L(s) = 1 | + 1.50·2-s + 0.267·4-s + 1.73i·5-s + 4.11i·7-s − 2.60·8-s + 2.60i·10-s + 2i·11-s − 4.46·13-s + 6.19i·14-s − 4.46·16-s + (4.11 + 0.267i)17-s + 7.19·19-s + 0.464i·20-s + 3.01i·22-s − 8.46i·23-s + ⋯ |
L(s) = 1 | + 1.06·2-s + 0.133·4-s + 0.774i·5-s + 1.55i·7-s − 0.922·8-s + 0.824i·10-s + 0.603i·11-s − 1.23·13-s + 1.65i·14-s − 1.11·16-s + (0.997 + 0.0649i)17-s + 1.65·19-s + 0.103i·20-s + 0.642i·22-s − 1.76i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0649 - 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0649 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.40497 + 1.31645i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.40497 + 1.31645i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 17 | \( 1 + (-4.11 - 0.267i)T \) |
good | 2 | \( 1 - 1.50T + 2T^{2} \) |
| 5 | \( 1 - 1.73iT - 5T^{2} \) |
| 7 | \( 1 - 4.11iT - 7T^{2} \) |
| 11 | \( 1 - 2iT - 11T^{2} \) |
| 13 | \( 1 + 4.46T + 13T^{2} \) |
| 19 | \( 1 - 7.19T + 19T^{2} \) |
| 23 | \( 1 + 8.46iT - 23T^{2} \) |
| 29 | \( 1 + 1.73iT - 29T^{2} \) |
| 31 | \( 1 - 6.02iT - 31T^{2} \) |
| 37 | \( 1 - 9.33iT - 37T^{2} \) |
| 41 | \( 1 + 6.66iT - 41T^{2} \) |
| 43 | \( 1 - 0.267T + 43T^{2} \) |
| 47 | \( 1 - 9.33T + 47T^{2} \) |
| 53 | \( 1 + 1.90T + 53T^{2} \) |
| 59 | \( 1 + 7.12T + 59T^{2} \) |
| 61 | \( 1 - 1.10iT - 61T^{2} \) |
| 67 | \( 1 - 4.26T + 67T^{2} \) |
| 71 | \( 1 + 5.53iT - 71T^{2} \) |
| 73 | \( 1 - 7.12iT - 73T^{2} \) |
| 79 | \( 1 + 10.1iT - 79T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + 2.20T + 89T^{2} \) |
| 97 | \( 1 + 13.1iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.83852180684890048571261193798, −10.36937513019852011304626270656, −9.536103849600048781692236324721, −8.653403562478189255939229047592, −7.38180990726082442508316689324, −6.37822204744743383377617210464, −5.38583834103476527280795697682, −4.76015807797975356260386837211, −3.15244222341905479560143880175, −2.52889466647988725815317148312,
0.898795883062518833635365205675, 3.17927000887785320352562838032, 4.03527470398510499063589499791, 5.05816079572590758511993994614, 5.68982671826630413061713561198, 7.22940536220388110355430488666, 7.80492582853879600134751797548, 9.316793467423443972990311055414, 9.796995989489913877562029231619, 11.09575158672502522324963815660