Defining parameters
Level: | \( N \) | \(=\) | \( 459 = 3^{3} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 459.f (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 17 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(108\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(459, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 120 | 48 | 72 |
Cusp forms | 96 | 48 | 48 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(459, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
459.2.f.a | $4$ | $3.665$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(-8\) | \(q+(\zeta_{8}+\zeta_{8}^{3})q^{2}+4\zeta_{8}q^{5}+(-2+2\zeta_{8}^{2}+\cdots)q^{7}+\cdots\) |
459.2.f.b | $20$ | $3.665$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(8\) | \(q+\beta _{10}q^{2}+(-1-\beta _{4})q^{4}-\beta _{17}q^{5}+\cdots\) |
459.2.f.c | $24$ | $3.665$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(459, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(459, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(51, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(153, [\chi])\)\(^{\oplus 2}\)