Properties

Label 459.2.d.b
Level $459$
Weight $2$
Character orbit 459.d
Analytic conductor $3.665$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [459,2,Mod(271,459)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("459.271"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 459.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.66513345278\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.897122304.10
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 8x^{6} + 51x^{4} - 104x^{2} + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_{4} + 2) q^{4} + \beta_{5} q^{5} + \beta_{7} q^{7} + (\beta_{3} - \beta_1) q^{8} + (\beta_{7} + \beta_{2}) q^{10} + 2 \beta_{6} q^{11} + (2 \beta_{4} - 1) q^{13} + (\beta_{6} + 3 \beta_{5}) q^{14}+ \cdots + (4 \beta_{3} - \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{4} - 8 q^{13} - 8 q^{16} + 16 q^{19} + 16 q^{25} + 8 q^{34} + 16 q^{43} - 24 q^{49} + 32 q^{52} - 16 q^{64} + 48 q^{67} - 72 q^{70} - 40 q^{76} + 24 q^{85} - 40 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 8x^{6} + 51x^{4} - 104x^{2} + 169 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -2\nu^{7} + 68\nu^{5} - 323\nu^{3} + 1092\nu ) / 663 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 8\nu^{7} - 51\nu^{5} + 408\nu^{3} - 169\nu ) / 663 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -10\nu^{7} + 119\nu^{5} - 731\nu^{3} + 2587\nu ) / 663 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{6} - 100 ) / 51 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 16\nu^{6} - 102\nu^{4} + 816\nu^{2} - 1001 ) / 663 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{6} - 8\nu^{4} + 38\nu^{2} - 52 ) / 39 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -40\nu^{7} + 255\nu^{5} - 1377\nu^{3} + 845\nu ) / 663 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -3\beta_{6} + 4\beta_{5} + \beta_{4} + 4 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{7} + 5\beta_{2} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -24\beta_{6} + 19\beta_{5} - 8\beta_{4} - 19 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 8\beta_{7} - 19\beta_{3} + 27\beta_{2} + 43\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -51\beta_{4} - 100 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -51\beta_{7} - 100\beta_{3} - 151\beta_{2} + 253\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
271.1
−2.07341 + 1.19709i
−2.07341 1.19709i
1.30421 0.752986i
1.30421 + 0.752986i
−1.30421 + 0.752986i
−1.30421 0.752986i
2.07341 1.19709i
2.07341 + 1.19709i
−2.39417 0 3.73205 1.73205i 0 1.75265i −4.14682 0 4.14682i
271.2 −2.39417 0 3.73205 1.73205i 0 1.75265i −4.14682 0 4.14682i
271.3 −1.50597 0 0.267949 1.73205i 0 4.11439i 2.60842 0 2.60842i
271.4 −1.50597 0 0.267949 1.73205i 0 4.11439i 2.60842 0 2.60842i
271.5 1.50597 0 0.267949 1.73205i 0 4.11439i −2.60842 0 2.60842i
271.6 1.50597 0 0.267949 1.73205i 0 4.11439i −2.60842 0 2.60842i
271.7 2.39417 0 3.73205 1.73205i 0 1.75265i 4.14682 0 4.14682i
271.8 2.39417 0 3.73205 1.73205i 0 1.75265i 4.14682 0 4.14682i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 271.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
17.b even 2 1 inner
51.c odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 459.2.d.b 8
3.b odd 2 1 inner 459.2.d.b 8
17.b even 2 1 inner 459.2.d.b 8
17.c even 4 1 7803.2.a.bh 4
17.c even 4 1 7803.2.a.bi 4
51.c odd 2 1 inner 459.2.d.b 8
51.f odd 4 1 7803.2.a.bh 4
51.f odd 4 1 7803.2.a.bi 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
459.2.d.b 8 1.a even 1 1 trivial
459.2.d.b 8 3.b odd 2 1 inner
459.2.d.b 8 17.b even 2 1 inner
459.2.d.b 8 51.c odd 2 1 inner
7803.2.a.bh 4 17.c even 4 1
7803.2.a.bh 4 51.f odd 4 1
7803.2.a.bi 4 17.c even 4 1
7803.2.a.bi 4 51.f odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 8T_{2}^{2} + 13 \) acting on \(S_{2}^{\mathrm{new}}(459, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} - 8 T^{2} + 13)^{2} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{2} + 3)^{4} \) Copy content Toggle raw display
$7$ \( (T^{4} + 20 T^{2} + 52)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 4)^{4} \) Copy content Toggle raw display
$13$ \( (T^{2} + 2 T - 11)^{4} \) Copy content Toggle raw display
$17$ \( T^{8} - 12 T^{6} + \cdots + 83521 \) Copy content Toggle raw display
$19$ \( (T^{2} - 4 T - 23)^{4} \) Copy content Toggle raw display
$23$ \( (T^{4} + 74 T^{2} + 169)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 3)^{4} \) Copy content Toggle raw display
$31$ \( (T^{4} + 128 T^{2} + 3328)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + 188 T^{2} + 8788)^{2} \) Copy content Toggle raw display
$41$ \( (T^{4} + 158 T^{2} + 5041)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 4 T + 1)^{4} \) Copy content Toggle raw display
$47$ \( (T^{4} - 188 T^{2} + 8788)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} - 132 T^{2} + 468)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} - 60 T^{2} + 468)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + 44 T^{2} + 52)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 12 T + 33)^{4} \) Copy content Toggle raw display
$71$ \( (T^{4} + 186 T^{2} + 4761)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} + 60 T^{2} + 468)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} + 164 T^{2} + 6292)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} \) Copy content Toggle raw display
$89$ \( (T^{4} - 176 T^{2} + 832)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + 332 T^{2} + 27508)^{2} \) Copy content Toggle raw display
show more
show less