Properties

Label 7803.2.a.bi
Level $7803$
Weight $2$
Character orbit 7803.a
Self dual yes
Analytic conductor $62.307$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7803,2,Mod(1,7803)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7803, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7803.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7803 = 3^{3} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7803.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,8,0,0,0,0,0,0,8,0,-4,-4,0,-4,0,0,-8,12,0,0,-20,0,-8,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,-8,16,0,0,0,0,12,0,0,16,0,0,0,36,0,0,0, 0,0,64,0,-8,24,0,24,0,0,36,36,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(73)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.3072686972\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.29952.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 8x^{2} + 13 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 459)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} + 2) q^{4} + \beta_{2} q^{5} + \beta_{3} q^{7} + (\beta_{3} + \beta_1) q^{8} + (\beta_{3} + \beta_1) q^{10} + 2 q^{11} + (2 \beta_{2} - 1) q^{13} + (3 \beta_{2} - 1) q^{14}+ \cdots + ( - 4 \beta_{3} - \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{4} + 8 q^{11} - 4 q^{13} - 4 q^{14} - 4 q^{16} - 8 q^{19} + 12 q^{20} - 20 q^{23} - 8 q^{25} + 8 q^{41} - 8 q^{43} + 16 q^{44} + 12 q^{49} + 16 q^{52} + 36 q^{56} + 64 q^{62} - 8 q^{64} + 24 q^{65}+ \cdots + 36 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 8x^{2} + 13 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 5\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 5\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.39417
−1.50597
1.50597
2.39417
−2.39417 0 3.73205 1.73205 0 −1.75265 −4.14682 0 −4.14682
1.2 −1.50597 0 0.267949 −1.73205 0 4.11439 2.60842 0 2.60842
1.3 1.50597 0 0.267949 −1.73205 0 −4.11439 −2.60842 0 −2.60842
1.4 2.39417 0 3.73205 1.73205 0 1.75265 4.14682 0 4.14682
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(17\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
51.c odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7803.2.a.bi 4
3.b odd 2 1 7803.2.a.bh 4
17.b even 2 1 7803.2.a.bh 4
17.c even 4 2 459.2.d.b 8
51.c odd 2 1 inner 7803.2.a.bi 4
51.f odd 4 2 459.2.d.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
459.2.d.b 8 17.c even 4 2
459.2.d.b 8 51.f odd 4 2
7803.2.a.bh 4 3.b odd 2 1
7803.2.a.bh 4 17.b even 2 1
7803.2.a.bi 4 1.a even 1 1 trivial
7803.2.a.bi 4 51.c odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7803))\):

\( T_{2}^{4} - 8T_{2}^{2} + 13 \) Copy content Toggle raw display
\( T_{5}^{2} - 3 \) Copy content Toggle raw display
\( T_{7}^{4} - 20T_{7}^{2} + 52 \) Copy content Toggle raw display
\( T_{11} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 8T^{2} + 13 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} - 20T^{2} + 52 \) Copy content Toggle raw display
$11$ \( (T - 2)^{4} \) Copy content Toggle raw display
$13$ \( (T^{2} + 2 T - 11)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} + 4 T - 23)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 10 T + 13)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} - 128T^{2} + 3328 \) Copy content Toggle raw display
$37$ \( T^{4} - 188T^{2} + 8788 \) Copy content Toggle raw display
$41$ \( (T^{2} - 4 T - 71)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 4 T + 1)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} - 188T^{2} + 8788 \) Copy content Toggle raw display
$53$ \( T^{4} - 132T^{2} + 468 \) Copy content Toggle raw display
$59$ \( T^{4} - 60T^{2} + 468 \) Copy content Toggle raw display
$61$ \( T^{4} - 44T^{2} + 52 \) Copy content Toggle raw display
$67$ \( (T^{2} - 12 T + 33)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 18 T + 69)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} - 60T^{2} + 468 \) Copy content Toggle raw display
$79$ \( T^{4} - 164T^{2} + 6292 \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} - 176T^{2} + 832 \) Copy content Toggle raw display
$97$ \( T^{4} - 332 T^{2} + 27508 \) Copy content Toggle raw display
show more
show less