Properties

Label 780.2.cc.b.121.4
Level $780$
Weight $2$
Character 780.121
Analytic conductor $6.228$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [780,2,Mod(121,780)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(780, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("780.121"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 780 = 2^{2} \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 780.cc (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.22833135766\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 121.4
Root \(0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 780.121
Dual form 780.2.cc.b.361.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{3} +1.00000i q^{5} +(3.40508 - 1.96593i) q^{7} +(-0.500000 - 0.866025i) q^{9} +(-1.14128 - 0.658919i) q^{11} +(1.86250 - 3.08725i) q^{13} +(-0.866025 - 0.500000i) q^{15} +(-0.276457 - 0.478838i) q^{17} +(4.69748 - 2.71209i) q^{19} +3.93185i q^{21} +(-0.237657 + 0.411634i) q^{23} -1.00000 q^{25} +1.00000 q^{27} +(1.53906 - 2.66573i) q^{29} +3.49938i q^{31} +(1.14128 - 0.658919i) q^{33} +(1.96593 + 3.40508i) q^{35} +(0.407165 + 0.235077i) q^{37} +(1.74238 + 3.15660i) q^{39} +(2.53906 + 1.46593i) q^{41} +(0.697977 + 1.20893i) q^{43} +(0.866025 - 0.500000i) q^{45} +7.71039i q^{47} +(4.22973 - 7.32611i) q^{49} +0.552914 q^{51} +3.43488 q^{53} +(0.658919 - 1.14128i) q^{55} +5.42418i q^{57} +(11.2735 - 6.50877i) q^{59} +(0.313111 + 0.542324i) q^{61} +(-3.40508 - 1.96593i) q^{63} +(3.08725 + 1.86250i) q^{65} +(11.0370 + 6.37221i) q^{67} +(-0.237657 - 0.411634i) q^{69} +(-4.51581 + 2.60721i) q^{71} -6.95303i q^{73} +(0.500000 - 0.866025i) q^{75} -5.18154 q^{77} +1.19615 q^{79} +(-0.500000 + 0.866025i) q^{81} +12.9382i q^{83} +(0.478838 - 0.276457i) q^{85} +(1.53906 + 2.66573i) q^{87} +(-15.5117 - 8.95568i) q^{89} +(0.272675 - 14.1739i) q^{91} +(-3.03055 - 1.74969i) q^{93} +(2.71209 + 4.69748i) q^{95} +(-4.54342 + 2.62314i) q^{97} +1.31784i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} - 4 q^{9} - 12 q^{11} + 4 q^{17} + 12 q^{19} + 4 q^{23} - 8 q^{25} + 8 q^{27} - 8 q^{29} + 12 q^{33} + 8 q^{35} - 24 q^{37} - 16 q^{43} - 4 q^{49} - 8 q^{51} + 16 q^{53} + 4 q^{55} + 24 q^{59}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/780\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(301\) \(391\) \(521\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 3.40508 1.96593i 1.28700 0.743050i 0.308882 0.951100i \(-0.400045\pi\)
0.978118 + 0.208050i \(0.0667117\pi\)
\(8\) 0 0
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) −1.14128 0.658919i −0.344109 0.198671i 0.317979 0.948098i \(-0.396996\pi\)
−0.662088 + 0.749426i \(0.730329\pi\)
\(12\) 0 0
\(13\) 1.86250 3.08725i 0.516565 0.856248i
\(14\) 0 0
\(15\) −0.866025 0.500000i −0.223607 0.129099i
\(16\) 0 0
\(17\) −0.276457 0.478838i −0.0670507 0.116135i 0.830551 0.556942i \(-0.188026\pi\)
−0.897602 + 0.440807i \(0.854692\pi\)
\(18\) 0 0
\(19\) 4.69748 2.71209i 1.07768 0.622196i 0.147407 0.989076i \(-0.452907\pi\)
0.930268 + 0.366880i \(0.119574\pi\)
\(20\) 0 0
\(21\) 3.93185i 0.858000i
\(22\) 0 0
\(23\) −0.237657 + 0.411634i −0.0495549 + 0.0858316i −0.889739 0.456470i \(-0.849114\pi\)
0.840184 + 0.542301i \(0.182447\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 1.53906 2.66573i 0.285796 0.495013i −0.687006 0.726652i \(-0.741075\pi\)
0.972802 + 0.231639i \(0.0744087\pi\)
\(30\) 0 0
\(31\) 3.49938i 0.628507i 0.949339 + 0.314253i \(0.101754\pi\)
−0.949339 + 0.314253i \(0.898246\pi\)
\(32\) 0 0
\(33\) 1.14128 0.658919i 0.198671 0.114703i
\(34\) 0 0
\(35\) 1.96593 + 3.40508i 0.332302 + 0.575564i
\(36\) 0 0
\(37\) 0.407165 + 0.235077i 0.0669376 + 0.0386464i 0.533095 0.846055i \(-0.321029\pi\)
−0.466158 + 0.884702i \(0.654362\pi\)
\(38\) 0 0
\(39\) 1.74238 + 3.15660i 0.279005 + 0.505460i
\(40\) 0 0
\(41\) 2.53906 + 1.46593i 0.396534 + 0.228939i 0.684987 0.728555i \(-0.259808\pi\)
−0.288453 + 0.957494i \(0.593141\pi\)
\(42\) 0 0
\(43\) 0.697977 + 1.20893i 0.106440 + 0.184360i 0.914326 0.404979i \(-0.132721\pi\)
−0.807885 + 0.589340i \(0.799388\pi\)
\(44\) 0 0
\(45\) 0.866025 0.500000i 0.129099 0.0745356i
\(46\) 0 0
\(47\) 7.71039i 1.12468i 0.826907 + 0.562338i \(0.190098\pi\)
−0.826907 + 0.562338i \(0.809902\pi\)
\(48\) 0 0
\(49\) 4.22973 7.32611i 0.604247 1.04659i
\(50\) 0 0
\(51\) 0.552914 0.0774235
\(52\) 0 0
\(53\) 3.43488 0.471817 0.235908 0.971775i \(-0.424193\pi\)
0.235908 + 0.971775i \(0.424193\pi\)
\(54\) 0 0
\(55\) 0.658919 1.14128i 0.0888486 0.153890i
\(56\) 0 0
\(57\) 5.42418i 0.718450i
\(58\) 0 0
\(59\) 11.2735 6.50877i 1.46769 0.847369i 0.468341 0.883548i \(-0.344852\pi\)
0.999345 + 0.0361787i \(0.0115185\pi\)
\(60\) 0 0
\(61\) 0.313111 + 0.542324i 0.0400898 + 0.0694375i 0.885374 0.464879i \(-0.153902\pi\)
−0.845284 + 0.534317i \(0.820569\pi\)
\(62\) 0 0
\(63\) −3.40508 1.96593i −0.429000 0.247683i
\(64\) 0 0
\(65\) 3.08725 + 1.86250i 0.382926 + 0.231015i
\(66\) 0 0
\(67\) 11.0370 + 6.37221i 1.34838 + 0.778490i 0.988020 0.154323i \(-0.0493195\pi\)
0.360363 + 0.932812i \(0.382653\pi\)
\(68\) 0 0
\(69\) −0.237657 0.411634i −0.0286105 0.0495549i
\(70\) 0 0
\(71\) −4.51581 + 2.60721i −0.535929 + 0.309418i −0.743427 0.668817i \(-0.766801\pi\)
0.207499 + 0.978235i \(0.433468\pi\)
\(72\) 0 0
\(73\) 6.95303i 0.813791i −0.913475 0.406895i \(-0.866611\pi\)
0.913475 0.406895i \(-0.133389\pi\)
\(74\) 0 0
\(75\) 0.500000 0.866025i 0.0577350 0.100000i
\(76\) 0 0
\(77\) −5.18154 −0.590491
\(78\) 0 0
\(79\) 1.19615 0.134578 0.0672888 0.997734i \(-0.478565\pi\)
0.0672888 + 0.997734i \(0.478565\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 12.9382i 1.42015i 0.704127 + 0.710074i \(0.251339\pi\)
−0.704127 + 0.710074i \(0.748661\pi\)
\(84\) 0 0
\(85\) 0.478838 0.276457i 0.0519373 0.0299860i
\(86\) 0 0
\(87\) 1.53906 + 2.66573i 0.165004 + 0.285796i
\(88\) 0 0
\(89\) −15.5117 8.95568i −1.64424 0.949300i −0.979304 0.202395i \(-0.935127\pi\)
−0.664931 0.746904i \(-0.731539\pi\)
\(90\) 0 0
\(91\) 0.272675 14.1739i 0.0285841 1.48583i
\(92\) 0 0
\(93\) −3.03055 1.74969i −0.314253 0.181434i
\(94\) 0 0
\(95\) 2.71209 + 4.69748i 0.278255 + 0.481951i
\(96\) 0 0
\(97\) −4.54342 + 2.62314i −0.461314 + 0.266340i −0.712597 0.701574i \(-0.752481\pi\)
0.251282 + 0.967914i \(0.419148\pi\)
\(98\) 0 0
\(99\) 1.31784i 0.132448i
\(100\) 0 0
\(101\) 6.98432 12.0972i 0.694966 1.20372i −0.275226 0.961379i \(-0.588753\pi\)
0.970192 0.242337i \(-0.0779138\pi\)
\(102\) 0 0
\(103\) −17.2231 −1.69705 −0.848523 0.529158i \(-0.822508\pi\)
−0.848523 + 0.529158i \(0.822508\pi\)
\(104\) 0 0
\(105\) −3.93185 −0.383709
\(106\) 0 0
\(107\) −4.81029 + 8.33167i −0.465028 + 0.805453i −0.999203 0.0399215i \(-0.987289\pi\)
0.534174 + 0.845374i \(0.320623\pi\)
\(108\) 0 0
\(109\) 12.1516i 1.16391i −0.813221 0.581956i \(-0.802288\pi\)
0.813221 0.581956i \(-0.197712\pi\)
\(110\) 0 0
\(111\) −0.407165 + 0.235077i −0.0386464 + 0.0223125i
\(112\) 0 0
\(113\) 0.367725 + 0.636919i 0.0345927 + 0.0599163i 0.882803 0.469743i \(-0.155653\pi\)
−0.848211 + 0.529659i \(0.822320\pi\)
\(114\) 0 0
\(115\) −0.411634 0.237657i −0.0383850 0.0221616i
\(116\) 0 0
\(117\) −3.60488 0.0693504i −0.333272 0.00641144i
\(118\) 0 0
\(119\) −1.88272 1.08699i −0.172589 0.0996441i
\(120\) 0 0
\(121\) −4.63165 8.02226i −0.421059 0.729296i
\(122\) 0 0
\(123\) −2.53906 + 1.46593i −0.228939 + 0.132178i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) −9.54378 + 16.5303i −0.846874 + 1.46683i 0.0371100 + 0.999311i \(0.488185\pi\)
−0.883984 + 0.467517i \(0.845149\pi\)
\(128\) 0 0
\(129\) −1.39595 −0.122907
\(130\) 0 0
\(131\) 1.40717 0.122945 0.0614723 0.998109i \(-0.480420\pi\)
0.0614723 + 0.998109i \(0.480420\pi\)
\(132\) 0 0
\(133\) 10.6635 18.4698i 0.924646 1.60153i
\(134\) 0 0
\(135\) 1.00000i 0.0860663i
\(136\) 0 0
\(137\) −10.0977 + 5.82989i −0.862701 + 0.498081i −0.864916 0.501917i \(-0.832628\pi\)
0.00221463 + 0.999998i \(0.499295\pi\)
\(138\) 0 0
\(139\) 1.12106 + 1.94174i 0.0950873 + 0.164696i 0.909645 0.415386i \(-0.136354\pi\)
−0.814558 + 0.580082i \(0.803020\pi\)
\(140\) 0 0
\(141\) −6.67739 3.85520i −0.562338 0.324666i
\(142\) 0 0
\(143\) −4.15988 + 2.29618i −0.347867 + 0.192016i
\(144\) 0 0
\(145\) 2.66573 + 1.53906i 0.221377 + 0.127812i
\(146\) 0 0
\(147\) 4.22973 + 7.32611i 0.348862 + 0.604247i
\(148\) 0 0
\(149\) −16.1476 + 9.32282i −1.32286 + 0.763755i −0.984184 0.177147i \(-0.943313\pi\)
−0.338678 + 0.940902i \(0.609980\pi\)
\(150\) 0 0
\(151\) 0.368970i 0.0300263i 0.999887 + 0.0150132i \(0.00477902\pi\)
−0.999887 + 0.0150132i \(0.995221\pi\)
\(152\) 0 0
\(153\) −0.276457 + 0.478838i −0.0223502 + 0.0387117i
\(154\) 0 0
\(155\) −3.49938 −0.281077
\(156\) 0 0
\(157\) 4.71895 0.376613 0.188307 0.982110i \(-0.439700\pi\)
0.188307 + 0.982110i \(0.439700\pi\)
\(158\) 0 0
\(159\) −1.71744 + 2.97469i −0.136202 + 0.235908i
\(160\) 0 0
\(161\) 1.86886i 0.147287i
\(162\) 0 0
\(163\) 11.7193 6.76612i 0.917924 0.529964i 0.0349520 0.999389i \(-0.488872\pi\)
0.882972 + 0.469425i \(0.155539\pi\)
\(164\) 0 0
\(165\) 0.658919 + 1.14128i 0.0512967 + 0.0888486i
\(166\) 0 0
\(167\) −5.31419 3.06815i −0.411224 0.237420i 0.280091 0.959973i \(-0.409635\pi\)
−0.691316 + 0.722553i \(0.742969\pi\)
\(168\) 0 0
\(169\) −6.06218 11.5000i −0.466321 0.884615i
\(170\) 0 0
\(171\) −4.69748 2.71209i −0.359225 0.207399i
\(172\) 0 0
\(173\) 0.248229 + 0.429946i 0.0188725 + 0.0326882i 0.875307 0.483567i \(-0.160659\pi\)
−0.856435 + 0.516255i \(0.827326\pi\)
\(174\) 0 0
\(175\) −3.40508 + 1.96593i −0.257400 + 0.148610i
\(176\) 0 0
\(177\) 13.0175i 0.978458i
\(178\) 0 0
\(179\) 1.96895 3.41032i 0.147166 0.254900i −0.783013 0.622006i \(-0.786318\pi\)
0.930179 + 0.367106i \(0.119651\pi\)
\(180\) 0 0
\(181\) 3.35363 0.249273 0.124637 0.992202i \(-0.460223\pi\)
0.124637 + 0.992202i \(0.460223\pi\)
\(182\) 0 0
\(183\) −0.626222 −0.0462917
\(184\) 0 0
\(185\) −0.235077 + 0.407165i −0.0172832 + 0.0299354i
\(186\) 0 0
\(187\) 0.728651i 0.0532842i
\(188\) 0 0
\(189\) 3.40508 1.96593i 0.247683 0.143000i
\(190\) 0 0
\(191\) 10.2831 + 17.8109i 0.744062 + 1.28875i 0.950632 + 0.310321i \(0.100437\pi\)
−0.206570 + 0.978432i \(0.566230\pi\)
\(192\) 0 0
\(193\) 4.77886 + 2.75908i 0.343990 + 0.198603i 0.662035 0.749473i \(-0.269693\pi\)
−0.318045 + 0.948076i \(0.603026\pi\)
\(194\) 0 0
\(195\) −3.15660 + 1.74238i −0.226049 + 0.124775i
\(196\) 0 0
\(197\) −6.80659 3.92979i −0.484950 0.279986i 0.237527 0.971381i \(-0.423663\pi\)
−0.722477 + 0.691395i \(0.756996\pi\)
\(198\) 0 0
\(199\) −3.49536 6.05413i −0.247779 0.429166i 0.715130 0.698991i \(-0.246367\pi\)
−0.962909 + 0.269825i \(0.913034\pi\)
\(200\) 0 0
\(201\) −11.0370 + 6.37221i −0.778490 + 0.449461i
\(202\) 0 0
\(203\) 12.1027i 0.849443i
\(204\) 0 0
\(205\) −1.46593 + 2.53906i −0.102385 + 0.177336i
\(206\) 0 0
\(207\) 0.475314 0.0330366
\(208\) 0 0
\(209\) −7.14819 −0.494451
\(210\) 0 0
\(211\) 6.79958 11.7772i 0.468102 0.810777i −0.531233 0.847226i \(-0.678271\pi\)
0.999336 + 0.0364488i \(0.0116046\pi\)
\(212\) 0 0
\(213\) 5.21441i 0.357286i
\(214\) 0 0
\(215\) −1.20893 + 0.697977i −0.0824484 + 0.0476016i
\(216\) 0 0
\(217\) 6.87952 + 11.9157i 0.467012 + 0.808889i
\(218\) 0 0
\(219\) 6.02150 + 3.47652i 0.406895 + 0.234921i
\(220\) 0 0
\(221\) −1.99319 0.0383448i −0.134077 0.00257935i
\(222\) 0 0
\(223\) −10.6814 6.16693i −0.715282 0.412968i 0.0977319 0.995213i \(-0.468841\pi\)
−0.813014 + 0.582245i \(0.802175\pi\)
\(224\) 0 0
\(225\) 0.500000 + 0.866025i 0.0333333 + 0.0577350i
\(226\) 0 0
\(227\) −9.60319 + 5.54441i −0.637386 + 0.367995i −0.783607 0.621257i \(-0.786622\pi\)
0.146221 + 0.989252i \(0.453289\pi\)
\(228\) 0 0
\(229\) 11.4607i 0.757344i 0.925531 + 0.378672i \(0.123619\pi\)
−0.925531 + 0.378672i \(0.876381\pi\)
\(230\) 0 0
\(231\) 2.59077 4.48735i 0.170460 0.295246i
\(232\) 0 0
\(233\) −25.4527 −1.66746 −0.833730 0.552172i \(-0.813799\pi\)
−0.833730 + 0.552172i \(0.813799\pi\)
\(234\) 0 0
\(235\) −7.71039 −0.502970
\(236\) 0 0
\(237\) −0.598076 + 1.03590i −0.0388492 + 0.0672888i
\(238\) 0 0
\(239\) 20.8676i 1.34981i −0.737903 0.674907i \(-0.764184\pi\)
0.737903 0.674907i \(-0.235816\pi\)
\(240\) 0 0
\(241\) −15.8447 + 9.14796i −1.02065 + 0.589272i −0.914292 0.405056i \(-0.867252\pi\)
−0.106357 + 0.994328i \(0.533919\pi\)
\(242\) 0 0
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) 0 0
\(245\) 7.32611 + 4.22973i 0.468048 + 0.270227i
\(246\) 0 0
\(247\) 0.376169 19.5535i 0.0239351 1.24416i
\(248\) 0 0
\(249\) −11.2048 6.46909i −0.710074 0.409962i
\(250\) 0 0
\(251\) 2.17191 + 3.76186i 0.137090 + 0.237447i 0.926394 0.376556i \(-0.122892\pi\)
−0.789304 + 0.614003i \(0.789558\pi\)
\(252\) 0 0
\(253\) 0.542466 0.313193i 0.0341046 0.0196903i
\(254\) 0 0
\(255\) 0.552914i 0.0346248i
\(256\) 0 0
\(257\) −2.42895 + 4.20706i −0.151514 + 0.262429i −0.931784 0.363013i \(-0.881748\pi\)
0.780270 + 0.625442i \(0.215081\pi\)
\(258\) 0 0
\(259\) 1.84858 0.114865
\(260\) 0 0
\(261\) −3.07812 −0.190531
\(262\) 0 0
\(263\) 11.1647 19.3379i 0.688447 1.19243i −0.283893 0.958856i \(-0.591626\pi\)
0.972340 0.233570i \(-0.0750407\pi\)
\(264\) 0 0
\(265\) 3.43488i 0.211003i
\(266\) 0 0
\(267\) 15.5117 8.95568i 0.949300 0.548078i
\(268\) 0 0
\(269\) −4.16875 7.22049i −0.254173 0.440241i 0.710497 0.703700i \(-0.248470\pi\)
−0.964671 + 0.263459i \(0.915137\pi\)
\(270\) 0 0
\(271\) −9.58860 5.53598i −0.582466 0.336287i 0.179647 0.983731i \(-0.442504\pi\)
−0.762113 + 0.647444i \(0.775838\pi\)
\(272\) 0 0
\(273\) 12.1386 + 7.32308i 0.734661 + 0.443213i
\(274\) 0 0
\(275\) 1.14128 + 0.658919i 0.0688218 + 0.0397343i
\(276\) 0 0
\(277\) 8.92480 + 15.4582i 0.536239 + 0.928794i 0.999102 + 0.0423641i \(0.0134889\pi\)
−0.462863 + 0.886430i \(0.653178\pi\)
\(278\) 0 0
\(279\) 3.03055 1.74969i 0.181434 0.104751i
\(280\) 0 0
\(281\) 30.2163i 1.80256i 0.433242 + 0.901278i \(0.357370\pi\)
−0.433242 + 0.901278i \(0.642630\pi\)
\(282\) 0 0
\(283\) −15.2299 + 26.3789i −0.905321 + 1.56806i −0.0848360 + 0.996395i \(0.527037\pi\)
−0.820485 + 0.571668i \(0.806297\pi\)
\(284\) 0 0
\(285\) −5.42418 −0.321301
\(286\) 0 0
\(287\) 11.5276 0.680453
\(288\) 0 0
\(289\) 8.34714 14.4577i 0.491008 0.850452i
\(290\) 0 0
\(291\) 5.24629i 0.307543i
\(292\) 0 0
\(293\) 15.9982 9.23654i 0.934622 0.539604i 0.0463516 0.998925i \(-0.485241\pi\)
0.888270 + 0.459321i \(0.151907\pi\)
\(294\) 0 0
\(295\) 6.50877 + 11.2735i 0.378955 + 0.656369i
\(296\) 0 0
\(297\) −1.14128 0.658919i −0.0662238 0.0382343i
\(298\) 0 0
\(299\) 0.828178 + 1.50037i 0.0478948 + 0.0867688i
\(300\) 0 0
\(301\) 4.75334 + 2.74434i 0.273978 + 0.158181i
\(302\) 0 0
\(303\) 6.98432 + 12.0972i 0.401239 + 0.694966i
\(304\) 0 0
\(305\) −0.542324 + 0.313111i −0.0310534 + 0.0179287i
\(306\) 0 0
\(307\) 24.6938i 1.40935i 0.709530 + 0.704675i \(0.248907\pi\)
−0.709530 + 0.704675i \(0.751093\pi\)
\(308\) 0 0
\(309\) 8.61157 14.9157i 0.489895 0.848523i
\(310\) 0 0
\(311\) 33.5489 1.90239 0.951193 0.308596i \(-0.0998591\pi\)
0.951193 + 0.308596i \(0.0998591\pi\)
\(312\) 0 0
\(313\) 22.2876 1.25977 0.629886 0.776688i \(-0.283102\pi\)
0.629886 + 0.776688i \(0.283102\pi\)
\(314\) 0 0
\(315\) 1.96593 3.40508i 0.110767 0.191855i
\(316\) 0 0
\(317\) 34.0884i 1.91459i −0.289109 0.957296i \(-0.593359\pi\)
0.289109 0.957296i \(-0.406641\pi\)
\(318\) 0 0
\(319\) −3.51299 + 2.02823i −0.196690 + 0.113559i
\(320\) 0 0
\(321\) −4.81029 8.33167i −0.268484 0.465028i
\(322\) 0 0
\(323\) −2.59730 1.49955i −0.144518 0.0834374i
\(324\) 0 0
\(325\) −1.86250 + 3.08725i −0.103313 + 0.171250i
\(326\) 0 0
\(327\) 10.5236 + 6.07579i 0.581956 + 0.335992i
\(328\) 0 0
\(329\) 15.1581 + 26.2545i 0.835691 + 1.44746i
\(330\) 0 0
\(331\) −26.0020 + 15.0123i −1.42920 + 0.825150i −0.997058 0.0766545i \(-0.975576\pi\)
−0.432144 + 0.901805i \(0.642243\pi\)
\(332\) 0 0
\(333\) 0.470154i 0.0257643i
\(334\) 0 0
\(335\) −6.37221 + 11.0370i −0.348151 + 0.603015i
\(336\) 0 0
\(337\) 6.84596 0.372923 0.186462 0.982462i \(-0.440298\pi\)
0.186462 + 0.982462i \(0.440298\pi\)
\(338\) 0 0
\(339\) −0.735451 −0.0399442
\(340\) 0 0
\(341\) 2.30581 3.99377i 0.124866 0.216275i
\(342\) 0 0
\(343\) 5.73837i 0.309843i
\(344\) 0 0
\(345\) 0.411634 0.237657i 0.0221616 0.0127950i
\(346\) 0 0
\(347\) 12.8177 + 22.2010i 0.688092 + 1.19181i 0.972454 + 0.233093i \(0.0748847\pi\)
−0.284363 + 0.958717i \(0.591782\pi\)
\(348\) 0 0
\(349\) 10.5134 + 6.06993i 0.562771 + 0.324916i 0.754257 0.656579i \(-0.227997\pi\)
−0.191486 + 0.981495i \(0.561331\pi\)
\(350\) 0 0
\(351\) 1.86250 3.08725i 0.0994130 0.164785i
\(352\) 0 0
\(353\) −26.4830 15.2899i −1.40955 0.813802i −0.414202 0.910185i \(-0.635939\pi\)
−0.995344 + 0.0963832i \(0.969273\pi\)
\(354\) 0 0
\(355\) −2.60721 4.51581i −0.138376 0.239675i
\(356\) 0 0
\(357\) 1.88272 1.08699i 0.0996441 0.0575295i
\(358\) 0 0
\(359\) 12.2163i 0.644754i −0.946611 0.322377i \(-0.895518\pi\)
0.946611 0.322377i \(-0.104482\pi\)
\(360\) 0 0
\(361\) 5.21087 9.02549i 0.274256 0.475026i
\(362\) 0 0
\(363\) 9.26330 0.486197
\(364\) 0 0
\(365\) 6.95303 0.363938
\(366\) 0 0
\(367\) 12.9482 22.4269i 0.675890 1.17068i −0.300318 0.953839i \(-0.597093\pi\)
0.976208 0.216836i \(-0.0695737\pi\)
\(368\) 0 0
\(369\) 2.93185i 0.152626i
\(370\) 0 0
\(371\) 11.6960 6.75272i 0.607228 0.350584i
\(372\) 0 0
\(373\) 8.80104 + 15.2438i 0.455700 + 0.789296i 0.998728 0.0504185i \(-0.0160555\pi\)
−0.543028 + 0.839715i \(0.682722\pi\)
\(374\) 0 0
\(375\) 0.866025 + 0.500000i 0.0447214 + 0.0258199i
\(376\) 0 0
\(377\) −5.36326 9.71637i −0.276222 0.500419i
\(378\) 0 0
\(379\) −24.3471 14.0568i −1.25063 0.722051i −0.279394 0.960176i \(-0.590134\pi\)
−0.971234 + 0.238126i \(0.923467\pi\)
\(380\) 0 0
\(381\) −9.54378 16.5303i −0.488943 0.846874i
\(382\) 0 0
\(383\) 1.97065 1.13776i 0.100696 0.0581366i −0.448807 0.893629i \(-0.648151\pi\)
0.549502 + 0.835492i \(0.314817\pi\)
\(384\) 0 0
\(385\) 5.18154i 0.264076i
\(386\) 0 0
\(387\) 0.697977 1.20893i 0.0354801 0.0614534i
\(388\) 0 0
\(389\) 0.182785 0.00926757 0.00463378 0.999989i \(-0.498525\pi\)
0.00463378 + 0.999989i \(0.498525\pi\)
\(390\) 0 0
\(391\) 0.262808 0.0132908
\(392\) 0 0
\(393\) −0.703583 + 1.21864i −0.0354911 + 0.0614723i
\(394\) 0 0
\(395\) 1.19615i 0.0601850i
\(396\) 0 0
\(397\) −25.2689 + 14.5890i −1.26821 + 0.732202i −0.974649 0.223738i \(-0.928174\pi\)
−0.293562 + 0.955940i \(0.594841\pi\)
\(398\) 0 0
\(399\) 10.6635 + 18.4698i 0.533845 + 0.924646i
\(400\) 0 0
\(401\) 24.2385 + 13.9941i 1.21041 + 0.698833i 0.962849 0.270039i \(-0.0870366\pi\)
0.247564 + 0.968872i \(0.420370\pi\)
\(402\) 0 0
\(403\) 10.8034 + 6.51760i 0.538158 + 0.324665i
\(404\) 0 0
\(405\) −0.866025 0.500000i −0.0430331 0.0248452i
\(406\) 0 0
\(407\) −0.309793 0.536578i −0.0153559 0.0265972i
\(408\) 0 0
\(409\) −15.6607 + 9.04170i −0.774371 + 0.447083i −0.834432 0.551111i \(-0.814204\pi\)
0.0600606 + 0.998195i \(0.480871\pi\)
\(410\) 0 0
\(411\) 11.6598i 0.575134i
\(412\) 0 0
\(413\) 25.5915 44.3258i 1.25928 2.18113i
\(414\) 0 0
\(415\) −12.9382 −0.635110
\(416\) 0 0
\(417\) −2.24213 −0.109797
\(418\) 0 0
\(419\) 5.20403 9.01364i 0.254233 0.440345i −0.710454 0.703744i \(-0.751510\pi\)
0.964687 + 0.263399i \(0.0848435\pi\)
\(420\) 0 0
\(421\) 5.16456i 0.251705i −0.992049 0.125853i \(-0.959833\pi\)
0.992049 0.125853i \(-0.0401666\pi\)
\(422\) 0 0
\(423\) 6.67739 3.85520i 0.324666 0.187446i
\(424\) 0 0
\(425\) 0.276457 + 0.478838i 0.0134101 + 0.0232270i
\(426\) 0 0
\(427\) 2.13234 + 1.23111i 0.103191 + 0.0595774i
\(428\) 0 0
\(429\) 0.0913925 4.75065i 0.00441247 0.229364i
\(430\) 0 0
\(431\) 29.0597 + 16.7776i 1.39976 + 0.808150i 0.994367 0.105993i \(-0.0338023\pi\)
0.405390 + 0.914144i \(0.367136\pi\)
\(432\) 0 0
\(433\) 8.47099 + 14.6722i 0.407090 + 0.705100i 0.994562 0.104144i \(-0.0332102\pi\)
−0.587472 + 0.809244i \(0.699877\pi\)
\(434\) 0 0
\(435\) −2.66573 + 1.53906i −0.127812 + 0.0737922i
\(436\) 0 0
\(437\) 2.57819i 0.123331i
\(438\) 0 0
\(439\) −13.3279 + 23.0846i −0.636105 + 1.10177i 0.350174 + 0.936684i \(0.386122\pi\)
−0.986280 + 0.165082i \(0.947211\pi\)
\(440\) 0 0
\(441\) −8.45946 −0.402831
\(442\) 0 0
\(443\) −8.90671 −0.423170 −0.211585 0.977360i \(-0.567863\pi\)
−0.211585 + 0.977360i \(0.567863\pi\)
\(444\) 0 0
\(445\) 8.95568 15.5117i 0.424540 0.735324i
\(446\) 0 0
\(447\) 18.6456i 0.881909i
\(448\) 0 0
\(449\) 9.40300 5.42883i 0.443755 0.256202i −0.261434 0.965221i \(-0.584195\pi\)
0.705189 + 0.709019i \(0.250862\pi\)
\(450\) 0 0
\(451\) −1.93185 3.34607i −0.0909673 0.157560i
\(452\) 0 0
\(453\) −0.319537 0.184485i −0.0150132 0.00866785i
\(454\) 0 0
\(455\) 14.1739 + 0.272675i 0.664481 + 0.0127832i
\(456\) 0 0
\(457\) 6.73831 + 3.89036i 0.315205 + 0.181984i 0.649253 0.760572i \(-0.275082\pi\)
−0.334048 + 0.942556i \(0.608415\pi\)
\(458\) 0 0
\(459\) −0.276457 0.478838i −0.0129039 0.0223502i
\(460\) 0 0
\(461\) −24.4717 + 14.1288i −1.13976 + 0.658042i −0.946372 0.323080i \(-0.895282\pi\)
−0.193390 + 0.981122i \(0.561948\pi\)
\(462\) 0 0
\(463\) 8.22511i 0.382253i −0.981565 0.191127i \(-0.938786\pi\)
0.981565 0.191127i \(-0.0612141\pi\)
\(464\) 0 0
\(465\) 1.74969 3.03055i 0.0811399 0.140538i
\(466\) 0 0
\(467\) −21.4205 −0.991224 −0.495612 0.868544i \(-0.665056\pi\)
−0.495612 + 0.868544i \(0.665056\pi\)
\(468\) 0 0
\(469\) 50.1092 2.31383
\(470\) 0 0
\(471\) −2.35948 + 4.08673i −0.108719 + 0.188307i
\(472\) 0 0
\(473\) 1.83964i 0.0845867i
\(474\) 0 0
\(475\) −4.69748 + 2.71209i −0.215535 + 0.124439i
\(476\) 0 0
\(477\) −1.71744 2.97469i −0.0786361 0.136202i
\(478\) 0 0
\(479\) −30.7499 17.7535i −1.40500 0.811177i −0.410099 0.912041i \(-0.634506\pi\)
−0.994900 + 0.100864i \(0.967839\pi\)
\(480\) 0 0
\(481\) 1.48409 0.819188i 0.0676685 0.0373518i
\(482\) 0 0
\(483\) −1.61848 0.934431i −0.0736435 0.0425181i
\(484\) 0 0
\(485\) −2.62314 4.54342i −0.119111 0.206306i
\(486\) 0 0
\(487\) −1.93124 + 1.11500i −0.0875128 + 0.0505255i −0.543118 0.839657i \(-0.682756\pi\)
0.455605 + 0.890182i \(0.349423\pi\)
\(488\) 0 0
\(489\) 13.5322i 0.611949i
\(490\) 0 0
\(491\) 18.8199 32.5970i 0.849330 1.47108i −0.0324772 0.999472i \(-0.510340\pi\)
0.881807 0.471610i \(-0.156327\pi\)
\(492\) 0 0
\(493\) −1.70193 −0.0766513
\(494\) 0 0
\(495\) −1.31784 −0.0592324
\(496\) 0 0
\(497\) −10.2511 + 17.7555i −0.459827 + 0.796443i
\(498\) 0 0
\(499\) 26.3242i 1.17843i 0.807975 + 0.589216i \(0.200563\pi\)
−0.807975 + 0.589216i \(0.799437\pi\)
\(500\) 0 0
\(501\) 5.31419 3.06815i 0.237420 0.137075i
\(502\) 0 0
\(503\) 13.1455 + 22.7687i 0.586130 + 1.01521i 0.994733 + 0.102496i \(0.0326827\pi\)
−0.408603 + 0.912712i \(0.633984\pi\)
\(504\) 0 0
\(505\) 12.0972 + 6.98432i 0.538318 + 0.310798i
\(506\) 0 0
\(507\) 12.9904 + 0.500000i 0.576923 + 0.0222058i
\(508\) 0 0
\(509\) −3.35226 1.93543i −0.148586 0.0857863i 0.423864 0.905726i \(-0.360674\pi\)
−0.572450 + 0.819940i \(0.694007\pi\)
\(510\) 0 0
\(511\) −13.6691 23.6757i −0.604687 1.04735i
\(512\) 0 0
\(513\) 4.69748 2.71209i 0.207399 0.119742i
\(514\) 0 0
\(515\) 17.2231i 0.758942i
\(516\) 0 0
\(517\) 5.08052 8.79972i 0.223441 0.387011i
\(518\) 0 0
\(519\) −0.496458 −0.0217921
\(520\) 0 0
\(521\) 20.6427 0.904372 0.452186 0.891924i \(-0.350644\pi\)
0.452186 + 0.891924i \(0.350644\pi\)
\(522\) 0 0
\(523\) −14.1905 + 24.5787i −0.620508 + 1.07475i 0.368883 + 0.929476i \(0.379740\pi\)
−0.989391 + 0.145275i \(0.953593\pi\)
\(524\) 0 0
\(525\) 3.93185i 0.171600i
\(526\) 0 0
\(527\) 1.67563 0.967428i 0.0729918 0.0421418i
\(528\) 0 0
\(529\) 11.3870 + 19.7229i 0.495089 + 0.857519i
\(530\) 0 0
\(531\) −11.2735 6.50877i −0.489229 0.282456i
\(532\) 0 0
\(533\) 9.25467 5.10841i 0.400864 0.221270i
\(534\) 0 0
\(535\) −8.33167 4.81029i −0.360209 0.207967i
\(536\) 0 0
\(537\) 1.96895 + 3.41032i 0.0849666 + 0.147166i
\(538\) 0 0
\(539\) −9.65461 + 5.57409i −0.415854 + 0.240093i
\(540\) 0 0
\(541\) 2.51613i 0.108177i 0.998536 + 0.0540884i \(0.0172253\pi\)
−0.998536 + 0.0540884i \(0.982775\pi\)
\(542\) 0 0
\(543\) −1.67681 + 2.90433i −0.0719590 + 0.124637i
\(544\) 0 0
\(545\) 12.1516 0.520517
\(546\) 0 0
\(547\) 28.6507 1.22502 0.612508 0.790464i \(-0.290161\pi\)
0.612508 + 0.790464i \(0.290161\pi\)
\(548\) 0 0
\(549\) 0.313111 0.542324i 0.0133633 0.0231458i
\(550\) 0 0
\(551\) 16.6963i 0.711285i
\(552\) 0 0
\(553\) 4.07300 2.35155i 0.173202 0.0999979i
\(554\) 0 0
\(555\) −0.235077 0.407165i −0.00997846 0.0172832i
\(556\) 0 0
\(557\) −20.7283 11.9675i −0.878285 0.507078i −0.00819220 0.999966i \(-0.502608\pi\)
−0.870092 + 0.492889i \(0.835941\pi\)
\(558\) 0 0
\(559\) 5.03225 + 0.0968099i 0.212841 + 0.00409462i
\(560\) 0 0
\(561\) −0.631030 0.364326i −0.0266421 0.0153818i
\(562\) 0 0
\(563\) 10.4293 + 18.0641i 0.439544 + 0.761313i 0.997654 0.0684539i \(-0.0218066\pi\)
−0.558110 + 0.829767i \(0.688473\pi\)
\(564\) 0 0
\(565\) −0.636919 + 0.367725i −0.0267954 + 0.0154703i
\(566\) 0 0
\(567\) 3.93185i 0.165122i
\(568\) 0 0
\(569\) −9.70392 + 16.8077i −0.406810 + 0.704615i −0.994530 0.104449i \(-0.966692\pi\)
0.587721 + 0.809064i \(0.300025\pi\)
\(570\) 0 0
\(571\) 2.64156 0.110546 0.0552730 0.998471i \(-0.482397\pi\)
0.0552730 + 0.998471i \(0.482397\pi\)
\(572\) 0 0
\(573\) −20.5663 −0.859169
\(574\) 0 0
\(575\) 0.237657 0.411634i 0.00991098 0.0171663i
\(576\) 0 0
\(577\) 24.0716i 1.00211i 0.865415 + 0.501057i \(0.167055\pi\)
−0.865415 + 0.501057i \(0.832945\pi\)
\(578\) 0 0
\(579\) −4.77886 + 2.75908i −0.198603 + 0.114663i
\(580\) 0 0
\(581\) 25.4355 + 44.0556i 1.05524 + 1.82773i
\(582\) 0 0
\(583\) −3.92016 2.26330i −0.162356 0.0937365i
\(584\) 0 0
\(585\) 0.0693504 3.60488i 0.00286728 0.149044i
\(586\) 0 0
\(587\) −32.3571 18.6814i −1.33552 0.771063i −0.349381 0.936981i \(-0.613608\pi\)
−0.986140 + 0.165918i \(0.946941\pi\)
\(588\) 0 0
\(589\) 9.49063 + 16.4383i 0.391055 + 0.677326i
\(590\) 0 0
\(591\) 6.80659 3.92979i 0.279986 0.161650i
\(592\) 0 0
\(593\) 45.4778i 1.86755i 0.357863 + 0.933774i \(0.383505\pi\)
−0.357863 + 0.933774i \(0.616495\pi\)
\(594\) 0 0
\(595\) 1.08699 1.88272i 0.0445622 0.0771840i
\(596\) 0 0
\(597\) 6.99071 0.286111
\(598\) 0 0
\(599\) 24.7863 1.01274 0.506370 0.862316i \(-0.330987\pi\)
0.506370 + 0.862316i \(0.330987\pi\)
\(600\) 0 0
\(601\) −12.3643 + 21.4156i −0.504350 + 0.873560i 0.495637 + 0.868530i \(0.334935\pi\)
−0.999987 + 0.00503065i \(0.998399\pi\)
\(602\) 0 0
\(603\) 12.7444i 0.518993i
\(604\) 0 0
\(605\) 8.02226 4.63165i 0.326151 0.188303i
\(606\) 0 0
\(607\) −2.61489 4.52913i −0.106135 0.183832i 0.808066 0.589092i \(-0.200514\pi\)
−0.914201 + 0.405260i \(0.867181\pi\)
\(608\) 0 0
\(609\) 10.4812 + 6.05135i 0.424721 + 0.245213i
\(610\) 0 0
\(611\) 23.8039 + 14.3606i 0.963002 + 0.580968i
\(612\) 0 0
\(613\) −12.0686 6.96780i −0.487446 0.281427i 0.236069 0.971736i \(-0.424141\pi\)
−0.723514 + 0.690310i \(0.757474\pi\)
\(614\) 0 0
\(615\) −1.46593 2.53906i −0.0591118 0.102385i
\(616\) 0 0
\(617\) 39.2999 22.6898i 1.58216 0.913458i 0.587611 0.809144i \(-0.300069\pi\)
0.994544 0.104314i \(-0.0332646\pi\)
\(618\) 0 0
\(619\) 12.7094i 0.510834i 0.966831 + 0.255417i \(0.0822128\pi\)
−0.966831 + 0.255417i \(0.917787\pi\)
\(620\) 0 0
\(621\) −0.237657 + 0.411634i −0.00953684 + 0.0165183i
\(622\) 0 0
\(623\) −70.4248 −2.82151
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 3.57409 6.19051i 0.142736 0.247225i
\(628\) 0 0
\(629\) 0.259955i 0.0103651i
\(630\) 0 0
\(631\) 3.49465 2.01764i 0.139120 0.0803209i −0.428825 0.903388i \(-0.641072\pi\)
0.567944 + 0.823067i \(0.307739\pi\)
\(632\) 0 0
\(633\) 6.79958 + 11.7772i 0.270259 + 0.468102i
\(634\) 0 0
\(635\) −16.5303 9.54378i −0.655986 0.378734i
\(636\) 0 0
\(637\) −14.7396 26.7031i −0.584005 1.05802i
\(638\) 0 0
\(639\) 4.51581 + 2.60721i 0.178643 + 0.103139i
\(640\) 0 0
\(641\) −16.7616 29.0320i −0.662044 1.14669i −0.980078 0.198614i \(-0.936356\pi\)
0.318034 0.948079i \(-0.396977\pi\)
\(642\) 0 0
\(643\) −42.9054 + 24.7714i −1.69202 + 0.976891i −0.739142 + 0.673550i \(0.764769\pi\)
−0.952882 + 0.303341i \(0.901898\pi\)
\(644\) 0 0
\(645\) 1.39595i 0.0549656i
\(646\) 0 0
\(647\) −6.27758 + 10.8731i −0.246797 + 0.427465i −0.962635 0.270801i \(-0.912711\pi\)
0.715838 + 0.698266i \(0.246045\pi\)
\(648\) 0 0
\(649\) −17.1550 −0.673392
\(650\) 0 0
\(651\) −13.7590 −0.539259
\(652\) 0 0
\(653\) −0.0389761 + 0.0675086i −0.00152525 + 0.00264181i −0.866787 0.498679i \(-0.833819\pi\)
0.865262 + 0.501320i \(0.167152\pi\)
\(654\) 0 0
\(655\) 1.40717i 0.0549825i
\(656\) 0 0
\(657\) −6.02150 + 3.47652i −0.234921 + 0.135632i
\(658\) 0 0
\(659\) −21.5441 37.3155i −0.839241 1.45361i −0.890531 0.454924i \(-0.849667\pi\)
0.0512899 0.998684i \(-0.483667\pi\)
\(660\) 0 0
\(661\) −15.6898 9.05853i −0.610264 0.352336i 0.162805 0.986658i \(-0.447946\pi\)
−0.773069 + 0.634322i \(0.781279\pi\)
\(662\) 0 0
\(663\) 1.02980 1.70698i 0.0399943 0.0662937i
\(664\) 0 0
\(665\) 18.4698 + 10.6635i 0.716228 + 0.413514i
\(666\) 0 0
\(667\) 0.731535 + 1.26706i 0.0283252 + 0.0490606i
\(668\) 0 0
\(669\) 10.6814 6.16693i 0.412968 0.238427i
\(670\) 0 0
\(671\) 0.825259i 0.0318588i
\(672\) 0 0
\(673\) −4.96556 + 8.60060i −0.191408 + 0.331529i −0.945717 0.324991i \(-0.894639\pi\)
0.754309 + 0.656520i \(0.227972\pi\)
\(674\) 0 0
\(675\) −1.00000 −0.0384900
\(676\) 0 0
\(677\) −36.7571 −1.41269 −0.706345 0.707868i \(-0.749657\pi\)
−0.706345 + 0.707868i \(0.749657\pi\)
\(678\) 0 0
\(679\) −10.3138 + 17.8641i −0.395808 + 0.685559i
\(680\) 0 0
\(681\) 11.0888i 0.424924i
\(682\) 0 0
\(683\) −13.5889 + 7.84557i −0.519966 + 0.300202i −0.736921 0.675979i \(-0.763721\pi\)
0.216955 + 0.976182i \(0.430388\pi\)
\(684\) 0 0
\(685\) −5.82989 10.0977i −0.222749 0.385812i
\(686\) 0 0
\(687\) −9.92526 5.73035i −0.378672 0.218627i
\(688\) 0 0
\(689\) 6.39746 10.6043i 0.243724 0.403992i
\(690\) 0 0
\(691\) −17.7308 10.2369i −0.674510 0.389428i 0.123273 0.992373i \(-0.460661\pi\)
−0.797783 + 0.602944i \(0.793994\pi\)
\(692\) 0 0
\(693\) 2.59077 + 4.48735i 0.0984152 + 0.170460i
\(694\) 0 0
\(695\) −1.94174 + 1.12106i −0.0736543 + 0.0425243i
\(696\) 0 0
\(697\) 1.62106i 0.0614021i
\(698\) 0 0
\(699\) 12.7263 22.0427i 0.481354 0.833730i
\(700\) 0 0
\(701\) −23.8368 −0.900303 −0.450152 0.892952i \(-0.648630\pi\)
−0.450152 + 0.892952i \(0.648630\pi\)
\(702\) 0 0
\(703\) 2.55020 0.0961826
\(704\) 0 0
\(705\) 3.85520 6.67739i 0.145195 0.251485i
\(706\) 0 0
\(707\) 54.9226i 2.06558i
\(708\) 0 0
\(709\) −1.63746 + 0.945386i −0.0614960 + 0.0355047i −0.530433 0.847727i \(-0.677971\pi\)
0.468937 + 0.883232i \(0.344637\pi\)
\(710\) 0 0
\(711\) −0.598076 1.03590i −0.0224296 0.0388492i
\(712\) 0 0
\(713\) −1.44046 0.831651i −0.0539457 0.0311456i
\(714\) 0 0
\(715\) −2.29618 4.15988i −0.0858722 0.155571i
\(716\) 0 0
\(717\) 18.0719 + 10.4338i 0.674907 + 0.389658i
\(718\) 0 0
\(719\) 2.99659 + 5.19025i 0.111754 + 0.193564i 0.916478 0.400086i \(-0.131020\pi\)
−0.804724 + 0.593650i \(0.797686\pi\)
\(720\) 0 0
\(721\) −58.6462 + 33.8594i −2.18410 + 1.26099i
\(722\) 0 0
\(723\) 18.2959i 0.680433i
\(724\) 0 0
\(725\) −1.53906 + 2.66573i −0.0571592 + 0.0990026i
\(726\) 0 0
\(727\) −39.0387 −1.44787 −0.723933 0.689870i \(-0.757667\pi\)
−0.723933 + 0.689870i \(0.757667\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 0.385921 0.668435i 0.0142738 0.0247230i
\(732\) 0 0
\(733\) 17.4176i 0.643336i 0.946853 + 0.321668i \(0.104243\pi\)
−0.946853 + 0.321668i \(0.895757\pi\)
\(734\) 0 0
\(735\) −7.32611 + 4.22973i −0.270227 + 0.156016i
\(736\) 0 0
\(737\) −8.39754 14.5450i −0.309327 0.535771i
\(738\) 0 0
\(739\) 12.3018 + 7.10243i 0.452528 + 0.261267i 0.708897 0.705312i \(-0.249193\pi\)
−0.256369 + 0.966579i \(0.582526\pi\)
\(740\) 0 0
\(741\) 16.7458 + 10.1025i 0.615172 + 0.371126i
\(742\) 0 0
\(743\) 7.53155 + 4.34834i 0.276306 + 0.159525i 0.631750 0.775172i \(-0.282337\pi\)
−0.355444 + 0.934698i \(0.615670\pi\)
\(744\) 0 0
\(745\) −9.32282 16.1476i −0.341562 0.591602i
\(746\) 0 0
\(747\) 11.2048 6.46909i 0.409962 0.236691i
\(748\) 0 0
\(749\) 37.8267i 1.38216i
\(750\) 0 0
\(751\) −9.79460 + 16.9647i −0.357410 + 0.619052i −0.987527 0.157448i \(-0.949673\pi\)
0.630117 + 0.776500i \(0.283007\pi\)
\(752\) 0 0
\(753\) −4.34383 −0.158298
\(754\) 0 0
\(755\) −0.368970 −0.0134282
\(756\) 0 0
\(757\) −7.03616 + 12.1870i −0.255733 + 0.442943i −0.965094 0.261902i \(-0.915650\pi\)
0.709361 + 0.704845i \(0.248984\pi\)
\(758\) 0 0
\(759\) 0.626386i 0.0227364i
\(760\) 0 0
\(761\) −15.3926 + 8.88695i −0.557983 + 0.322152i −0.752336 0.658780i \(-0.771073\pi\)
0.194353 + 0.980932i \(0.437739\pi\)
\(762\) 0 0
\(763\) −23.8891 41.3772i −0.864844 1.49795i
\(764\) 0 0
\(765\) −0.478838 0.276457i −0.0173124 0.00999533i
\(766\) 0 0
\(767\) 0.902770 46.9267i 0.0325972 1.69442i
\(768\) 0 0
\(769\) −39.1066 22.5782i −1.41022 0.814191i −0.414811 0.909908i \(-0.636152\pi\)
−0.995409 + 0.0957170i \(0.969486\pi\)
\(770\) 0 0
\(771\) −2.42895 4.20706i −0.0874765 0.151514i
\(772\) 0 0
\(773\) 42.6776 24.6399i 1.53501 0.886237i 0.535887 0.844290i \(-0.319977\pi\)
0.999120 0.0419470i \(-0.0133561\pi\)
\(774\) 0 0
\(775\) 3.49938i 0.125701i
\(776\) 0 0
\(777\) −0.924288 + 1.60091i −0.0331586 + 0.0574325i
\(778\) 0 0
\(779\) 15.9029 0.569780
\(780\) 0 0
\(781\) 6.87175 0.245890
\(782\) 0 0
\(783\) 1.53906 2.66573i 0.0550014 0.0952653i
\(784\) 0 0
\(785\) 4.71895i 0.168427i
\(786\) 0 0
\(787\) 27.6925 15.9883i 0.987131 0.569920i 0.0827152 0.996573i \(-0.473641\pi\)
0.904415 + 0.426653i \(0.140307\pi\)
\(788\) 0 0
\(789\) 11.1647 + 19.3379i 0.397475 + 0.688447i
\(790\) 0 0
\(791\) 2.50427 + 1.44584i 0.0890416 + 0.0514082i
\(792\) 0 0
\(793\) 2.25746 + 0.0434287i 0.0801647 + 0.00154220i
\(794\) 0 0
\(795\) −2.97469 1.71744i −0.105501 0.0609113i
\(796\) 0 0
\(797\) −13.6338 23.6145i −0.482935 0.836468i 0.516873 0.856062i \(-0.327096\pi\)
−0.999808 + 0.0195943i \(0.993763\pi\)
\(798\) 0 0
\(799\) 3.69203 2.13159i 0.130615 0.0754103i
\(800\) 0 0
\(801\) 17.9114i 0.632866i
\(802\) 0 0
\(803\) −4.58148 + 7.93536i −0.161677 + 0.280033i
\(804\) 0 0
\(805\) −1.86886 −0.0658688
\(806\) 0 0
\(807\) 8.33751 0.293494
\(808\) 0 0
\(809\) −22.1803 + 38.4174i −0.779818 + 1.35068i 0.152229 + 0.988345i \(0.451355\pi\)
−0.932047 + 0.362339i \(0.881978\pi\)
\(810\) 0 0
\(811\) 54.1521i 1.90154i 0.309900 + 0.950769i \(0.399704\pi\)
−0.309900 + 0.950769i \(0.600296\pi\)
\(812\) 0 0
\(813\) 9.58860 5.53598i 0.336287 0.194155i
\(814\) 0 0
\(815\) 6.76612 + 11.7193i 0.237007 + 0.410508i
\(816\) 0 0
\(817\) 6.55746 + 3.78595i 0.229417 + 0.132454i
\(818\) 0 0
\(819\) −12.4113 + 6.85079i −0.433685 + 0.239386i
\(820\) 0 0
\(821\) −7.71723 4.45554i −0.269333 0.155499i 0.359251 0.933241i \(-0.383032\pi\)
−0.628584 + 0.777741i \(0.716365\pi\)
\(822\) 0 0
\(823\) −0.817215 1.41546i −0.0284863 0.0493398i 0.851431 0.524467i \(-0.175735\pi\)
−0.879917 + 0.475127i \(0.842402\pi\)
\(824\) 0 0
\(825\) −1.14128 + 0.658919i −0.0397343 + 0.0229406i
\(826\) 0 0
\(827\) 19.5497i 0.679809i −0.940460 0.339904i \(-0.889605\pi\)
0.940460 0.339904i \(-0.110395\pi\)
\(828\) 0 0
\(829\) 26.2725 45.5052i 0.912480 1.58046i 0.101931 0.994791i \(-0.467498\pi\)
0.810549 0.585671i \(-0.199169\pi\)
\(830\) 0 0
\(831\) −17.8496 −0.619196
\(832\) 0 0
\(833\) −4.67735 −0.162061
\(834\) 0 0
\(835\) 3.06815 5.31419i 0.106178 0.183905i
\(836\) 0 0
\(837\) 3.49938i 0.120956i
\(838\) 0 0
\(839\) −3.01757 + 1.74219i −0.104178 + 0.0601472i −0.551184 0.834384i \(-0.685824\pi\)
0.447006 + 0.894531i \(0.352490\pi\)
\(840\) 0 0
\(841\) 9.76260 + 16.9093i 0.336641 + 0.583080i
\(842\) 0 0
\(843\) −26.1681 15.1082i −0.901278 0.520353i
\(844\) 0 0
\(845\) 11.5000 6.06218i 0.395612 0.208545i
\(846\) 0 0
\(847\) −31.5423 18.2110i −1.08381 0.625736i
\(848\) 0 0
\(849\) −15.2299 26.3789i −0.522688 0.905321i
\(850\) 0 0
\(851\) −0.193531 + 0.111735i −0.00663417 + 0.00383024i
\(852\) 0 0
\(853\) 6.46294i 0.221287i 0.993860 + 0.110643i \(0.0352912\pi\)
−0.993860 + 0.110643i \(0.964709\pi\)
\(854\) 0 0
\(855\) 2.71209 4.69748i 0.0927515 0.160650i
\(856\) 0 0
\(857\) −20.1736 −0.689117 −0.344559 0.938765i \(-0.611971\pi\)
−0.344559 + 0.938765i \(0.611971\pi\)
\(858\) 0 0
\(859\) 15.3052 0.522207 0.261104 0.965311i \(-0.415914\pi\)
0.261104 + 0.965311i \(0.415914\pi\)
\(860\) 0 0
\(861\) −5.76380 + 9.98320i −0.196430 + 0.340227i
\(862\) 0 0
\(863\) 36.1031i 1.22896i 0.788931 + 0.614482i \(0.210635\pi\)
−0.788931 + 0.614482i \(0.789365\pi\)
\(864\) 0 0
\(865\) −0.429946 + 0.248229i −0.0146186 + 0.00844004i
\(866\) 0 0
\(867\) 8.34714 + 14.4577i 0.283484 + 0.491008i
\(868\) 0 0
\(869\) −1.36515 0.788167i −0.0463094 0.0267367i
\(870\) 0 0
\(871\) 40.2290 22.2057i 1.36311 0.752410i
\(872\) 0 0
\(873\) 4.54342 + 2.62314i 0.153771 + 0.0887800i
\(874\) 0 0
\(875\) −1.96593 3.40508i −0.0664604 0.115113i
\(876\) 0 0
\(877\) 46.1562 26.6483i 1.55859 0.899850i 0.561192 0.827685i \(-0.310343\pi\)
0.997393 0.0721642i \(-0.0229906\pi\)
\(878\) 0 0
\(879\) 18.4731i 0.623081i
\(880\) 0 0
\(881\) −6.59235 + 11.4183i −0.222102 + 0.384692i −0.955446 0.295166i \(-0.904625\pi\)
0.733344 + 0.679858i \(0.237958\pi\)
\(882\) 0 0
\(883\) 36.3300 1.22260 0.611301 0.791398i \(-0.290647\pi\)
0.611301 + 0.791398i \(0.290647\pi\)
\(884\) 0 0
\(885\) −13.0175 −0.437580
\(886\) 0 0
\(887\) 17.0039 29.4516i 0.570934 0.988886i −0.425537 0.904941i \(-0.639915\pi\)
0.996470 0.0839452i \(-0.0267521\pi\)
\(888\) 0 0
\(889\) 75.0495i 2.51708i
\(890\) 0 0
\(891\) 1.14128 0.658919i 0.0382343 0.0220746i
\(892\) 0 0
\(893\) 20.9113 + 36.2194i 0.699769 + 1.21204i
\(894\) 0 0
\(895\) 3.41032 + 1.96895i 0.113995 + 0.0658148i
\(896\) 0 0
\(897\) −1.71345 0.0329632i −0.0572105 0.00110061i
\(898\) 0 0
\(899\) 9.32838 + 5.38575i 0.311119 + 0.179625i
\(900\) 0 0
\(901\) −0.949596 1.64475i −0.0316356 0.0547945i
\(902\) 0 0
\(903\) −4.75334 + 2.74434i −0.158181 + 0.0913259i
\(904\) 0 0
\(905\) 3.35363i 0.111478i
\(906\) 0 0
\(907\) −7.07118 + 12.2476i −0.234795 + 0.406677i −0.959213 0.282684i \(-0.908775\pi\)
0.724418 + 0.689361i \(0.242108\pi\)
\(908\) 0 0
\(909\) −13.9686 −0.463311
\(910\) 0 0
\(911\) −36.7262 −1.21679 −0.608396 0.793634i \(-0.708187\pi\)
−0.608396 + 0.793634i \(0.708187\pi\)
\(912\) 0 0
\(913\) 8.52520 14.7661i 0.282143 0.488686i
\(914\) 0 0
\(915\) 0.626222i 0.0207023i
\(916\) 0 0
\(917\) 4.79152 2.76638i 0.158230 0.0913540i
\(918\) 0 0
\(919\) −9.74320 16.8757i −0.321399 0.556679i 0.659378 0.751811i \(-0.270820\pi\)
−0.980777 + 0.195133i \(0.937486\pi\)
\(920\) 0 0
\(921\) −21.3855 12.3469i −0.704675 0.406844i
\(922\) 0 0
\(923\) −0.361621 + 18.7974i −0.0119029 + 0.618722i
\(924\) 0 0
\(925\) −0.407165 0.235077i −0.0133875 0.00772928i
\(926\) 0 0
\(927\) 8.61157 + 14.9157i 0.282841 + 0.489895i
\(928\) 0 0
\(929\) −24.0598 + 13.8909i −0.789377 + 0.455747i −0.839743 0.542984i \(-0.817294\pi\)
0.0503664 + 0.998731i \(0.483961\pi\)
\(930\) 0 0
\(931\) 45.8856i 1.50384i
\(932\) 0 0
\(933\) −16.7745 + 29.0542i −0.549172 + 0.951193i
\(934\) 0 0
\(935\) −0.728651 −0.0238294
\(936\) 0 0
\(937\) 49.0868 1.60359 0.801797 0.597596i \(-0.203877\pi\)
0.801797 + 0.597596i \(0.203877\pi\)
\(938\) 0 0
\(939\) −11.1438 + 19.3017i −0.363665 + 0.629886i
\(940\) 0 0
\(941\) 7.01554i 0.228700i 0.993441 + 0.114350i \(0.0364785\pi\)
−0.993441 + 0.114350i \(0.963521\pi\)
\(942\) 0 0
\(943\) −1.20685 + 0.696775i −0.0393004 + 0.0226901i
\(944\) 0 0
\(945\) 1.96593 + 3.40508i 0.0639516 + 0.110767i
\(946\) 0 0
\(947\) −15.9773 9.22450i −0.519193 0.299756i 0.217412 0.976080i \(-0.430239\pi\)
−0.736604 + 0.676324i \(0.763572\pi\)
\(948\) 0 0
\(949\) −21.4657 12.9500i −0.696807 0.420376i
\(950\) 0 0
\(951\) 29.5214 + 17.0442i 0.957296 + 0.552695i
\(952\) 0 0
\(953\) −27.0965 46.9325i −0.877741 1.52029i −0.853814 0.520578i \(-0.825717\pi\)
−0.0239264 0.999714i \(-0.507617\pi\)
\(954\) 0 0
\(955\) −17.8109 + 10.2831i −0.576348 + 0.332755i
\(956\) 0 0
\(957\) 4.05646i 0.131127i
\(958\) 0 0
\(959\) −22.9223 + 39.7025i −0.740198 + 1.28206i
\(960\) 0 0
\(961\) 18.7544 0.604979
\(962\) 0 0
\(963\) 9.62058 0.310019
\(964\) 0 0
\(965\) −2.75908 + 4.77886i −0.0888178 + 0.153837i
\(966\) 0 0
\(967\) 52.8600i 1.69986i −0.526892 0.849932i \(-0.676643\pi\)
0.526892 0.849932i \(-0.323357\pi\)
\(968\) 0 0
\(969\) 2.59730 1.49955i 0.0834374 0.0481726i
\(970\) 0 0
\(971\) 10.3459 + 17.9196i 0.332015 + 0.575068i 0.982907 0.184103i \(-0.0589381\pi\)
−0.650892 + 0.759171i \(0.725605\pi\)
\(972\) 0 0
\(973\) 7.63462 + 4.40785i 0.244755 + 0.141309i
\(974\) 0 0
\(975\) −1.74238 3.15660i −0.0558009 0.101092i
\(976\) 0 0
\(977\) 4.40368 + 2.54247i 0.140886 + 0.0813407i 0.568786 0.822485i \(-0.307413\pi\)
−0.427900 + 0.903826i \(0.640746\pi\)
\(978\) 0 0
\(979\) 11.8021 + 20.4419i 0.377197 + 0.653325i
\(980\) 0 0
\(981\) −10.5236 + 6.07579i −0.335992 + 0.193985i
\(982\) 0 0
\(983\) 16.8646i 0.537897i 0.963155 + 0.268949i \(0.0866762\pi\)
−0.963155 + 0.268949i \(0.913324\pi\)
\(984\) 0 0
\(985\) 3.92979 6.80659i 0.125213 0.216876i
\(986\) 0 0
\(987\) −30.3161 −0.964972
\(988\) 0 0
\(989\) −0.663516 −0.0210986
\(990\) 0 0
\(991\) 25.4424 44.0676i 0.808205 1.39985i −0.105901 0.994377i \(-0.533773\pi\)
0.914106 0.405475i \(-0.132894\pi\)
\(992\) 0 0
\(993\) 30.0246i 0.952801i
\(994\) 0 0
\(995\) 6.05413 3.49536i 0.191929 0.110810i
\(996\) 0 0
\(997\) −12.1519 21.0477i −0.384855 0.666588i 0.606894 0.794783i \(-0.292415\pi\)
−0.991749 + 0.128194i \(0.959082\pi\)
\(998\) 0 0
\(999\) 0.407165 + 0.235077i 0.0128821 + 0.00743751i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 780.2.cc.b.121.4 8
3.2 odd 2 2340.2.dj.c.901.2 8
5.2 odd 4 3900.2.bw.l.2149.4 8
5.3 odd 4 3900.2.bw.g.2149.1 8
5.4 even 2 3900.2.cd.l.901.1 8
13.10 even 6 inner 780.2.cc.b.361.2 yes 8
39.23 odd 6 2340.2.dj.c.361.4 8
65.23 odd 12 3900.2.bw.l.49.4 8
65.49 even 6 3900.2.cd.l.2701.1 8
65.62 odd 12 3900.2.bw.g.49.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
780.2.cc.b.121.4 8 1.1 even 1 trivial
780.2.cc.b.361.2 yes 8 13.10 even 6 inner
2340.2.dj.c.361.4 8 39.23 odd 6
2340.2.dj.c.901.2 8 3.2 odd 2
3900.2.bw.g.49.1 8 65.62 odd 12
3900.2.bw.g.2149.1 8 5.3 odd 4
3900.2.bw.l.49.4 8 65.23 odd 12
3900.2.bw.l.2149.4 8 5.2 odd 4
3900.2.cd.l.901.1 8 5.4 even 2
3900.2.cd.l.2701.1 8 65.49 even 6