\(664\) 19.3988 0.752821
\(665\) 5.29429i 0.205304i
\(666\) 0 0
\(667\) −11.7207 −0.453827
\(668\) 0.937229 + 0.937229i 0.0362625 + 0.0362625i
\(669\) 0 0
\(670\) −4.35727 + 4.35727i −0.168336 + 0.168336i
\(671\) 15.0534i 0.581131i
\(672\) 0 0
\(673\) −0.687686 + 0.687686i −0.0265084 + 0.0265084i −0.720237 0.693728i \(-0.755967\pi\)
0.693728 + 0.720237i \(0.255967\pi\)
\(674\) −35.1846 + 35.1846i −1.35526 + 1.35526i
\(675\) 0 0
\(676\) −11.0286 −0.424176
\(677\) −14.6325 14.6325i −0.562372 0.562372i 0.367608 0.929981i \(-0.380177\pi\)
−0.929981 + 0.367608i \(0.880177\pi\)
\(678\) 0 0
\(679\) 8.39492 0.322167
\(680\) 2.80510 + 7.04364i 0.107571 + 0.270111i
\(681\) 0 0
\(682\) 6.86408i 0.262839i
\(683\) 15.5089 + 15.5089i 0.593430 + 0.593430i 0.938556 0.345126i \(-0.112164\pi\)
−0.345126 + 0.938556i \(0.612164\pi\)
\(684\) 0 0
\(685\) 7.42748 + 7.42748i 0.283790 + 0.283790i
\(686\) −21.9580 + 21.9580i −0.838360 + 0.838360i
\(687\) 0 0
\(688\) 44.8835i 1.71117i
\(689\) 6.54634i 0.249396i
\(690\) 0 0
\(691\) 21.2206 21.2206i 0.807270 0.807270i −0.176950 0.984220i \(-0.556623\pi\)
0.984220 + 0.176950i \(0.0566229\pi\)
\(692\) −3.25573 3.25573i −0.123764 0.123764i
\(693\) 0 0
\(694\) 19.2049 + 19.2049i 0.729008 + 0.729008i
\(695\) 10.9554i 0.415564i
\(696\) 0 0
\(697\) 14.5279 + 36.4797i 0.550283 + 1.38177i
\(698\) 45.0795 1.70628
\(699\) 0 0
\(700\) 4.67095 + 4.67095i 0.176545 + 0.176545i
\(701\) 13.0830 0.494140 0.247070 0.968998i \(-0.420532\pi\)
0.247070 + 0.968998i \(0.420532\pi\)
\(702\) 0 0
\(703\) 12.2452 12.2452i 0.461837 0.461837i
\(704\) −11.0227 + 11.0227i −0.415435 + 0.415435i
\(705\) 0 0
\(706\) 36.4029i 1.37004i
\(707\) 3.85876 3.85876i 0.145123 0.145123i
\(708\) 0 0
\(709\) 23.2261 + 23.2261i 0.872276 + 0.872276i 0.992720 0.120444i \(-0.0384319\pi\)
−0.120444 + 0.992720i \(0.538432\pi\)
\(710\) −11.0570 −0.414962
\(711\) 0 0
\(712\) 23.7071i 0.888460i
\(713\) −2.37234 −0.0888448
\(714\) 0 0
\(715\) −16.3537 −0.611592
\(716\) 10.2441i 0.382841i
\(717\) 0 0
\(718\) 4.23396 0.158010
\(719\) −9.63837 9.63837i −0.359450 0.359450i 0.504160 0.863610i \(-0.331802\pi\)
−0.863610 + 0.504160i \(0.831802\pi\)
\(720\) 0 0
\(721\) 10.2519 10.2519i 0.381801 0.381801i
\(722\) 20.0120i 0.744769i
\(723\) 0 0
\(724\) 4.15743 4.15743i 0.154510 0.154510i
\(725\) 17.9754 17.9754i 0.667590 0.667590i
\(726\) 0 0
\(727\) −8.12446 −0.301320 −0.150660 0.988586i \(-0.548140\pi\)
−0.150660 + 0.988586i \(0.548140\pi\)
\(728\) 22.5118 + 22.5118i 0.834344 + 0.834344i
\(729\) 0 0
\(730\) 0.727113 0.0269117
\(731\) −35.1017 15.1065i −1.29828 0.558734i
\(732\) 0 0
\(733\) 31.1522i 1.15063i −0.817931 0.575316i \(-0.804879\pi\)
0.817931 0.575316i \(-0.195121\pi\)
\(734\) −19.0098 19.0098i −0.701664 0.701664i
\(735\) 0 0
\(736\) 4.67235 + 4.67235i 0.172225 + 0.172225i
\(737\) −11.8595 + 11.8595i −0.436850 + 0.436850i
\(738\) 0 0
\(739\) 34.6895i 1.27607i 0.770005 + 0.638037i \(0.220253\pi\)
−0.770005 + 0.638037i \(0.779747\pi\)
\(740\) 3.31941i 0.122024i
\(741\) 0 0
\(742\) −3.37342 + 3.37342i −0.123842 + 0.123842i
\(743\) −34.3846 34.3846i −1.26145 1.26145i −0.950391 0.311058i \(-0.899317\pi\)
−0.311058 0.950391i \(-0.600683\pi\)
\(744\) 0 0
\(745\) −5.81436 5.81436i −0.213022 0.213022i
\(746\) 42.6532i 1.56164i
\(747\) 0 0
\(748\) −3.29824 8.28191i −0.120596 0.302817i
\(749\) 27.9375 1.02081
\(750\) 0 0
\(751\) −29.6482 29.6482i −1.08188 1.08188i −0.996334 0.0855453i \(-0.972737\pi\)
−0.0855453 0.996334i \(-0.527263\pi\)
\(752\) 44.6414 1.62790
\(753\) 0 0
\(754\) −37.4254 + 37.4254i −1.36295 + 1.36295i
\(755\) 10.0696 10.0696i 0.366469 0.366469i
\(756\) 0 0
\(757\) 10.7455i 0.390553i 0.980748 + 0.195277i \(0.0625605\pi\)
−0.980748 + 0.195277i \(0.937439\pi\)
\(758\) −17.4716 + 17.4716i −0.634598 + 0.634598i
\(759\) 0 0
\(760\) 3.33964 + 3.33964i 0.121142 + 0.121142i
\(761\) −7.39335 −0.268009 −0.134004 0.990981i \(-0.542784\pi\)
−0.134004 + 0.990981i \(0.542784\pi\)
\(762\) 0 0
\(763\) 25.8034i 0.934148i
\(764\) 15.7567 0.570058
\(765\) 0 0
\(766\) 35.4955 1.28250
\(767\) 42.9265i 1.54998i
\(768\) 0 0
\(769\) 17.4382 0.628838 0.314419 0.949284i \(-0.398190\pi\)
0.314419 + 0.949284i \(0.398190\pi\)
\(770\) −8.42726 8.42726i −0.303698 0.303698i
\(771\) 0 0
\(772\) 7.60764 7.60764i 0.273805 0.273805i
\(773\) 31.1238i 1.11945i 0.828680 + 0.559723i \(0.189093\pi\)
−0.828680 + 0.559723i \(0.810907\pi\)
\(774\) 0 0
\(775\) 3.63833 3.63833i 0.130693 0.130693i
\(776\) −5.29553 + 5.29553i −0.190098 + 0.190098i
\(777\) 0 0
\(778\) 46.9120 1.68188
\(779\) 17.2963 + 17.2963i 0.619706 + 0.619706i
\(780\) 0 0
\(781\) −30.0947 −1.07687
\(782\) 12.3506 4.91858i 0.441657 0.175888i
\(783\) 0 0
\(784\) 2.99735i 0.107048i
\(785\) 9.53653 + 9.53653i 0.340373 + 0.340373i
\(786\) 0 0
\(787\) 5.09881 + 5.09881i 0.181753 + 0.181753i 0.792119 0.610366i \(-0.208978\pi\)
−0.610366 + 0.792119i \(0.708978\pi\)
\(788\) 6.28419 6.28419i 0.223865 0.223865i
\(789\) 0 0
\(790\) 17.3563i 0.617509i
\(791\) 38.4533i 1.36724i
\(792\) 0 0
\(793\) −16.6128 + 16.6128i −0.589938 + 0.589938i
\(794\) 38.0267 + 38.0267i 1.34952 + 1.34952i
\(795\) 0 0
\(796\) 4.44587 + 4.44587i 0.157580 + 0.157580i
\(797\) 7.58702i 0.268746i −0.990931 0.134373i \(-0.957098\pi\)
0.990931 0.134373i \(-0.0429020\pi\)
\(798\) 0 0
\(799\) 15.0250 34.9124i 0.531546 1.23511i
\(800\) −14.3315 −0.506695
\(801\) 0 0
\(802\) 24.0914 + 24.0914i 0.850698 + 0.850698i
\(803\) 1.97904 0.0698386
\(804\) 0 0
\(805\) 2.91260 2.91260i 0.102656 0.102656i
\(806\) −7.57512 + 7.57512i −0.266822 + 0.266822i
\(807\) 0 0
\(808\) 4.86822i 0.171263i
\(809\) −3.76972 + 3.76972i −0.132536 + 0.132536i −0.770263 0.637727i \(-0.779875\pi\)
0.637727 + 0.770263i \(0.279875\pi\)
\(810\) 0 0
\(811\) −33.1839 33.1839i −1.16524 1.16524i −0.983311 0.181932i \(-0.941765\pi\)
−0.181932 0.983311i \(-0.558235\pi\)
\(812\) −8.93933 −0.313709
\(813\) 0 0
\(814\) 38.9831i 1.36636i
\(815\) 9.06879 0.317666
\(816\) 0 0
\(817\) −23.8055 −0.832850
\(818\) 25.8784i 0.904817i
\(819\) 0 0
\(820\) 4.68866 0.163735
\(821\) −14.4341 14.4341i −0.503754 0.503754i 0.408848 0.912602i \(-0.365931\pi\)
−0.912602 + 0.408848i \(0.865931\pi\)
\(822\) 0 0
\(823\) −23.7916 + 23.7916i −0.829322 + 0.829322i −0.987423 0.158101i \(-0.949463\pi\)
0.158101 + 0.987423i \(0.449463\pi\)
\(824\) 12.9338i 0.450571i
\(825\) 0 0
\(826\) 22.1206 22.1206i 0.769674 0.769674i
\(827\) 9.83370 9.83370i 0.341951 0.341951i −0.515149 0.857100i \(-0.672264\pi\)
0.857100 + 0.515149i \(0.172264\pi\)
\(828\) 0 0
\(829\) −41.0730 −1.42652 −0.713262 0.700897i \(-0.752783\pi\)
−0.713262 + 0.700897i \(0.752783\pi\)
\(830\) −8.01417 8.01417i −0.278176 0.278176i
\(831\) 0 0
\(832\) −24.3291 −0.843460
\(833\) −2.34412 1.00882i −0.0812189 0.0349536i
\(834\) 0 0
\(835\) 1.79257i 0.0620345i
\(836\) −3.92675 3.92675i −0.135810 0.135810i
\(837\) 0 0
\(838\) 34.6005 + 34.6005i 1.19525 + 1.19525i
\(839\) 10.5482 10.5482i 0.364164 0.364164i −0.501179 0.865343i \(-0.667100\pi\)
0.865343 + 0.501179i \(0.167100\pi\)
\(840\) 0 0
\(841\) 5.40160i 0.186262i
\(842\) 5.29462i 0.182465i
\(843\) 0 0
\(844\) 5.94723 5.94723i 0.204712 0.204712i
\(845\) −10.5468 10.5468i −0.362821 0.362821i
\(846\) 0 0
\(847\) −3.28883 3.28883i −0.113006 0.113006i
\(848\) 5.66836i 0.194652i
\(849\) 0 0
\(850\) −11.3981 + 26.4848i −0.390952 + 0.908422i
\(851\) 13.4732 0.461855
\(852\) 0 0
\(853\) −8.60401 8.60401i −0.294596 0.294596i 0.544297 0.838893i \(-0.316796\pi\)
−0.838893 + 0.544297i \(0.816796\pi\)
\(854\) −17.1216 −0.585889
\(855\) 0 0
\(856\) −17.6230 + 17.6230i −0.602342 + 0.602342i
\(857\) −32.1255 + 32.1255i −1.09739 + 1.09739i −0.102672 + 0.994715i \(0.532739\pi\)
−0.994715 + 0.102672i \(0.967261\pi\)
\(858\) 0 0
\(859\) 24.5741i 0.838458i 0.907880 + 0.419229i \(0.137700\pi\)
−0.907880 + 0.419229i \(0.862300\pi\)
\(860\) −3.22658 + 3.22658i −0.110025 + 0.110025i
\(861\) 0 0
\(862\) −0.726649 0.726649i −0.0247498 0.0247498i
\(863\) 2.35798 0.0802667 0.0401334 0.999194i \(-0.487222\pi\)
0.0401334 + 0.999194i \(0.487222\pi\)
\(864\) 0 0
\(865\) 6.22701i 0.211725i
\(866\) −62.7559 −2.13253
\(867\) 0 0
\(868\) −1.80937 −0.0614141
\(869\) 47.2399i 1.60250i
\(870\) 0 0
\(871\) −26.1760 −0.886939
\(872\) −16.2769 16.2769i −0.551204 0.551204i
\(873\) 0 0
\(874\) 5.85587 5.85587i 0.198078 0.198078i
\(875\) 19.2401i 0.650434i
\(876\) 0 0
\(877\) −26.2297 + 26.2297i −0.885713 + 0.885713i −0.994108 0.108395i \(-0.965429\pi\)
0.108395 + 0.994108i \(0.465429\pi\)
\(878\) 20.7665 20.7665i 0.700834 0.700834i
\(879\) 0 0
\(880\) 14.1603 0.477345
\(881\) 24.7512 + 24.7512i 0.833889 + 0.833889i 0.988046 0.154158i \(-0.0492664\pi\)
−0.154158 + 0.988046i \(0.549266\pi\)
\(882\) 0 0
\(883\) −4.09966 −0.137964 −0.0689822 0.997618i \(-0.521975\pi\)
−0.0689822 + 0.997618i \(0.521975\pi\)
\(884\) 5.49992 12.7797i 0.184982 0.429829i
\(885\) 0 0
\(886\) 23.3089i 0.783076i
\(887\) −3.21314 3.21314i −0.107887 0.107887i 0.651103 0.758990i \(-0.274307\pi\)
−0.758990 + 0.651103i \(0.774307\pi\)
\(888\) 0 0
\(889\) −7.96484 7.96484i −0.267132 0.267132i
\(890\) −9.79402 + 9.79402i −0.328296 + 0.328296i
\(891\) 0 0
\(892\) 11.4474i 0.383289i
\(893\) 23.6771i 0.792324i
\(894\) 0 0
\(895\) −9.79661 + 9.79661i −0.327465 + 0.327465i
\(896\) −24.3498 24.3498i −0.813469 0.813469i
\(897\) 0 0
\(898\) −42.2277 42.2277i −1.40916 1.40916i
\(899\) 6.96309i 0.232232i
\(900\) 0 0
\(901\) −4.43301 1.90781i −0.147685 0.0635583i
\(902\) 55.0634 1.83341
\(903\) 0 0
\(904\) 24.2564 + 24.2564i 0.806756 + 0.806756i
\(905\) 7.95163 0.264321
\(906\) 0 0
\(907\) −6.14695 + 6.14695i −0.204106 + 0.204106i −0.801757 0.597651i \(-0.796101\pi\)
0.597651 + 0.801757i \(0.296101\pi\)
\(908\) −4.02020 + 4.02020i −0.133415 + 0.133415i
\(909\) 0 0
\(910\) 18.6005i 0.616599i
\(911\) 32.4259 32.4259i 1.07432 1.07432i 0.0773122 0.997007i \(-0.475366\pi\)
0.997007 0.0773122i \(-0.0246338\pi\)
\(912\) 0 0
\(913\) −21.8127 21.8127i −0.721896 0.721896i
\(914\) 24.2641 0.802586
\(915\) 0 0
\(916\) 12.4157i 0.410225i
\(917\) −54.9203 −1.81363
\(918\) 0 0
\(919\) 36.9580 1.21913 0.609566 0.792735i \(-0.291344\pi\)
0.609566 + 0.792735i \(0.291344\pi\)
\(920\) 3.67455i 0.121146i
\(921\) 0 0
\(922\) 22.5736 0.743421
\(923\) −33.2121 33.2121i −1.09319 1.09319i
\(924\) 0 0
\(925\) −20.6631 + 20.6631i −0.679399 + 0.679399i
\(926\) 3.88477i 0.127662i
\(927\) 0 0
\(928\) 13.7139 13.7139i 0.450181 0.450181i
\(929\) 26.2591 26.2591i 0.861532 0.861532i −0.129984 0.991516i \(-0.541493\pi\)
0.991516 + 0.129984i \(0.0414927\pi\)
\(930\) 0 0
\(931\) −1.58975 −0.0521020
\(932\) −10.6774 10.6774i −0.349751 0.349751i
\(933\) 0 0
\(934\) −20.5844 −0.673541
\(935\) 4.76596 11.0743i 0.155864 0.362168i
\(936\) 0 0
\(937\) 20.2047i 0.660058i 0.943971 + 0.330029i \(0.107059\pi\)
−0.943971 + 0.330029i \(0.892941\pi\)
\(938\) −13.4888 13.4888i −0.440426 0.440426i
\(939\) 0 0
\(940\) −3.20917 3.20917i −0.104672 0.104672i
\(941\) −34.0034 + 34.0034i −1.10848 + 1.10848i −0.115130 + 0.993350i \(0.536728\pi\)
−0.993350 + 0.115130i \(0.963272\pi\)
\(942\) 0 0
\(943\) 19.0308i 0.619729i
\(944\) 37.1693i 1.20976i
\(945\) 0 0
\(946\) −37.8928 + 37.8928i −1.23200 + 1.23200i
\(947\) −16.2726 16.2726i −0.528790 0.528790i 0.391422 0.920211i \(-0.371983\pi\)
−0.920211 + 0.391422i \(0.871983\pi\)
\(948\) 0 0
\(949\) 2.18404 + 2.18404i 0.0708970 + 0.0708970i
\(950\) 17.9617i 0.582754i
\(951\) 0 0
\(952\) −21.8051 + 8.68379i −0.706707 + 0.281443i
\(953\) 0.0564747 0.00182940 0.000914698 1.00000i \(-0.499709\pi\)
0.000914698 1.00000i \(0.499709\pi\)
\(954\) 0 0
\(955\) 15.0684 + 15.0684i 0.487601 + 0.487601i
\(956\) −3.12969 −0.101222
\(957\) 0 0
\(958\) −37.5855 + 37.5855i −1.21433 + 1.21433i
\(959\) −22.9933 + 22.9933i −0.742494 + 0.742494i
\(960\) 0 0
\(961\) 29.5906i 0.954536i
\(962\) 43.0213 43.0213i 1.38706 1.38706i
\(963\) 0 0
\(964\) −0.542775 0.542775i −0.0174816 0.0174816i
\(965\) 14.5506 0.468401
\(966\) 0 0
\(967\) 0.706923i 0.0227331i −0.999935 0.0113666i \(-0.996382\pi\)
0.999935 0.0113666i \(-0.00361816\pi\)
\(968\) 4.14920 0.133360
\(969\) 0 0
\(970\) 4.37545 0.140487
\(971\) 10.5257i 0.337785i 0.985634 + 0.168892i \(0.0540190\pi\)
−0.985634 + 0.168892i \(0.945981\pi\)
\(972\) 0 0
\(973\) −33.9149 −1.08726
\(974\) 20.0318 + 20.0318i 0.641860 + 0.641860i
\(975\) 0 0
\(976\) 14.3847 14.3847i 0.460444 0.460444i
\(977\) 13.9176i 0.445264i 0.974903 + 0.222632i \(0.0714648\pi\)
−0.974903 + 0.222632i \(0.928535\pi\)
\(978\) 0 0
\(979\) −26.6571 + 26.6571i −0.851964 + 0.851964i
\(980\) −0.215473 + 0.215473i −0.00688304 + 0.00688304i
\(981\) 0 0
\(982\) −57.8442 −1.84588
\(983\) −13.2245 13.2245i −0.421795 0.421795i 0.464026 0.885822i \(-0.346404\pi\)
−0.885822 + 0.464026i \(0.846404\pi\)
\(984\) 0 0
\(985\) 12.0193 0.382968
\(986\) −14.4366 36.2504i −0.459755 1.15445i
\(987\) 0 0
\(988\) 8.66704i 0.275735i
\(989\) −13.0964 13.0964i −0.416441 0.416441i
\(990\) 0 0
\(991\) −23.6334 23.6334i −0.750741 0.750741i 0.223877 0.974617i \(-0.428129\pi\)
−0.974617 + 0.223877i \(0.928129\pi\)
\(992\) 2.77577 2.77577i 0.0881309 0.0881309i
\(993\) 0 0
\(994\) 34.2293i 1.08569i
\(995\) 8.50330i 0.269573i
\(996\) 0 0
\(997\) 29.5670 29.5670i 0.936397 0.936397i −0.0616976 0.998095i \(-0.519651\pi\)
0.998095 + 0.0616976i \(0.0196514\pi\)
\(998\) 31.9014 + 31.9014i 1.00982 + 1.00982i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.2.f.c.217.10 yes 24
3.2 odd 2 inner 459.2.f.c.217.3 yes 24
17.2 even 8 7803.2.a.bw.1.3 12
17.4 even 4 inner 459.2.f.c.55.3 24
17.15 even 8 7803.2.a.bv.1.3 12
51.2 odd 8 7803.2.a.bw.1.10 12
51.32 odd 8 7803.2.a.bv.1.10 12
51.38 odd 4 inner 459.2.f.c.55.10 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
459.2.f.c.55.3 24 17.4 even 4 inner
459.2.f.c.55.10 yes 24 51.38 odd 4 inner
459.2.f.c.217.3 yes 24 3.2 odd 2 inner
459.2.f.c.217.10 yes 24 1.1 even 1 trivial
7803.2.a.bv.1.3 12 17.15 even 8
7803.2.a.bv.1.10 12 51.32 odd 8
7803.2.a.bw.1.3 12 17.2 even 8
7803.2.a.bw.1.10 12 51.2 odd 8