Properties

Label 8-7803e4-1.1-c1e4-0-0
Degree $8$
Conductor $3.707\times 10^{15}$
Sign $1$
Analytic cond. $1.50714\times 10^{7}$
Root an. cond. $7.89349$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·11-s − 4·13-s − 5·16-s − 8·19-s − 20·23-s − 14·25-s + 8·41-s − 8·43-s − 8·49-s + 24·67-s + 36·71-s − 48·103-s + 12·107-s + 32·113-s − 4·121-s + 127-s + 131-s + 137-s + 139-s − 32·143-s + 149-s + 151-s + 157-s + 163-s + 167-s − 18·169-s + 173-s + ⋯
L(s)  = 1  + 2.41·11-s − 1.10·13-s − 5/4·16-s − 1.83·19-s − 4.17·23-s − 2.79·25-s + 1.24·41-s − 1.21·43-s − 8/7·49-s + 2.93·67-s + 4.27·71-s − 4.72·103-s + 1.16·107-s + 3.01·113-s − 0.363·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 2.67·143-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.38·169-s + 0.0760·173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{12} \cdot 17^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{12} \cdot 17^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{12} \cdot 17^{8}\)
Sign: $1$
Analytic conductor: \(1.50714\times 10^{7}\)
Root analytic conductor: \(7.89349\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{12} \cdot 17^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.092433350\)
\(L(\frac12)\) \(\approx\) \(2.092433350\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
17 \( 1 \)
good2$D_4\times C_2$ \( 1 + 5 T^{4} + p^{4} T^{8} \)
5$C_2^2$ \( ( 1 + 7 T^{2} + p^{2} T^{4} )^{2} \)
7$C_2^2 \wr C_2$ \( 1 + 8 T^{2} + 66 T^{4} + 8 p^{2} T^{6} + p^{4} T^{8} \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
13$D_{4}$ \( ( 1 + 2 T + 15 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
19$D_{4}$ \( ( 1 + 4 T + 15 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
23$D_{4}$ \( ( 1 + 10 T + 59 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 55 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2 \wr C_2$ \( 1 - 4 T^{2} + 1158 T^{4} - 4 p^{2} T^{6} + p^{4} T^{8} \)
37$C_2^2 \wr C_2$ \( 1 - 40 T^{2} + 3090 T^{4} - 40 p^{2} T^{6} + p^{4} T^{8} \)
41$D_{4}$ \( ( 1 - 4 T + 11 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_{4}$ \( ( 1 + 4 T + 87 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
47$D_4\times C_2$ \( 1 + 4370 T^{4} + p^{4} T^{8} \)
53$C_2^2 \wr C_2$ \( 1 + 80 T^{2} + 3330 T^{4} + 80 p^{2} T^{6} + p^{4} T^{8} \)
59$C_2^2 \wr C_2$ \( 1 + 176 T^{2} + 14274 T^{4} + 176 p^{2} T^{6} + p^{4} T^{8} \)
61$C_2^2 \wr C_2$ \( 1 + 200 T^{2} + 17010 T^{4} + 200 p^{2} T^{6} + p^{4} T^{8} \)
67$D_{4}$ \( ( 1 - 12 T + 167 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
71$D_{4}$ \( ( 1 - 18 T + 211 T^{2} - 18 p T^{3} + p^{2} T^{4} )^{2} \)
73$C_2^2 \wr C_2$ \( 1 + 232 T^{2} + 23682 T^{4} + 232 p^{2} T^{6} + p^{4} T^{8} \)
79$C_2^2 \wr C_2$ \( 1 + 152 T^{2} + 17826 T^{4} + 152 p^{2} T^{6} + p^{4} T^{8} \)
83$C_2$ \( ( 1 + p T^{2} )^{4} \)
89$C_2^2 \wr C_2$ \( 1 + 180 T^{2} + 17030 T^{4} + 180 p^{2} T^{6} + p^{4} T^{8} \)
97$C_2^2 \wr C_2$ \( 1 + 56 T^{2} + 19554 T^{4} + 56 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.54891211130720804574207155006, −5.41248176701585342978368169148, −5.16390021798114330520574733130, −4.87951498259642064143071842277, −4.80633183370004306612720727497, −4.30072384886374500052138437362, −4.27624149011911824441656667614, −4.19787940702584306602654924709, −4.11175821591785771036656512434, −3.78722775984697590495323101394, −3.74623448102970239794614645092, −3.73787013392988393287581521115, −3.26601454483731431835599146032, −2.94473902732425550788567762622, −2.85249728577045923299528853404, −2.27248337529066737729467379761, −2.19988385926848787495153851337, −2.06654955129862165083267573078, −2.03141536428772317914521004931, −1.84113175081442612585096897771, −1.56617192724139837860602501569, −1.24033268397176857425150351253, −0.65004160257863599080926783591, −0.42936451160579537924671702837, −0.27092515825783338549203393261, 0.27092515825783338549203393261, 0.42936451160579537924671702837, 0.65004160257863599080926783591, 1.24033268397176857425150351253, 1.56617192724139837860602501569, 1.84113175081442612585096897771, 2.03141536428772317914521004931, 2.06654955129862165083267573078, 2.19988385926848787495153851337, 2.27248337529066737729467379761, 2.85249728577045923299528853404, 2.94473902732425550788567762622, 3.26601454483731431835599146032, 3.73787013392988393287581521115, 3.74623448102970239794614645092, 3.78722775984697590495323101394, 4.11175821591785771036656512434, 4.19787940702584306602654924709, 4.27624149011911824441656667614, 4.30072384886374500052138437362, 4.80633183370004306612720727497, 4.87951498259642064143071842277, 5.16390021798114330520574733130, 5.41248176701585342978368169148, 5.54891211130720804574207155006

Graph of the $Z$-function along the critical line