L(s) = 1 | − 1.50·2-s + 0.267·4-s − 1.73i·5-s + 4.11i·7-s + 2.60·8-s + 2.60i·10-s − 2i·11-s − 4.46·13-s − 6.19i·14-s − 4.46·16-s + (−4.11 − 0.267i)17-s + 7.19·19-s − 0.464i·20-s + 3.01i·22-s + 8.46i·23-s + ⋯ |
L(s) = 1 | − 1.06·2-s + 0.133·4-s − 0.774i·5-s + 1.55i·7-s + 0.922·8-s + 0.824i·10-s − 0.603i·11-s − 1.23·13-s − 1.65i·14-s − 1.11·16-s + (−0.997 − 0.0649i)17-s + 1.65·19-s − 0.103i·20-s + 0.642i·22-s + 1.76i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0649 - 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 459 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0649 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.388134 + 0.363679i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.388134 + 0.363679i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 17 | \( 1 + (4.11 + 0.267i)T \) |
good | 2 | \( 1 + 1.50T + 2T^{2} \) |
| 5 | \( 1 + 1.73iT - 5T^{2} \) |
| 7 | \( 1 - 4.11iT - 7T^{2} \) |
| 11 | \( 1 + 2iT - 11T^{2} \) |
| 13 | \( 1 + 4.46T + 13T^{2} \) |
| 19 | \( 1 - 7.19T + 19T^{2} \) |
| 23 | \( 1 - 8.46iT - 23T^{2} \) |
| 29 | \( 1 - 1.73iT - 29T^{2} \) |
| 31 | \( 1 - 6.02iT - 31T^{2} \) |
| 37 | \( 1 - 9.33iT - 37T^{2} \) |
| 41 | \( 1 - 6.66iT - 41T^{2} \) |
| 43 | \( 1 - 0.267T + 43T^{2} \) |
| 47 | \( 1 + 9.33T + 47T^{2} \) |
| 53 | \( 1 - 1.90T + 53T^{2} \) |
| 59 | \( 1 - 7.12T + 59T^{2} \) |
| 61 | \( 1 - 1.10iT - 61T^{2} \) |
| 67 | \( 1 - 4.26T + 67T^{2} \) |
| 71 | \( 1 - 5.53iT - 71T^{2} \) |
| 73 | \( 1 - 7.12iT - 73T^{2} \) |
| 79 | \( 1 + 10.1iT - 79T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 - 2.20T + 89T^{2} \) |
| 97 | \( 1 + 13.1iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.37906945881762100986360886503, −9.912208707267331782173541014820, −9.381139131006404752511949000895, −8.715895157051888665185725705177, −8.015783407550259962456044573373, −6.91343393056329536925964561178, −5.38437166678532805872427362339, −4.89596596531680059152057641452, −2.97019384129856211530839237008, −1.45413644869752991702028221411,
0.50078504228782952494076953154, 2.32964149111165644584709996443, 4.00321114476773356196103056306, 4.89356819278704752776862623471, 6.81466159803484362566212413155, 7.23513688283905011710786288986, 7.980064708087308442940119867324, 9.283128648230738236863575207115, 9.978536146665616211857676237615, 10.57440141609472564367894600772