Properties

Label 3900.2.bw.l.2149.4
Level $3900$
Weight $2$
Character 3900.2149
Analytic conductor $31.142$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3900,2,Mod(49,3900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3900, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3900.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3900 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3900.bw (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,8,0,4,0,-12,0,0,0,0,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.1416567883\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 780)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2149.4
Root \(0.965926 - 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 3900.2149
Dual form 3900.2.bw.l.49.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{3} +(1.96593 + 3.40508i) q^{7} +(0.500000 + 0.866025i) q^{9} +(-1.14128 - 0.658919i) q^{11} +(-3.08725 - 1.86250i) q^{13} +(0.478838 - 0.276457i) q^{17} +(-4.69748 + 2.71209i) q^{19} +3.93185i q^{21} +(0.411634 + 0.237657i) q^{23} +1.00000i q^{27} +(-1.53906 + 2.66573i) q^{29} +3.49938i q^{31} +(-0.658919 - 1.14128i) q^{33} +(-0.235077 + 0.407165i) q^{37} +(-1.74238 - 3.15660i) q^{39} +(2.53906 + 1.46593i) q^{41} +(1.20893 - 0.697977i) q^{43} -7.71039 q^{47} +(-4.22973 + 7.32611i) q^{49} +0.552914 q^{51} -3.43488i q^{53} -5.42418 q^{57} +(-11.2735 + 6.50877i) q^{59} +(0.313111 + 0.542324i) q^{61} +(-1.96593 + 3.40508i) q^{63} +(-6.37221 + 11.0370i) q^{67} +(0.237657 + 0.411634i) q^{69} +(-4.51581 + 2.60721i) q^{71} -6.95303 q^{73} -5.18154i q^{77} -1.19615 q^{79} +(-0.500000 + 0.866025i) q^{81} +12.9382 q^{83} +(-2.66573 + 1.53906i) q^{87} +(15.5117 + 8.95568i) q^{89} +(0.272675 - 14.1739i) q^{91} +(-1.74969 + 3.03055i) q^{93} +(-2.62314 - 4.54342i) q^{97} -1.31784i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{7} + 4 q^{9} - 12 q^{11} - 12 q^{19} - 12 q^{23} + 8 q^{29} - 4 q^{33} + 8 q^{37} + 24 q^{43} - 40 q^{47} + 4 q^{49} - 8 q^{51} + 24 q^{57} - 24 q^{59} + 8 q^{61} - 8 q^{63} - 4 q^{69} - 12 q^{71}+ \cdots - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3900\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(1301\) \(1951\) \(3277\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.866025 + 0.500000i 0.500000 + 0.288675i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.96593 + 3.40508i 0.743050 + 1.28700i 0.951100 + 0.308882i \(0.0999550\pi\)
−0.208050 + 0.978118i \(0.566712\pi\)
\(8\) 0 0
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 0 0
\(11\) −1.14128 0.658919i −0.344109 0.198671i 0.317979 0.948098i \(-0.396996\pi\)
−0.662088 + 0.749426i \(0.730329\pi\)
\(12\) 0 0
\(13\) −3.08725 1.86250i −0.856248 0.516565i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.478838 0.276457i 0.116135 0.0670507i −0.440807 0.897602i \(-0.645308\pi\)
0.556942 + 0.830551i \(0.311974\pi\)
\(18\) 0 0
\(19\) −4.69748 + 2.71209i −1.07768 + 0.622196i −0.930268 0.366880i \(-0.880426\pi\)
−0.147407 + 0.989076i \(0.547093\pi\)
\(20\) 0 0
\(21\) 3.93185i 0.858000i
\(22\) 0 0
\(23\) 0.411634 + 0.237657i 0.0858316 + 0.0495549i 0.542301 0.840184i \(-0.317553\pi\)
−0.456470 + 0.889739i \(0.650886\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −1.53906 + 2.66573i −0.285796 + 0.495013i −0.972802 0.231639i \(-0.925591\pi\)
0.687006 + 0.726652i \(0.258925\pi\)
\(30\) 0 0
\(31\) 3.49938i 0.628507i 0.949339 + 0.314253i \(0.101754\pi\)
−0.949339 + 0.314253i \(0.898246\pi\)
\(32\) 0 0
\(33\) −0.658919 1.14128i −0.114703 0.198671i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −0.235077 + 0.407165i −0.0386464 + 0.0669376i −0.884702 0.466158i \(-0.845638\pi\)
0.846055 + 0.533095i \(0.178971\pi\)
\(38\) 0 0
\(39\) −1.74238 3.15660i −0.279005 0.505460i
\(40\) 0 0
\(41\) 2.53906 + 1.46593i 0.396534 + 0.228939i 0.684987 0.728555i \(-0.259808\pi\)
−0.288453 + 0.957494i \(0.593141\pi\)
\(42\) 0 0
\(43\) 1.20893 0.697977i 0.184360 0.106440i −0.404979 0.914326i \(-0.632721\pi\)
0.589340 + 0.807885i \(0.299388\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −7.71039 −1.12468 −0.562338 0.826907i \(-0.690098\pi\)
−0.562338 + 0.826907i \(0.690098\pi\)
\(48\) 0 0
\(49\) −4.22973 + 7.32611i −0.604247 + 1.04659i
\(50\) 0 0
\(51\) 0.552914 0.0774235
\(52\) 0 0
\(53\) 3.43488i 0.471817i −0.971775 0.235908i \(-0.924193\pi\)
0.971775 0.235908i \(-0.0758065\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −5.42418 −0.718450
\(58\) 0 0
\(59\) −11.2735 + 6.50877i −1.46769 + 0.847369i −0.999345 0.0361787i \(-0.988481\pi\)
−0.468341 + 0.883548i \(0.655148\pi\)
\(60\) 0 0
\(61\) 0.313111 + 0.542324i 0.0400898 + 0.0694375i 0.885374 0.464879i \(-0.153902\pi\)
−0.845284 + 0.534317i \(0.820569\pi\)
\(62\) 0 0
\(63\) −1.96593 + 3.40508i −0.247683 + 0.429000i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −6.37221 + 11.0370i −0.778490 + 1.34838i 0.154323 + 0.988020i \(0.450680\pi\)
−0.932812 + 0.360363i \(0.882653\pi\)
\(68\) 0 0
\(69\) 0.237657 + 0.411634i 0.0286105 + 0.0495549i
\(70\) 0 0
\(71\) −4.51581 + 2.60721i −0.535929 + 0.309418i −0.743427 0.668817i \(-0.766801\pi\)
0.207499 + 0.978235i \(0.433468\pi\)
\(72\) 0 0
\(73\) −6.95303 −0.813791 −0.406895 0.913475i \(-0.633389\pi\)
−0.406895 + 0.913475i \(0.633389\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.18154i 0.590491i
\(78\) 0 0
\(79\) −1.19615 −0.134578 −0.0672888 0.997734i \(-0.521435\pi\)
−0.0672888 + 0.997734i \(0.521435\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 12.9382 1.42015 0.710074 0.704127i \(-0.248661\pi\)
0.710074 + 0.704127i \(0.248661\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −2.66573 + 1.53906i −0.285796 + 0.165004i
\(88\) 0 0
\(89\) 15.5117 + 8.95568i 1.64424 + 0.949300i 0.979304 + 0.202395i \(0.0648726\pi\)
0.664931 + 0.746904i \(0.268461\pi\)
\(90\) 0 0
\(91\) 0.272675 14.1739i 0.0285841 1.48583i
\(92\) 0 0
\(93\) −1.74969 + 3.03055i −0.181434 + 0.314253i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −2.62314 4.54342i −0.266340 0.461314i 0.701574 0.712597i \(-0.252481\pi\)
−0.967914 + 0.251282i \(0.919148\pi\)
\(98\) 0 0
\(99\) 1.31784i 0.132448i
\(100\) 0 0
\(101\) 6.98432 12.0972i 0.694966 1.20372i −0.275226 0.961379i \(-0.588753\pi\)
0.970192 0.242337i \(-0.0779138\pi\)
\(102\) 0 0
\(103\) 17.2231i 1.69705i 0.529158 + 0.848523i \(0.322508\pi\)
−0.529158 + 0.848523i \(0.677492\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.33167 4.81029i −0.805453 0.465028i 0.0399215 0.999203i \(-0.487289\pi\)
−0.845374 + 0.534174i \(0.820623\pi\)
\(108\) 0 0
\(109\) 12.1516i 1.16391i 0.813221 + 0.581956i \(0.197712\pi\)
−0.813221 + 0.581956i \(0.802288\pi\)
\(110\) 0 0
\(111\) −0.407165 + 0.235077i −0.0386464 + 0.0223125i
\(112\) 0 0
\(113\) 0.636919 0.367725i 0.0599163 0.0345927i −0.469743 0.882803i \(-0.655653\pi\)
0.529659 + 0.848211i \(0.322320\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0.0693504 3.60488i 0.00641144 0.333272i
\(118\) 0 0
\(119\) 1.88272 + 1.08699i 0.172589 + 0.0996441i
\(120\) 0 0
\(121\) −4.63165 8.02226i −0.421059 0.729296i
\(122\) 0 0
\(123\) 1.46593 + 2.53906i 0.132178 + 0.228939i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −16.5303 9.54378i −1.46683 0.846874i −0.467517 0.883984i \(-0.654851\pi\)
−0.999311 + 0.0371100i \(0.988185\pi\)
\(128\) 0 0
\(129\) 1.39595 0.122907
\(130\) 0 0
\(131\) 1.40717 0.122945 0.0614723 0.998109i \(-0.480420\pi\)
0.0614723 + 0.998109i \(0.480420\pi\)
\(132\) 0 0
\(133\) −18.4698 10.6635i −1.60153 0.924646i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −5.82989 10.0977i −0.498081 0.862701i 0.501917 0.864916i \(-0.332628\pi\)
−0.999998 + 0.00221463i \(0.999295\pi\)
\(138\) 0 0
\(139\) −1.12106 1.94174i −0.0950873 0.164696i 0.814558 0.580082i \(-0.196980\pi\)
−0.909645 + 0.415386i \(0.863646\pi\)
\(140\) 0 0
\(141\) −6.67739 3.85520i −0.562338 0.324666i
\(142\) 0 0
\(143\) 2.29618 + 4.15988i 0.192016 + 0.347867i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −7.32611 + 4.22973i −0.604247 + 0.348862i
\(148\) 0 0
\(149\) 16.1476 9.32282i 1.32286 0.763755i 0.338678 0.940902i \(-0.390020\pi\)
0.984184 + 0.177147i \(0.0566868\pi\)
\(150\) 0 0
\(151\) 0.368970i 0.0300263i 0.999887 + 0.0150132i \(0.00477902\pi\)
−0.999887 + 0.0150132i \(0.995221\pi\)
\(152\) 0 0
\(153\) 0.478838 + 0.276457i 0.0387117 + 0.0223502i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 4.71895i 0.376613i 0.982110 + 0.188307i \(0.0602999\pi\)
−0.982110 + 0.188307i \(0.939700\pi\)
\(158\) 0 0
\(159\) 1.71744 2.97469i 0.136202 0.235908i
\(160\) 0 0
\(161\) 1.86886i 0.147287i
\(162\) 0 0
\(163\) −6.76612 11.7193i −0.529964 0.917924i −0.999389 0.0349520i \(-0.988872\pi\)
0.469425 0.882972i \(-0.344461\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.06815 5.31419i 0.237420 0.411224i −0.722553 0.691316i \(-0.757031\pi\)
0.959973 + 0.280091i \(0.0903648\pi\)
\(168\) 0 0
\(169\) 6.06218 + 11.5000i 0.466321 + 0.884615i
\(170\) 0 0
\(171\) −4.69748 2.71209i −0.359225 0.207399i
\(172\) 0 0
\(173\) 0.429946 0.248229i 0.0326882 0.0188725i −0.483567 0.875307i \(-0.660659\pi\)
0.516255 + 0.856435i \(0.327326\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −13.0175 −0.978458
\(178\) 0 0
\(179\) −1.96895 + 3.41032i −0.147166 + 0.254900i −0.930179 0.367106i \(-0.880349\pi\)
0.783013 + 0.622006i \(0.213682\pi\)
\(180\) 0 0
\(181\) 3.35363 0.249273 0.124637 0.992202i \(-0.460223\pi\)
0.124637 + 0.992202i \(0.460223\pi\)
\(182\) 0 0
\(183\) 0.626222i 0.0462917i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −0.728651 −0.0532842
\(188\) 0 0
\(189\) −3.40508 + 1.96593i −0.247683 + 0.143000i
\(190\) 0 0
\(191\) 10.2831 + 17.8109i 0.744062 + 1.28875i 0.950632 + 0.310321i \(0.100437\pi\)
−0.206570 + 0.978432i \(0.566230\pi\)
\(192\) 0 0
\(193\) 2.75908 4.77886i 0.198603 0.343990i −0.749473 0.662035i \(-0.769693\pi\)
0.948076 + 0.318045i \(0.103026\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3.92979 6.80659i 0.279986 0.484950i −0.691395 0.722477i \(-0.743004\pi\)
0.971381 + 0.237527i \(0.0763369\pi\)
\(198\) 0 0
\(199\) 3.49536 + 6.05413i 0.247779 + 0.429166i 0.962909 0.269825i \(-0.0869659\pi\)
−0.715130 + 0.698991i \(0.753633\pi\)
\(200\) 0 0
\(201\) −11.0370 + 6.37221i −0.778490 + 0.449461i
\(202\) 0 0
\(203\) −12.1027 −0.849443
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0.475314i 0.0330366i
\(208\) 0 0
\(209\) 7.14819 0.494451
\(210\) 0 0
\(211\) 6.79958 11.7772i 0.468102 0.810777i −0.531233 0.847226i \(-0.678271\pi\)
0.999336 + 0.0364488i \(0.0116046\pi\)
\(212\) 0 0
\(213\) −5.21441 −0.357286
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −11.9157 + 6.87952i −0.808889 + 0.467012i
\(218\) 0 0
\(219\) −6.02150 3.47652i −0.406895 0.234921i
\(220\) 0 0
\(221\) −1.99319 0.0383448i −0.134077 0.00257935i
\(222\) 0 0
\(223\) −6.16693 + 10.6814i −0.412968 + 0.715282i −0.995213 0.0977319i \(-0.968841\pi\)
0.582245 + 0.813014i \(0.302175\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5.54441 9.60319i −0.367995 0.637386i 0.621257 0.783607i \(-0.286622\pi\)
−0.989252 + 0.146221i \(0.953289\pi\)
\(228\) 0 0
\(229\) 11.4607i 0.757344i −0.925531 0.378672i \(-0.876381\pi\)
0.925531 0.378672i \(-0.123619\pi\)
\(230\) 0 0
\(231\) 2.59077 4.48735i 0.170460 0.295246i
\(232\) 0 0
\(233\) 25.4527i 1.66746i 0.552172 + 0.833730i \(0.313799\pi\)
−0.552172 + 0.833730i \(0.686201\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −1.03590 0.598076i −0.0672888 0.0388492i
\(238\) 0 0
\(239\) 20.8676i 1.34981i 0.737903 + 0.674907i \(0.235816\pi\)
−0.737903 + 0.674907i \(0.764184\pi\)
\(240\) 0 0
\(241\) −15.8447 + 9.14796i −1.02065 + 0.589272i −0.914292 0.405056i \(-0.867252\pi\)
−0.106357 + 0.994328i \(0.533919\pi\)
\(242\) 0 0
\(243\) −0.866025 + 0.500000i −0.0555556 + 0.0320750i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 19.5535 + 0.376169i 1.24416 + 0.0239351i
\(248\) 0 0
\(249\) 11.2048 + 6.46909i 0.710074 + 0.409962i
\(250\) 0 0
\(251\) 2.17191 + 3.76186i 0.137090 + 0.237447i 0.926394 0.376556i \(-0.122892\pi\)
−0.789304 + 0.614003i \(0.789558\pi\)
\(252\) 0 0
\(253\) −0.313193 0.542466i −0.0196903 0.0341046i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.20706 2.42895i −0.262429 0.151514i 0.363013 0.931784i \(-0.381748\pi\)
−0.625442 + 0.780270i \(0.715081\pi\)
\(258\) 0 0
\(259\) −1.84858 −0.114865
\(260\) 0 0
\(261\) −3.07812 −0.190531
\(262\) 0 0
\(263\) −19.3379 11.1647i −1.19243 0.688447i −0.233570 0.972340i \(-0.575041\pi\)
−0.958856 + 0.283893i \(0.908374\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 8.95568 + 15.5117i 0.548078 + 0.949300i
\(268\) 0 0
\(269\) 4.16875 + 7.22049i 0.254173 + 0.440241i 0.964671 0.263459i \(-0.0848633\pi\)
−0.710497 + 0.703700i \(0.751530\pi\)
\(270\) 0 0
\(271\) −9.58860 5.53598i −0.582466 0.336287i 0.179647 0.983731i \(-0.442504\pi\)
−0.762113 + 0.647444i \(0.775838\pi\)
\(272\) 0 0
\(273\) 7.32308 12.1386i 0.443213 0.734661i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −15.4582 + 8.92480i −0.928794 + 0.536239i −0.886430 0.462863i \(-0.846822\pi\)
−0.0423641 + 0.999102i \(0.513489\pi\)
\(278\) 0 0
\(279\) −3.03055 + 1.74969i −0.181434 + 0.104751i
\(280\) 0 0
\(281\) 30.2163i 1.80256i 0.433242 + 0.901278i \(0.357370\pi\)
−0.433242 + 0.901278i \(0.642630\pi\)
\(282\) 0 0
\(283\) 26.3789 + 15.2299i 1.56806 + 0.905321i 0.996395 + 0.0848360i \(0.0270366\pi\)
0.571668 + 0.820485i \(0.306297\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 11.5276i 0.680453i
\(288\) 0 0
\(289\) −8.34714 + 14.4577i −0.491008 + 0.850452i
\(290\) 0 0
\(291\) 5.24629i 0.307543i
\(292\) 0 0
\(293\) −9.23654 15.9982i −0.539604 0.934622i −0.998925 0.0463516i \(-0.985241\pi\)
0.459321 0.888270i \(-0.348093\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0.658919 1.14128i 0.0382343 0.0662238i
\(298\) 0 0
\(299\) −0.828178 1.50037i −0.0478948 0.0867688i
\(300\) 0 0
\(301\) 4.75334 + 2.74434i 0.273978 + 0.158181i
\(302\) 0 0
\(303\) 12.0972 6.98432i 0.694966 0.401239i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −24.6938 −1.40935 −0.704675 0.709530i \(-0.748907\pi\)
−0.704675 + 0.709530i \(0.748907\pi\)
\(308\) 0 0
\(309\) −8.61157 + 14.9157i −0.489895 + 0.848523i
\(310\) 0 0
\(311\) 33.5489 1.90239 0.951193 0.308596i \(-0.0998591\pi\)
0.951193 + 0.308596i \(0.0998591\pi\)
\(312\) 0 0
\(313\) 22.2876i 1.25977i −0.776688 0.629886i \(-0.783102\pi\)
0.776688 0.629886i \(-0.216898\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 34.0884 1.91459 0.957296 0.289109i \(-0.0933589\pi\)
0.957296 + 0.289109i \(0.0933589\pi\)
\(318\) 0 0
\(319\) 3.51299 2.02823i 0.196690 0.113559i
\(320\) 0 0
\(321\) −4.81029 8.33167i −0.268484 0.465028i
\(322\) 0 0
\(323\) −1.49955 + 2.59730i −0.0834374 + 0.144518i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −6.07579 + 10.5236i −0.335992 + 0.581956i
\(328\) 0 0
\(329\) −15.1581 26.2545i −0.835691 1.44746i
\(330\) 0 0
\(331\) −26.0020 + 15.0123i −1.42920 + 0.825150i −0.997058 0.0766545i \(-0.975576\pi\)
−0.432144 + 0.901805i \(0.642243\pi\)
\(332\) 0 0
\(333\) −0.470154 −0.0257643
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 6.84596i 0.372923i 0.982462 + 0.186462i \(0.0597020\pi\)
−0.982462 + 0.186462i \(0.940298\pi\)
\(338\) 0 0
\(339\) 0.735451 0.0399442
\(340\) 0 0
\(341\) 2.30581 3.99377i 0.124866 0.216275i
\(342\) 0 0
\(343\) −5.73837 −0.309843
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −22.2010 + 12.8177i −1.19181 + 0.688092i −0.958717 0.284363i \(-0.908218\pi\)
−0.233093 + 0.972454i \(0.574885\pi\)
\(348\) 0 0
\(349\) −10.5134 6.06993i −0.562771 0.324916i 0.191486 0.981495i \(-0.438669\pi\)
−0.754257 + 0.656579i \(0.772003\pi\)
\(350\) 0 0
\(351\) 1.86250 3.08725i 0.0994130 0.164785i
\(352\) 0 0
\(353\) −15.2899 + 26.4830i −0.813802 + 1.40955i 0.0963832 + 0.995344i \(0.469273\pi\)
−0.910185 + 0.414202i \(0.864061\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 1.08699 + 1.88272i 0.0575295 + 0.0996441i
\(358\) 0 0
\(359\) 12.2163i 0.644754i 0.946611 + 0.322377i \(0.104482\pi\)
−0.946611 + 0.322377i \(0.895518\pi\)
\(360\) 0 0
\(361\) 5.21087 9.02549i 0.274256 0.475026i
\(362\) 0 0
\(363\) 9.26330i 0.486197i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 22.4269 + 12.9482i 1.17068 + 0.675890i 0.953839 0.300318i \(-0.0970930\pi\)
0.216836 + 0.976208i \(0.430426\pi\)
\(368\) 0 0
\(369\) 2.93185i 0.152626i
\(370\) 0 0
\(371\) 11.6960 6.75272i 0.607228 0.350584i
\(372\) 0 0
\(373\) 15.2438 8.80104i 0.789296 0.455700i −0.0504185 0.998728i \(-0.516056\pi\)
0.839715 + 0.543028i \(0.182722\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 9.71637 5.36326i 0.500419 0.276222i
\(378\) 0 0
\(379\) 24.3471 + 14.0568i 1.25063 + 0.722051i 0.971234 0.238126i \(-0.0765330\pi\)
0.279394 + 0.960176i \(0.409866\pi\)
\(380\) 0 0
\(381\) −9.54378 16.5303i −0.488943 0.846874i
\(382\) 0 0
\(383\) −1.13776 1.97065i −0.0581366 0.100696i 0.835492 0.549502i \(-0.185183\pi\)
−0.893629 + 0.448807i \(0.851849\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1.20893 + 0.697977i 0.0614534 + 0.0354801i
\(388\) 0 0
\(389\) −0.182785 −0.00926757 −0.00463378 0.999989i \(-0.501475\pi\)
−0.00463378 + 0.999989i \(0.501475\pi\)
\(390\) 0 0
\(391\) 0.262808 0.0132908
\(392\) 0 0
\(393\) 1.21864 + 0.703583i 0.0614723 + 0.0354911i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −14.5890 25.2689i −0.732202 1.26821i −0.955940 0.293562i \(-0.905159\pi\)
0.223738 0.974649i \(-0.428174\pi\)
\(398\) 0 0
\(399\) −10.6635 18.4698i −0.533845 0.924646i
\(400\) 0 0
\(401\) 24.2385 + 13.9941i 1.21041 + 0.698833i 0.962849 0.270039i \(-0.0870366\pi\)
0.247564 + 0.968872i \(0.420370\pi\)
\(402\) 0 0
\(403\) 6.51760 10.8034i 0.324665 0.538158i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.536578 0.309793i 0.0265972 0.0153559i
\(408\) 0 0
\(409\) 15.6607 9.04170i 0.774371 0.447083i −0.0600606 0.998195i \(-0.519129\pi\)
0.834432 + 0.551111i \(0.185796\pi\)
\(410\) 0 0
\(411\) 11.6598i 0.575134i
\(412\) 0 0
\(413\) −44.3258 25.5915i −2.18113 1.25928i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 2.24213i 0.109797i
\(418\) 0 0
\(419\) −5.20403 + 9.01364i −0.254233 + 0.440345i −0.964687 0.263399i \(-0.915156\pi\)
0.710454 + 0.703744i \(0.248490\pi\)
\(420\) 0 0
\(421\) 5.16456i 0.251705i −0.992049 0.125853i \(-0.959833\pi\)
0.992049 0.125853i \(-0.0401666\pi\)
\(422\) 0 0
\(423\) −3.85520 6.67739i −0.187446 0.324666i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −1.23111 + 2.13234i −0.0595774 + 0.103191i
\(428\) 0 0
\(429\) −0.0913925 + 4.75065i −0.00441247 + 0.229364i
\(430\) 0 0
\(431\) 29.0597 + 16.7776i 1.39976 + 0.808150i 0.994367 0.105993i \(-0.0338023\pi\)
0.405390 + 0.914144i \(0.367136\pi\)
\(432\) 0 0
\(433\) 14.6722 8.47099i 0.705100 0.407090i −0.104144 0.994562i \(-0.533210\pi\)
0.809244 + 0.587472i \(0.199877\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −2.57819 −0.123331
\(438\) 0 0
\(439\) 13.3279 23.0846i 0.636105 1.10177i −0.350174 0.936684i \(-0.613878\pi\)
0.986280 0.165082i \(-0.0527890\pi\)
\(440\) 0 0
\(441\) −8.45946 −0.402831
\(442\) 0 0
\(443\) 8.90671i 0.423170i 0.977360 + 0.211585i \(0.0678626\pi\)
−0.977360 + 0.211585i \(0.932137\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 18.6456 0.881909
\(448\) 0 0
\(449\) −9.40300 + 5.42883i −0.443755 + 0.256202i −0.705189 0.709019i \(-0.749138\pi\)
0.261434 + 0.965221i \(0.415805\pi\)
\(450\) 0 0
\(451\) −1.93185 3.34607i −0.0909673 0.157560i
\(452\) 0 0
\(453\) −0.184485 + 0.319537i −0.00866785 + 0.0150132i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −3.89036 + 6.73831i −0.181984 + 0.315205i −0.942556 0.334048i \(-0.891585\pi\)
0.760572 + 0.649253i \(0.224918\pi\)
\(458\) 0 0
\(459\) 0.276457 + 0.478838i 0.0129039 + 0.0223502i
\(460\) 0 0
\(461\) −24.4717 + 14.1288i −1.13976 + 0.658042i −0.946372 0.323080i \(-0.895282\pi\)
−0.193390 + 0.981122i \(0.561948\pi\)
\(462\) 0 0
\(463\) −8.22511 −0.382253 −0.191127 0.981565i \(-0.561214\pi\)
−0.191127 + 0.981565i \(0.561214\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 21.4205i 0.991224i −0.868544 0.495612i \(-0.834944\pi\)
0.868544 0.495612i \(-0.165056\pi\)
\(468\) 0 0
\(469\) −50.1092 −2.31383
\(470\) 0 0
\(471\) −2.35948 + 4.08673i −0.108719 + 0.188307i
\(472\) 0 0
\(473\) −1.83964 −0.0845867
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 2.97469 1.71744i 0.136202 0.0786361i
\(478\) 0 0
\(479\) 30.7499 + 17.7535i 1.40500 + 0.811177i 0.994900 0.100864i \(-0.0321607\pi\)
0.410099 + 0.912041i \(0.365494\pi\)
\(480\) 0 0
\(481\) 1.48409 0.819188i 0.0676685 0.0373518i
\(482\) 0 0
\(483\) −0.934431 + 1.61848i −0.0425181 + 0.0736435i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −1.11500 1.93124i −0.0505255 0.0875128i 0.839657 0.543118i \(-0.182756\pi\)
−0.890182 + 0.455605i \(0.849423\pi\)
\(488\) 0 0
\(489\) 13.5322i 0.611949i
\(490\) 0 0
\(491\) 18.8199 32.5970i 0.849330 1.47108i −0.0324772 0.999472i \(-0.510340\pi\)
0.881807 0.471610i \(-0.156327\pi\)
\(492\) 0 0
\(493\) 1.70193i 0.0766513i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −17.7555 10.2511i −0.796443 0.459827i
\(498\) 0 0
\(499\) 26.3242i 1.17843i −0.807975 0.589216i \(-0.799437\pi\)
0.807975 0.589216i \(-0.200563\pi\)
\(500\) 0 0
\(501\) 5.31419 3.06815i 0.237420 0.137075i
\(502\) 0 0
\(503\) 22.7687 13.1455i 1.01521 0.586130i 0.102496 0.994733i \(-0.467317\pi\)
0.912712 + 0.408603i \(0.133984\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −0.500000 + 12.9904i −0.0222058 + 0.576923i
\(508\) 0 0
\(509\) 3.35226 + 1.93543i 0.148586 + 0.0857863i 0.572450 0.819940i \(-0.305993\pi\)
−0.423864 + 0.905726i \(0.639326\pi\)
\(510\) 0 0
\(511\) −13.6691 23.6757i −0.604687 1.04735i
\(512\) 0 0
\(513\) −2.71209 4.69748i −0.119742 0.207399i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 8.79972 + 5.08052i 0.387011 + 0.223441i
\(518\) 0 0
\(519\) 0.496458 0.0217921
\(520\) 0 0
\(521\) 20.6427 0.904372 0.452186 0.891924i \(-0.350644\pi\)
0.452186 + 0.891924i \(0.350644\pi\)
\(522\) 0 0
\(523\) 24.5787 + 14.1905i 1.07475 + 0.620508i 0.929476 0.368883i \(-0.120260\pi\)
0.145275 + 0.989391i \(0.453593\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.967428 + 1.67563i 0.0421418 + 0.0729918i
\(528\) 0 0
\(529\) −11.3870 19.7229i −0.495089 0.857519i
\(530\) 0 0
\(531\) −11.2735 6.50877i −0.489229 0.282456i
\(532\) 0 0
\(533\) −5.10841 9.25467i −0.221270 0.400864i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −3.41032 + 1.96895i −0.147166 + 0.0849666i
\(538\) 0 0
\(539\) 9.65461 5.57409i 0.415854 0.240093i
\(540\) 0 0
\(541\) 2.51613i 0.108177i 0.998536 + 0.0540884i \(0.0172253\pi\)
−0.998536 + 0.0540884i \(0.982775\pi\)
\(542\) 0 0
\(543\) 2.90433 + 1.67681i 0.124637 + 0.0719590i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 28.6507i 1.22502i 0.790464 + 0.612508i \(0.209839\pi\)
−0.790464 + 0.612508i \(0.790161\pi\)
\(548\) 0 0
\(549\) −0.313111 + 0.542324i −0.0133633 + 0.0231458i
\(550\) 0 0
\(551\) 16.6963i 0.711285i
\(552\) 0 0
\(553\) −2.35155 4.07300i −0.0999979 0.173202i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 11.9675 20.7283i 0.507078 0.878285i −0.492889 0.870092i \(-0.664059\pi\)
0.999966 0.00819220i \(-0.00260769\pi\)
\(558\) 0 0
\(559\) −5.03225 0.0968099i −0.212841 0.00409462i
\(560\) 0 0
\(561\) −0.631030 0.364326i −0.0266421 0.0153818i
\(562\) 0 0
\(563\) 18.0641 10.4293i 0.761313 0.439544i −0.0684539 0.997654i \(-0.521807\pi\)
0.829767 + 0.558110i \(0.188473\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −3.93185 −0.165122
\(568\) 0 0
\(569\) 9.70392 16.8077i 0.406810 0.704615i −0.587721 0.809064i \(-0.699975\pi\)
0.994530 + 0.104449i \(0.0333079\pi\)
\(570\) 0 0
\(571\) 2.64156 0.110546 0.0552730 0.998471i \(-0.482397\pi\)
0.0552730 + 0.998471i \(0.482397\pi\)
\(572\) 0 0
\(573\) 20.5663i 0.859169i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −24.0716 −1.00211 −0.501057 0.865415i \(-0.667055\pi\)
−0.501057 + 0.865415i \(0.667055\pi\)
\(578\) 0 0
\(579\) 4.77886 2.75908i 0.198603 0.114663i
\(580\) 0 0
\(581\) 25.4355 + 44.0556i 1.05524 + 1.82773i
\(582\) 0 0
\(583\) −2.26330 + 3.92016i −0.0937365 + 0.162356i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 18.6814 32.3571i 0.771063 1.33552i −0.165918 0.986140i \(-0.553059\pi\)
0.936981 0.349381i \(-0.113608\pi\)
\(588\) 0 0
\(589\) −9.49063 16.4383i −0.391055 0.677326i
\(590\) 0 0
\(591\) 6.80659 3.92979i 0.279986 0.161650i
\(592\) 0 0
\(593\) 45.4778 1.86755 0.933774 0.357863i \(-0.116495\pi\)
0.933774 + 0.357863i \(0.116495\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 6.99071i 0.286111i
\(598\) 0 0
\(599\) −24.7863 −1.01274 −0.506370 0.862316i \(-0.669013\pi\)
−0.506370 + 0.862316i \(0.669013\pi\)
\(600\) 0 0
\(601\) −12.3643 + 21.4156i −0.504350 + 0.873560i 0.495637 + 0.868530i \(0.334935\pi\)
−0.999987 + 0.00503065i \(0.998399\pi\)
\(602\) 0 0
\(603\) −12.7444 −0.518993
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 4.52913 2.61489i 0.183832 0.106135i −0.405260 0.914201i \(-0.632819\pi\)
0.589092 + 0.808066i \(0.299486\pi\)
\(608\) 0 0
\(609\) −10.4812 6.05135i −0.424721 0.245213i
\(610\) 0 0
\(611\) 23.8039 + 14.3606i 0.963002 + 0.580968i
\(612\) 0 0
\(613\) −6.96780 + 12.0686i −0.281427 + 0.487446i −0.971736 0.236069i \(-0.924141\pi\)
0.690310 + 0.723514i \(0.257474\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 22.6898 + 39.2999i 0.913458 + 1.58216i 0.809144 + 0.587611i \(0.199931\pi\)
0.104314 + 0.994544i \(0.466735\pi\)
\(618\) 0 0
\(619\) 12.7094i 0.510834i −0.966831 0.255417i \(-0.917787\pi\)
0.966831 0.255417i \(-0.0822128\pi\)
\(620\) 0 0
\(621\) −0.237657 + 0.411634i −0.00953684 + 0.0165183i
\(622\) 0 0
\(623\) 70.4248i 2.82151i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 6.19051 + 3.57409i 0.247225 + 0.142736i
\(628\) 0 0
\(629\) 0.259955i 0.0103651i
\(630\) 0 0
\(631\) 3.49465 2.01764i 0.139120 0.0803209i −0.428825 0.903388i \(-0.641072\pi\)
0.567944 + 0.823067i \(0.307739\pi\)
\(632\) 0 0
\(633\) 11.7772 6.79958i 0.468102 0.270259i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 26.7031 14.7396i 1.05802 0.584005i
\(638\) 0 0
\(639\) −4.51581 2.60721i −0.178643 0.103139i
\(640\) 0 0
\(641\) −16.7616 29.0320i −0.662044 1.14669i −0.980078 0.198614i \(-0.936356\pi\)
0.318034 0.948079i \(-0.396977\pi\)
\(642\) 0 0
\(643\) 24.7714 + 42.9054i 0.976891 + 1.69202i 0.673550 + 0.739142i \(0.264769\pi\)
0.303341 + 0.952882i \(0.401898\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −10.8731 6.27758i −0.427465 0.246797i 0.270801 0.962635i \(-0.412711\pi\)
−0.698266 + 0.715838i \(0.746045\pi\)
\(648\) 0 0
\(649\) 17.1550 0.673392
\(650\) 0 0
\(651\) −13.7590 −0.539259
\(652\) 0 0
\(653\) 0.0675086 + 0.0389761i 0.00264181 + 0.00152525i 0.501320 0.865262i \(-0.332848\pi\)
−0.498679 + 0.866787i \(0.666181\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −3.47652 6.02150i −0.135632 0.234921i
\(658\) 0 0
\(659\) 21.5441 + 37.3155i 0.839241 + 1.45361i 0.890531 + 0.454924i \(0.150333\pi\)
−0.0512899 + 0.998684i \(0.516333\pi\)
\(660\) 0 0
\(661\) −15.6898 9.05853i −0.610264 0.352336i 0.162805 0.986658i \(-0.447946\pi\)
−0.773069 + 0.634322i \(0.781279\pi\)
\(662\) 0 0
\(663\) −1.70698 1.02980i −0.0662937 0.0399943i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1.26706 + 0.731535i −0.0490606 + 0.0283252i
\(668\) 0 0
\(669\) −10.6814 + 6.16693i −0.412968 + 0.238427i
\(670\) 0 0
\(671\) 0.825259i 0.0318588i
\(672\) 0 0
\(673\) 8.60060 + 4.96556i 0.331529 + 0.191408i 0.656520 0.754309i \(-0.272028\pi\)
−0.324991 + 0.945717i \(0.605361\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 36.7571i 1.41269i −0.707868 0.706345i \(-0.750343\pi\)
0.707868 0.706345i \(-0.249657\pi\)
\(678\) 0 0
\(679\) 10.3138 17.8641i 0.395808 0.685559i
\(680\) 0 0
\(681\) 11.0888i 0.424924i
\(682\) 0 0
\(683\) 7.84557 + 13.5889i 0.300202 + 0.519966i 0.976182 0.216955i \(-0.0696125\pi\)
−0.675979 + 0.736921i \(0.736279\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 5.73035 9.92526i 0.218627 0.378672i
\(688\) 0 0
\(689\) −6.39746 + 10.6043i −0.243724 + 0.403992i
\(690\) 0 0
\(691\) −17.7308 10.2369i −0.674510 0.389428i 0.123273 0.992373i \(-0.460661\pi\)
−0.797783 + 0.602944i \(0.793994\pi\)
\(692\) 0 0
\(693\) 4.48735 2.59077i 0.170460 0.0984152i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 1.62106 0.0614021
\(698\) 0 0
\(699\) −12.7263 + 22.0427i −0.481354 + 0.833730i
\(700\) 0 0
\(701\) −23.8368 −0.900303 −0.450152 0.892952i \(-0.648630\pi\)
−0.450152 + 0.892952i \(0.648630\pi\)
\(702\) 0 0
\(703\) 2.55020i 0.0961826i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 54.9226 2.06558
\(708\) 0 0
\(709\) 1.63746 0.945386i 0.0614960 0.0355047i −0.468937 0.883232i \(-0.655363\pi\)
0.530433 + 0.847727i \(0.322029\pi\)
\(710\) 0 0
\(711\) −0.598076 1.03590i −0.0224296 0.0388492i
\(712\) 0 0
\(713\) −0.831651 + 1.44046i −0.0311456 + 0.0539457i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −10.4338 + 18.0719i −0.389658 + 0.674907i
\(718\) 0 0
\(719\) −2.99659 5.19025i −0.111754 0.193564i 0.804724 0.593650i \(-0.202314\pi\)
−0.916478 + 0.400086i \(0.868980\pi\)
\(720\) 0 0
\(721\) −58.6462 + 33.8594i −2.18410 + 1.26099i
\(722\) 0 0
\(723\) −18.2959 −0.680433
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 39.0387i 1.44787i −0.689870 0.723933i \(-0.742333\pi\)
0.689870 0.723933i \(-0.257667\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 0.385921 0.668435i 0.0142738 0.0247230i
\(732\) 0 0
\(733\) 17.4176 0.643336 0.321668 0.946853i \(-0.395757\pi\)
0.321668 + 0.946853i \(0.395757\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 14.5450 8.39754i 0.535771 0.309327i
\(738\) 0 0
\(739\) −12.3018 7.10243i −0.452528 0.261267i 0.256369 0.966579i \(-0.417474\pi\)
−0.708897 + 0.705312i \(0.750807\pi\)
\(740\) 0 0
\(741\) 16.7458 + 10.1025i 0.615172 + 0.371126i
\(742\) 0 0
\(743\) 4.34834 7.53155i 0.159525 0.276306i −0.775172 0.631750i \(-0.782337\pi\)
0.934698 + 0.355444i \(0.115670\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 6.46909 + 11.2048i 0.236691 + 0.409962i
\(748\) 0 0
\(749\) 37.8267i 1.38216i
\(750\) 0 0
\(751\) −9.79460 + 16.9647i −0.357410 + 0.619052i −0.987527 0.157448i \(-0.949673\pi\)
0.630117 + 0.776500i \(0.283007\pi\)
\(752\) 0 0
\(753\) 4.34383i 0.158298i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −12.1870 7.03616i −0.442943 0.255733i 0.261902 0.965094i \(-0.415650\pi\)
−0.704845 + 0.709361i \(0.748984\pi\)
\(758\) 0 0
\(759\) 0.626386i 0.0227364i
\(760\) 0 0
\(761\) −15.3926 + 8.88695i −0.557983 + 0.322152i −0.752336 0.658780i \(-0.771073\pi\)
0.194353 + 0.980932i \(0.437739\pi\)
\(762\) 0 0
\(763\) −41.3772 + 23.8891i −1.49795 + 0.864844i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 46.9267 + 0.902770i 1.69442 + 0.0325972i
\(768\) 0 0
\(769\) 39.1066 + 22.5782i 1.41022 + 0.814191i 0.995409 0.0957170i \(-0.0305144\pi\)
0.414811 + 0.909908i \(0.363848\pi\)
\(770\) 0 0
\(771\) −2.42895 4.20706i −0.0874765 0.151514i
\(772\) 0 0
\(773\) −24.6399 42.6776i −0.886237 1.53501i −0.844290 0.535887i \(-0.819977\pi\)
−0.0419470 0.999120i \(-0.513356\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −1.60091 0.924288i −0.0574325 0.0331586i
\(778\) 0 0
\(779\) −15.9029 −0.569780
\(780\) 0 0
\(781\) 6.87175 0.245890
\(782\) 0 0
\(783\) −2.66573 1.53906i −0.0952653 0.0550014i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 15.9883 + 27.6925i 0.569920 + 0.987131i 0.996573 + 0.0827152i \(0.0263592\pi\)
−0.426653 + 0.904415i \(0.640307\pi\)
\(788\) 0 0
\(789\) −11.1647 19.3379i −0.397475 0.688447i
\(790\) 0 0
\(791\) 2.50427 + 1.44584i 0.0890416 + 0.0514082i
\(792\) 0 0
\(793\) 0.0434287 2.25746i 0.00154220 0.0801647i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 23.6145 13.6338i 0.836468 0.482935i −0.0195943 0.999808i \(-0.506237\pi\)
0.856062 + 0.516873i \(0.172904\pi\)
\(798\) 0 0
\(799\) −3.69203 + 2.13159i −0.130615 + 0.0754103i
\(800\) 0 0
\(801\) 17.9114i 0.632866i
\(802\) 0 0
\(803\) 7.93536 + 4.58148i 0.280033 + 0.161677i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 8.33751i 0.293494i
\(808\) 0 0
\(809\) 22.1803 38.4174i 0.779818 1.35068i −0.152229 0.988345i \(-0.548645\pi\)
0.932047 0.362339i \(-0.118022\pi\)
\(810\) 0 0
\(811\) 54.1521i 1.90154i 0.309900 + 0.950769i \(0.399704\pi\)
−0.309900 + 0.950769i \(0.600296\pi\)
\(812\) 0 0
\(813\) −5.53598 9.58860i −0.194155 0.336287i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −3.78595 + 6.55746i −0.132454 + 0.229417i
\(818\) 0 0
\(819\) 12.4113 6.85079i 0.433685 0.239386i
\(820\) 0 0
\(821\) −7.71723 4.45554i −0.269333 0.155499i 0.359251 0.933241i \(-0.383032\pi\)
−0.628584 + 0.777741i \(0.716365\pi\)
\(822\) 0 0
\(823\) −1.41546 + 0.817215i −0.0493398 + 0.0284863i −0.524467 0.851431i \(-0.675735\pi\)
0.475127 + 0.879917i \(0.342402\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 19.5497 0.679809 0.339904 0.940460i \(-0.389605\pi\)
0.339904 + 0.940460i \(0.389605\pi\)
\(828\) 0 0
\(829\) −26.2725 + 45.5052i −0.912480 + 1.58046i −0.101931 + 0.994791i \(0.532502\pi\)
−0.810549 + 0.585671i \(0.800831\pi\)
\(830\) 0 0
\(831\) −17.8496 −0.619196
\(832\) 0 0
\(833\) 4.67735i 0.162061i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −3.49938 −0.120956
\(838\) 0 0
\(839\) 3.01757 1.74219i 0.104178 0.0601472i −0.447006 0.894531i \(-0.647510\pi\)
0.551184 + 0.834384i \(0.314176\pi\)
\(840\) 0 0
\(841\) 9.76260 + 16.9093i 0.336641 + 0.583080i
\(842\) 0 0
\(843\) −15.1082 + 26.1681i −0.520353 + 0.901278i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 18.2110 31.5423i 0.625736 1.08381i
\(848\) 0 0
\(849\) 15.2299 + 26.3789i 0.522688 + 0.905321i
\(850\) 0 0
\(851\) −0.193531 + 0.111735i −0.00663417 + 0.00383024i
\(852\) 0 0
\(853\) 6.46294 0.221287 0.110643 0.993860i \(-0.464709\pi\)
0.110643 + 0.993860i \(0.464709\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 20.1736i 0.689117i −0.938765 0.344559i \(-0.888029\pi\)
0.938765 0.344559i \(-0.111971\pi\)
\(858\) 0 0
\(859\) −15.3052 −0.522207 −0.261104 0.965311i \(-0.584086\pi\)
−0.261104 + 0.965311i \(0.584086\pi\)
\(860\) 0 0
\(861\) −5.76380 + 9.98320i −0.196430 + 0.340227i
\(862\) 0 0
\(863\) 36.1031 1.22896 0.614482 0.788931i \(-0.289365\pi\)
0.614482 + 0.788931i \(0.289365\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −14.4577 + 8.34714i −0.491008 + 0.283484i
\(868\) 0 0
\(869\) 1.36515 + 0.788167i 0.0463094 + 0.0267367i
\(870\) 0 0
\(871\) 40.2290 22.2057i 1.36311 0.752410i
\(872\) 0 0
\(873\) 2.62314 4.54342i 0.0887800 0.153771i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 26.6483 + 46.1562i 0.899850 + 1.55859i 0.827685 + 0.561192i \(0.189657\pi\)
0.0721642 + 0.997393i \(0.477009\pi\)
\(878\) 0 0
\(879\) 18.4731i 0.623081i
\(880\) 0 0
\(881\) −6.59235 + 11.4183i −0.222102 + 0.384692i −0.955446 0.295166i \(-0.904625\pi\)
0.733344 + 0.679858i \(0.237958\pi\)
\(882\) 0 0
\(883\) 36.3300i 1.22260i −0.791398 0.611301i \(-0.790647\pi\)
0.791398 0.611301i \(-0.209353\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 29.4516 + 17.0039i 0.988886 + 0.570934i 0.904941 0.425537i \(-0.139915\pi\)
0.0839452 + 0.996470i \(0.473248\pi\)
\(888\) 0 0
\(889\) 75.0495i 2.51708i
\(890\) 0 0
\(891\) 1.14128 0.658919i 0.0382343 0.0220746i
\(892\) 0 0
\(893\) 36.2194 20.9113i 1.21204 0.699769i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0.0329632 1.71345i 0.00110061 0.0572105i
\(898\) 0 0
\(899\) −9.32838 5.38575i −0.311119 0.179625i
\(900\) 0 0
\(901\) −0.949596 1.64475i −0.0316356 0.0547945i
\(902\) 0 0
\(903\) 2.74434 + 4.75334i 0.0913259 + 0.158181i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −12.2476 7.07118i −0.406677 0.234795i 0.282684 0.959213i \(-0.408775\pi\)
−0.689361 + 0.724418i \(0.742108\pi\)
\(908\) 0 0
\(909\) 13.9686 0.463311
\(910\) 0 0
\(911\) −36.7262 −1.21679 −0.608396 0.793634i \(-0.708187\pi\)
−0.608396 + 0.793634i \(0.708187\pi\)
\(912\) 0 0
\(913\) −14.7661 8.52520i −0.488686 0.282143i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2.76638 + 4.79152i 0.0913540 + 0.158230i
\(918\) 0 0
\(919\) 9.74320 + 16.8757i 0.321399 + 0.556679i 0.980777 0.195133i \(-0.0625137\pi\)
−0.659378 + 0.751811i \(0.729180\pi\)
\(920\) 0 0
\(921\) −21.3855 12.3469i −0.704675 0.406844i
\(922\) 0 0
\(923\) 18.7974 + 0.361621i 0.618722 + 0.0119029i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −14.9157 + 8.61157i −0.489895 + 0.282841i
\(928\) 0 0
\(929\) 24.0598 13.8909i 0.789377 0.455747i −0.0503664 0.998731i \(-0.516039\pi\)
0.839743 + 0.542984i \(0.182706\pi\)
\(930\) 0 0
\(931\) 45.8856i 1.50384i
\(932\) 0 0
\(933\) 29.0542 + 16.7745i 0.951193 + 0.549172i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 49.0868i 1.60359i 0.597596 + 0.801797i \(0.296123\pi\)
−0.597596 + 0.801797i \(0.703877\pi\)
\(938\) 0 0
\(939\) 11.1438 19.3017i 0.363665 0.629886i
\(940\) 0 0
\(941\) 7.01554i 0.228700i 0.993441 + 0.114350i \(0.0364785\pi\)
−0.993441 + 0.114350i \(0.963521\pi\)
\(942\) 0 0
\(943\) 0.696775 + 1.20685i 0.0226901 + 0.0393004i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 9.22450 15.9773i 0.299756 0.519193i −0.676324 0.736604i \(-0.736428\pi\)
0.976080 + 0.217412i \(0.0697614\pi\)
\(948\) 0 0
\(949\) 21.4657 + 12.9500i 0.696807 + 0.420376i
\(950\) 0 0
\(951\) 29.5214 + 17.0442i 0.957296 + 0.552695i
\(952\) 0 0
\(953\) −46.9325 + 27.0965i −1.52029 + 0.877741i −0.520578 + 0.853814i \(0.674283\pi\)
−0.999714 + 0.0239264i \(0.992383\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 4.05646 0.131127
\(958\) 0 0
\(959\) 22.9223 39.7025i 0.740198 1.28206i
\(960\) 0 0
\(961\) 18.7544 0.604979
\(962\) 0 0
\(963\) 9.62058i 0.310019i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 52.8600 1.69986 0.849932 0.526892i \(-0.176643\pi\)
0.849932 + 0.526892i \(0.176643\pi\)
\(968\) 0 0
\(969\) −2.59730 + 1.49955i −0.0834374 + 0.0481726i
\(970\) 0 0
\(971\) 10.3459 + 17.9196i 0.332015 + 0.575068i 0.982907 0.184103i \(-0.0589381\pi\)
−0.650892 + 0.759171i \(0.725605\pi\)
\(972\) 0 0
\(973\) 4.40785 7.63462i 0.141309 0.244755i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −2.54247 + 4.40368i −0.0813407 + 0.140886i −0.903826 0.427900i \(-0.859254\pi\)
0.822485 + 0.568786i \(0.192587\pi\)
\(978\) 0 0
\(979\) −11.8021 20.4419i −0.377197 0.653325i
\(980\) 0 0
\(981\) −10.5236 + 6.07579i −0.335992 + 0.193985i
\(982\) 0 0
\(983\) 16.8646 0.537897 0.268949 0.963155i \(-0.413324\pi\)
0.268949 + 0.963155i \(0.413324\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 30.3161i 0.964972i
\(988\) 0 0
\(989\) 0.663516 0.0210986
\(990\) 0 0
\(991\) 25.4424 44.0676i 0.808205 1.39985i −0.105901 0.994377i \(-0.533773\pi\)
0.914106 0.405475i \(-0.132894\pi\)
\(992\) 0 0
\(993\) −30.0246 −0.952801
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 21.0477 12.1519i 0.666588 0.384855i −0.128194 0.991749i \(-0.540918\pi\)
0.794783 + 0.606894i \(0.207585\pi\)
\(998\) 0 0
\(999\) −0.407165 0.235077i −0.0128821 0.00743751i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3900.2.bw.l.2149.4 8
5.2 odd 4 3900.2.cd.l.901.1 8
5.3 odd 4 780.2.cc.b.121.4 8
5.4 even 2 3900.2.bw.g.2149.1 8
13.10 even 6 3900.2.bw.g.49.1 8
15.8 even 4 2340.2.dj.c.901.2 8
65.23 odd 12 780.2.cc.b.361.2 yes 8
65.49 even 6 inner 3900.2.bw.l.49.4 8
65.62 odd 12 3900.2.cd.l.2701.1 8
195.23 even 12 2340.2.dj.c.361.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
780.2.cc.b.121.4 8 5.3 odd 4
780.2.cc.b.361.2 yes 8 65.23 odd 12
2340.2.dj.c.361.4 8 195.23 even 12
2340.2.dj.c.901.2 8 15.8 even 4
3900.2.bw.g.49.1 8 13.10 even 6
3900.2.bw.g.2149.1 8 5.4 even 2
3900.2.bw.l.49.4 8 65.49 even 6 inner
3900.2.bw.l.2149.4 8 1.1 even 1 trivial
3900.2.cd.l.901.1 8 5.2 odd 4
3900.2.cd.l.2701.1 8 65.62 odd 12