Properties

Label 2340.2.dj.c.361.4
Level $2340$
Weight $2$
Character 2340.361
Analytic conductor $18.685$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(361,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.dj (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 780)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 361.4
Root \(0.965926 - 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 2340.361
Dual form 2340.2.dj.c.901.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{5} +(3.40508 + 1.96593i) q^{7} +(1.14128 - 0.658919i) q^{11} +(1.86250 + 3.08725i) q^{13} +(0.276457 - 0.478838i) q^{17} +(4.69748 + 2.71209i) q^{19} +(0.237657 + 0.411634i) q^{23} -1.00000 q^{25} +(-1.53906 - 2.66573i) q^{29} -3.49938i q^{31} +(-1.96593 + 3.40508i) q^{35} +(0.407165 - 0.235077i) q^{37} +(-2.53906 + 1.46593i) q^{41} +(0.697977 - 1.20893i) q^{43} +7.71039i q^{47} +(4.22973 + 7.32611i) q^{49} -3.43488 q^{53} +(0.658919 + 1.14128i) q^{55} +(-11.2735 - 6.50877i) q^{59} +(0.313111 - 0.542324i) q^{61} +(-3.08725 + 1.86250i) q^{65} +(11.0370 - 6.37221i) q^{67} +(4.51581 + 2.60721i) q^{71} +6.95303i q^{73} +5.18154 q^{77} +1.19615 q^{79} +12.9382i q^{83} +(0.478838 + 0.276457i) q^{85} +(15.5117 - 8.95568i) q^{89} +(0.272675 + 14.1739i) q^{91} +(-2.71209 + 4.69748i) q^{95} +(-4.54342 - 2.62314i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 12 q^{11} - 4 q^{17} + 12 q^{19} - 4 q^{23} - 8 q^{25} + 8 q^{29} - 8 q^{35} - 24 q^{37} - 16 q^{43} - 4 q^{49} - 16 q^{53} + 4 q^{55} - 24 q^{59} + 8 q^{61} + 24 q^{67} + 12 q^{71} + 8 q^{77} - 32 q^{79}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 3.40508 + 1.96593i 1.28700 + 0.743050i 0.978118 0.208050i \(-0.0667117\pi\)
0.308882 + 0.951100i \(0.400045\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.14128 0.658919i 0.344109 0.198671i −0.317979 0.948098i \(-0.603004\pi\)
0.662088 + 0.749426i \(0.269671\pi\)
\(12\) 0 0
\(13\) 1.86250 + 3.08725i 0.516565 + 0.856248i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.276457 0.478838i 0.0670507 0.116135i −0.830551 0.556942i \(-0.811974\pi\)
0.897602 + 0.440807i \(0.145308\pi\)
\(18\) 0 0
\(19\) 4.69748 + 2.71209i 1.07768 + 0.622196i 0.930268 0.366880i \(-0.119574\pi\)
0.147407 + 0.989076i \(0.452907\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.237657 + 0.411634i 0.0495549 + 0.0858316i 0.889739 0.456470i \(-0.150886\pi\)
−0.840184 + 0.542301i \(0.817553\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.53906 2.66573i −0.285796 0.495013i 0.687006 0.726652i \(-0.258925\pi\)
−0.972802 + 0.231639i \(0.925591\pi\)
\(30\) 0 0
\(31\) 3.49938i 0.628507i −0.949339 0.314253i \(-0.898246\pi\)
0.949339 0.314253i \(-0.101754\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.96593 + 3.40508i −0.332302 + 0.575564i
\(36\) 0 0
\(37\) 0.407165 0.235077i 0.0669376 0.0386464i −0.466158 0.884702i \(-0.654362\pi\)
0.533095 + 0.846055i \(0.321029\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.53906 + 1.46593i −0.396534 + 0.228939i −0.684987 0.728555i \(-0.740192\pi\)
0.288453 + 0.957494i \(0.406859\pi\)
\(42\) 0 0
\(43\) 0.697977 1.20893i 0.106440 0.184360i −0.807885 0.589340i \(-0.799388\pi\)
0.914326 + 0.404979i \(0.132721\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.71039i 1.12468i 0.826907 + 0.562338i \(0.190098\pi\)
−0.826907 + 0.562338i \(0.809902\pi\)
\(48\) 0 0
\(49\) 4.22973 + 7.32611i 0.604247 + 1.04659i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.43488 −0.471817 −0.235908 0.971775i \(-0.575807\pi\)
−0.235908 + 0.971775i \(0.575807\pi\)
\(54\) 0 0
\(55\) 0.658919 + 1.14128i 0.0888486 + 0.153890i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −11.2735 6.50877i −1.46769 0.847369i −0.468341 0.883548i \(-0.655148\pi\)
−0.999345 + 0.0361787i \(0.988481\pi\)
\(60\) 0 0
\(61\) 0.313111 0.542324i 0.0400898 0.0694375i −0.845284 0.534317i \(-0.820569\pi\)
0.885374 + 0.464879i \(0.153902\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.08725 + 1.86250i −0.382926 + 0.231015i
\(66\) 0 0
\(67\) 11.0370 6.37221i 1.34838 0.778490i 0.360363 0.932812i \(-0.382653\pi\)
0.988020 + 0.154323i \(0.0493195\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.51581 + 2.60721i 0.535929 + 0.309418i 0.743427 0.668817i \(-0.233199\pi\)
−0.207499 + 0.978235i \(0.566532\pi\)
\(72\) 0 0
\(73\) 6.95303i 0.813791i 0.913475 + 0.406895i \(0.133389\pi\)
−0.913475 + 0.406895i \(0.866611\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.18154 0.590491
\(78\) 0 0
\(79\) 1.19615 0.134578 0.0672888 0.997734i \(-0.478565\pi\)
0.0672888 + 0.997734i \(0.478565\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 12.9382i 1.42015i 0.704127 + 0.710074i \(0.251339\pi\)
−0.704127 + 0.710074i \(0.748661\pi\)
\(84\) 0 0
\(85\) 0.478838 + 0.276457i 0.0519373 + 0.0299860i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 15.5117 8.95568i 1.64424 0.949300i 0.664931 0.746904i \(-0.268461\pi\)
0.979304 0.202395i \(-0.0648726\pi\)
\(90\) 0 0
\(91\) 0.272675 + 14.1739i 0.0285841 + 1.48583i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.71209 + 4.69748i −0.278255 + 0.481951i
\(96\) 0 0
\(97\) −4.54342 2.62314i −0.461314 0.266340i 0.251282 0.967914i \(-0.419148\pi\)
−0.712597 + 0.701574i \(0.752481\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −6.98432 12.0972i −0.694966 1.20372i −0.970192 0.242337i \(-0.922086\pi\)
0.275226 0.961379i \(-0.411247\pi\)
\(102\) 0 0
\(103\) −17.2231 −1.69705 −0.848523 0.529158i \(-0.822508\pi\)
−0.848523 + 0.529158i \(0.822508\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.81029 + 8.33167i 0.465028 + 0.805453i 0.999203 0.0399215i \(-0.0127108\pi\)
−0.534174 + 0.845374i \(0.679377\pi\)
\(108\) 0 0
\(109\) 12.1516i 1.16391i 0.813221 + 0.581956i \(0.197712\pi\)
−0.813221 + 0.581956i \(0.802288\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.367725 + 0.636919i −0.0345927 + 0.0599163i −0.882803 0.469743i \(-0.844347\pi\)
0.848211 + 0.529659i \(0.177680\pi\)
\(114\) 0 0
\(115\) −0.411634 + 0.237657i −0.0383850 + 0.0221616i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.88272 1.08699i 0.172589 0.0996441i
\(120\) 0 0
\(121\) −4.63165 + 8.02226i −0.421059 + 0.729296i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) −9.54378 16.5303i −0.846874 1.46683i −0.883984 0.467517i \(-0.845149\pi\)
0.0371100 0.999311i \(-0.488185\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1.40717 −0.122945 −0.0614723 0.998109i \(-0.519580\pi\)
−0.0614723 + 0.998109i \(0.519580\pi\)
\(132\) 0 0
\(133\) 10.6635 + 18.4698i 0.924646 + 1.60153i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.0977 + 5.82989i 0.862701 + 0.498081i 0.864916 0.501917i \(-0.167372\pi\)
−0.00221463 + 0.999998i \(0.500705\pi\)
\(138\) 0 0
\(139\) 1.12106 1.94174i 0.0950873 0.164696i −0.814558 0.580082i \(-0.803020\pi\)
0.909645 + 0.415386i \(0.136354\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.15988 + 2.29618i 0.347867 + 0.192016i
\(144\) 0 0
\(145\) 2.66573 1.53906i 0.221377 0.127812i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 16.1476 + 9.32282i 1.32286 + 0.763755i 0.984184 0.177147i \(-0.0566868\pi\)
0.338678 + 0.940902i \(0.390020\pi\)
\(150\) 0 0
\(151\) 0.368970i 0.0300263i −0.999887 0.0150132i \(-0.995221\pi\)
0.999887 0.0150132i \(-0.00477902\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.49938 0.281077
\(156\) 0 0
\(157\) 4.71895 0.376613 0.188307 0.982110i \(-0.439700\pi\)
0.188307 + 0.982110i \(0.439700\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.86886i 0.147287i
\(162\) 0 0
\(163\) 11.7193 + 6.76612i 0.917924 + 0.529964i 0.882972 0.469425i \(-0.155539\pi\)
0.0349520 + 0.999389i \(0.488872\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 5.31419 3.06815i 0.411224 0.237420i −0.280091 0.959973i \(-0.590365\pi\)
0.691316 + 0.722553i \(0.257031\pi\)
\(168\) 0 0
\(169\) −6.06218 + 11.5000i −0.466321 + 0.884615i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −0.248229 + 0.429946i −0.0188725 + 0.0326882i −0.875307 0.483567i \(-0.839341\pi\)
0.856435 + 0.516255i \(0.172674\pi\)
\(174\) 0 0
\(175\) −3.40508 1.96593i −0.257400 0.148610i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1.96895 3.41032i −0.147166 0.254900i 0.783013 0.622006i \(-0.213682\pi\)
−0.930179 + 0.367106i \(0.880349\pi\)
\(180\) 0 0
\(181\) 3.35363 0.249273 0.124637 0.992202i \(-0.460223\pi\)
0.124637 + 0.992202i \(0.460223\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.235077 + 0.407165i 0.0172832 + 0.0299354i
\(186\) 0 0
\(187\) 0.728651i 0.0532842i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −10.2831 + 17.8109i −0.744062 + 1.28875i 0.206570 + 0.978432i \(0.433770\pi\)
−0.950632 + 0.310321i \(0.899563\pi\)
\(192\) 0 0
\(193\) 4.77886 2.75908i 0.343990 0.198603i −0.318045 0.948076i \(-0.603026\pi\)
0.662035 + 0.749473i \(0.269693\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.80659 3.92979i 0.484950 0.279986i −0.237527 0.971381i \(-0.576337\pi\)
0.722477 + 0.691395i \(0.243004\pi\)
\(198\) 0 0
\(199\) −3.49536 + 6.05413i −0.247779 + 0.429166i −0.962909 0.269825i \(-0.913034\pi\)
0.715130 + 0.698991i \(0.246367\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 12.1027i 0.849443i
\(204\) 0 0
\(205\) −1.46593 2.53906i −0.102385 0.177336i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 7.14819 0.494451
\(210\) 0 0
\(211\) 6.79958 + 11.7772i 0.468102 + 0.810777i 0.999336 0.0364488i \(-0.0116046\pi\)
−0.531233 + 0.847226i \(0.678271\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.20893 + 0.697977i 0.0824484 + 0.0476016i
\(216\) 0 0
\(217\) 6.87952 11.9157i 0.467012 0.808889i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.99319 0.0383448i 0.134077 0.00257935i
\(222\) 0 0
\(223\) −10.6814 + 6.16693i −0.715282 + 0.412968i −0.813014 0.582245i \(-0.802175\pi\)
0.0977319 + 0.995213i \(0.468841\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 9.60319 + 5.54441i 0.637386 + 0.367995i 0.783607 0.621257i \(-0.213378\pi\)
−0.146221 + 0.989252i \(0.546711\pi\)
\(228\) 0 0
\(229\) 11.4607i 0.757344i −0.925531 0.378672i \(-0.876381\pi\)
0.925531 0.378672i \(-0.123619\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 25.4527 1.66746 0.833730 0.552172i \(-0.186201\pi\)
0.833730 + 0.552172i \(0.186201\pi\)
\(234\) 0 0
\(235\) −7.71039 −0.502970
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 20.8676i 1.34981i −0.737903 0.674907i \(-0.764184\pi\)
0.737903 0.674907i \(-0.235816\pi\)
\(240\) 0 0
\(241\) −15.8447 9.14796i −1.02065 0.589272i −0.106357 0.994328i \(-0.533919\pi\)
−0.914292 + 0.405056i \(0.867252\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −7.32611 + 4.22973i −0.468048 + 0.270227i
\(246\) 0 0
\(247\) 0.376169 + 19.5535i 0.0239351 + 1.24416i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2.17191 + 3.76186i −0.137090 + 0.237447i −0.926394 0.376556i \(-0.877108\pi\)
0.789304 + 0.614003i \(0.210442\pi\)
\(252\) 0 0
\(253\) 0.542466 + 0.313193i 0.0341046 + 0.0196903i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.42895 + 4.20706i 0.151514 + 0.262429i 0.931784 0.363013i \(-0.118252\pi\)
−0.780270 + 0.625442i \(0.784919\pi\)
\(258\) 0 0
\(259\) 1.84858 0.114865
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −11.1647 19.3379i −0.688447 1.19243i −0.972340 0.233570i \(-0.924959\pi\)
0.283893 0.958856i \(-0.408374\pi\)
\(264\) 0 0
\(265\) 3.43488i 0.211003i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4.16875 7.22049i 0.254173 0.440241i −0.710497 0.703700i \(-0.751530\pi\)
0.964671 + 0.263459i \(0.0848633\pi\)
\(270\) 0 0
\(271\) −9.58860 + 5.53598i −0.582466 + 0.336287i −0.762113 0.647444i \(-0.775838\pi\)
0.179647 + 0.983731i \(0.442504\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.14128 + 0.658919i −0.0688218 + 0.0397343i
\(276\) 0 0
\(277\) 8.92480 15.4582i 0.536239 0.928794i −0.462863 0.886430i \(-0.653178\pi\)
0.999102 0.0423641i \(-0.0134889\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 30.2163i 1.80256i 0.433242 + 0.901278i \(0.357370\pi\)
−0.433242 + 0.901278i \(0.642630\pi\)
\(282\) 0 0
\(283\) −15.2299 26.3789i −0.905321 1.56806i −0.820485 0.571668i \(-0.806297\pi\)
−0.0848360 0.996395i \(-0.527037\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −11.5276 −0.680453
\(288\) 0 0
\(289\) 8.34714 + 14.4577i 0.491008 + 0.850452i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −15.9982 9.23654i −0.934622 0.539604i −0.0463516 0.998925i \(-0.514759\pi\)
−0.888270 + 0.459321i \(0.848093\pi\)
\(294\) 0 0
\(295\) 6.50877 11.2735i 0.378955 0.656369i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.828178 + 1.50037i −0.0478948 + 0.0867688i
\(300\) 0 0
\(301\) 4.75334 2.74434i 0.273978 0.158181i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.542324 + 0.313111i 0.0310534 + 0.0179287i
\(306\) 0 0
\(307\) 24.6938i 1.40935i −0.709530 0.704675i \(-0.751093\pi\)
0.709530 0.704675i \(-0.248907\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −33.5489 −1.90239 −0.951193 0.308596i \(-0.900141\pi\)
−0.951193 + 0.308596i \(0.900141\pi\)
\(312\) 0 0
\(313\) 22.2876 1.25977 0.629886 0.776688i \(-0.283102\pi\)
0.629886 + 0.776688i \(0.283102\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 34.0884i 1.91459i −0.289109 0.957296i \(-0.593359\pi\)
0.289109 0.957296i \(-0.406641\pi\)
\(318\) 0 0
\(319\) −3.51299 2.02823i −0.196690 0.113559i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.59730 1.49955i 0.144518 0.0834374i
\(324\) 0 0
\(325\) −1.86250 3.08725i −0.103313 0.171250i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −15.1581 + 26.2545i −0.835691 + 1.44746i
\(330\) 0 0
\(331\) −26.0020 15.0123i −1.42920 0.825150i −0.432144 0.901805i \(-0.642243\pi\)
−0.997058 + 0.0766545i \(0.975576\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 6.37221 + 11.0370i 0.348151 + 0.603015i
\(336\) 0 0
\(337\) 6.84596 0.372923 0.186462 0.982462i \(-0.440298\pi\)
0.186462 + 0.982462i \(0.440298\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −2.30581 3.99377i −0.124866 0.216275i
\(342\) 0 0
\(343\) 5.73837i 0.309843i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −12.8177 + 22.2010i −0.688092 + 1.19181i 0.284363 + 0.958717i \(0.408218\pi\)
−0.972454 + 0.233093i \(0.925115\pi\)
\(348\) 0 0
\(349\) 10.5134 6.06993i 0.562771 0.324916i −0.191486 0.981495i \(-0.561331\pi\)
0.754257 + 0.656579i \(0.227997\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 26.4830 15.2899i 1.40955 0.813802i 0.414202 0.910185i \(-0.364061\pi\)
0.995344 + 0.0963832i \(0.0307274\pi\)
\(354\) 0 0
\(355\) −2.60721 + 4.51581i −0.138376 + 0.239675i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 12.2163i 0.644754i −0.946611 0.322377i \(-0.895518\pi\)
0.946611 0.322377i \(-0.104482\pi\)
\(360\) 0 0
\(361\) 5.21087 + 9.02549i 0.274256 + 0.475026i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −6.95303 −0.363938
\(366\) 0 0
\(367\) 12.9482 + 22.4269i 0.675890 + 1.17068i 0.976208 + 0.216836i \(0.0695737\pi\)
−0.300318 + 0.953839i \(0.597093\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −11.6960 6.75272i −0.607228 0.350584i
\(372\) 0 0
\(373\) 8.80104 15.2438i 0.455700 0.789296i −0.543028 0.839715i \(-0.682722\pi\)
0.998728 + 0.0504185i \(0.0160555\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5.36326 9.71637i 0.276222 0.500419i
\(378\) 0 0
\(379\) −24.3471 + 14.0568i −1.25063 + 0.722051i −0.971234 0.238126i \(-0.923467\pi\)
−0.279394 + 0.960176i \(0.590134\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −1.97065 1.13776i −0.100696 0.0581366i 0.448807 0.893629i \(-0.351849\pi\)
−0.549502 + 0.835492i \(0.685183\pi\)
\(384\) 0 0
\(385\) 5.18154i 0.264076i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −0.182785 −0.00926757 −0.00463378 0.999989i \(-0.501475\pi\)
−0.00463378 + 0.999989i \(0.501475\pi\)
\(390\) 0 0
\(391\) 0.262808 0.0132908
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.19615i 0.0601850i
\(396\) 0 0
\(397\) −25.2689 14.5890i −1.26821 0.732202i −0.293562 0.955940i \(-0.594841\pi\)
−0.974649 + 0.223738i \(0.928174\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −24.2385 + 13.9941i −1.21041 + 0.698833i −0.962849 0.270039i \(-0.912963\pi\)
−0.247564 + 0.968872i \(0.579630\pi\)
\(402\) 0 0
\(403\) 10.8034 6.51760i 0.538158 0.324665i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.309793 0.536578i 0.0153559 0.0265972i
\(408\) 0 0
\(409\) −15.6607 9.04170i −0.774371 0.447083i 0.0600606 0.998195i \(-0.480871\pi\)
−0.834432 + 0.551111i \(0.814204\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −25.5915 44.3258i −1.25928 2.18113i
\(414\) 0 0
\(415\) −12.9382 −0.635110
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −5.20403 9.01364i −0.254233 0.440345i 0.710454 0.703744i \(-0.248490\pi\)
−0.964687 + 0.263399i \(0.915156\pi\)
\(420\) 0 0
\(421\) 5.16456i 0.251705i 0.992049 + 0.125853i \(0.0401666\pi\)
−0.992049 + 0.125853i \(0.959833\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.276457 + 0.478838i −0.0134101 + 0.0232270i
\(426\) 0 0
\(427\) 2.13234 1.23111i 0.103191 0.0595774i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −29.0597 + 16.7776i −1.39976 + 0.808150i −0.994367 0.105993i \(-0.966198\pi\)
−0.405390 + 0.914144i \(0.632864\pi\)
\(432\) 0 0
\(433\) 8.47099 14.6722i 0.407090 0.705100i −0.587472 0.809244i \(-0.699877\pi\)
0.994562 + 0.104144i \(0.0332102\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.57819i 0.123331i
\(438\) 0 0
\(439\) −13.3279 23.0846i −0.636105 1.10177i −0.986280 0.165082i \(-0.947211\pi\)
0.350174 0.936684i \(-0.386122\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 8.90671 0.423170 0.211585 0.977360i \(-0.432137\pi\)
0.211585 + 0.977360i \(0.432137\pi\)
\(444\) 0 0
\(445\) 8.95568 + 15.5117i 0.424540 + 0.735324i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −9.40300 5.42883i −0.443755 0.256202i 0.261434 0.965221i \(-0.415805\pi\)
−0.705189 + 0.709019i \(0.749138\pi\)
\(450\) 0 0
\(451\) −1.93185 + 3.34607i −0.0909673 + 0.157560i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −14.1739 + 0.272675i −0.664481 + 0.0127832i
\(456\) 0 0
\(457\) 6.73831 3.89036i 0.315205 0.181984i −0.334048 0.942556i \(-0.608415\pi\)
0.649253 + 0.760572i \(0.275082\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 24.4717 + 14.1288i 1.13976 + 0.658042i 0.946372 0.323080i \(-0.104718\pi\)
0.193390 + 0.981122i \(0.438052\pi\)
\(462\) 0 0
\(463\) 8.22511i 0.382253i 0.981565 + 0.191127i \(0.0612141\pi\)
−0.981565 + 0.191127i \(0.938786\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 21.4205 0.991224 0.495612 0.868544i \(-0.334944\pi\)
0.495612 + 0.868544i \(0.334944\pi\)
\(468\) 0 0
\(469\) 50.1092 2.31383
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.83964i 0.0845867i
\(474\) 0 0
\(475\) −4.69748 2.71209i −0.215535 0.124439i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 30.7499 17.7535i 1.40500 0.811177i 0.410099 0.912041i \(-0.365494\pi\)
0.994900 + 0.100864i \(0.0321607\pi\)
\(480\) 0 0
\(481\) 1.48409 + 0.819188i 0.0676685 + 0.0373518i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.62314 4.54342i 0.119111 0.206306i
\(486\) 0 0
\(487\) −1.93124 1.11500i −0.0875128 0.0505255i 0.455605 0.890182i \(-0.349423\pi\)
−0.543118 + 0.839657i \(0.682756\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −18.8199 32.5970i −0.849330 1.47108i −0.881807 0.471610i \(-0.843673\pi\)
0.0324772 0.999472i \(-0.489660\pi\)
\(492\) 0 0
\(493\) −1.70193 −0.0766513
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 10.2511 + 17.7555i 0.459827 + 0.796443i
\(498\) 0 0
\(499\) 26.3242i 1.17843i −0.807975 0.589216i \(-0.799437\pi\)
0.807975 0.589216i \(-0.200563\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −13.1455 + 22.7687i −0.586130 + 1.01521i 0.408603 + 0.912712i \(0.366016\pi\)
−0.994733 + 0.102496i \(0.967317\pi\)
\(504\) 0 0
\(505\) 12.0972 6.98432i 0.538318 0.310798i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 3.35226 1.93543i 0.148586 0.0857863i −0.423864 0.905726i \(-0.639326\pi\)
0.572450 + 0.819940i \(0.305993\pi\)
\(510\) 0 0
\(511\) −13.6691 + 23.6757i −0.604687 + 1.04735i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 17.2231i 0.758942i
\(516\) 0 0
\(517\) 5.08052 + 8.79972i 0.223441 + 0.387011i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −20.6427 −0.904372 −0.452186 0.891924i \(-0.649356\pi\)
−0.452186 + 0.891924i \(0.649356\pi\)
\(522\) 0 0
\(523\) −14.1905 24.5787i −0.620508 1.07475i −0.989391 0.145275i \(-0.953593\pi\)
0.368883 0.929476i \(-0.379740\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.67563 0.967428i −0.0729918 0.0421418i
\(528\) 0 0
\(529\) 11.3870 19.7229i 0.495089 0.857519i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −9.25467 5.10841i −0.400864 0.221270i
\(534\) 0 0
\(535\) −8.33167 + 4.81029i −0.360209 + 0.207967i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 9.65461 + 5.57409i 0.415854 + 0.240093i
\(540\) 0 0
\(541\) 2.51613i 0.108177i −0.998536 0.0540884i \(-0.982775\pi\)
0.998536 0.0540884i \(-0.0172253\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −12.1516 −0.520517
\(546\) 0 0
\(547\) 28.6507 1.22502 0.612508 0.790464i \(-0.290161\pi\)
0.612508 + 0.790464i \(0.290161\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 16.6963i 0.711285i
\(552\) 0 0
\(553\) 4.07300 + 2.35155i 0.173202 + 0.0999979i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 20.7283 11.9675i 0.878285 0.507078i 0.00819220 0.999966i \(-0.497392\pi\)
0.870092 + 0.492889i \(0.164059\pi\)
\(558\) 0 0
\(559\) 5.03225 0.0968099i 0.212841 0.00409462i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −10.4293 + 18.0641i −0.439544 + 0.761313i −0.997654 0.0684539i \(-0.978193\pi\)
0.558110 + 0.829767i \(0.311527\pi\)
\(564\) 0 0
\(565\) −0.636919 0.367725i −0.0267954 0.0154703i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 9.70392 + 16.8077i 0.406810 + 0.704615i 0.994530 0.104449i \(-0.0333079\pi\)
−0.587721 + 0.809064i \(0.699975\pi\)
\(570\) 0 0
\(571\) 2.64156 0.110546 0.0552730 0.998471i \(-0.482397\pi\)
0.0552730 + 0.998471i \(0.482397\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.237657 0.411634i −0.00991098 0.0171663i
\(576\) 0 0
\(577\) 24.0716i 1.00211i −0.865415 0.501057i \(-0.832945\pi\)
0.865415 0.501057i \(-0.167055\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −25.4355 + 44.0556i −1.05524 + 1.82773i
\(582\) 0 0
\(583\) −3.92016 + 2.26330i −0.162356 + 0.0937365i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 32.3571 18.6814i 1.33552 0.771063i 0.349381 0.936981i \(-0.386392\pi\)
0.986140 + 0.165918i \(0.0530586\pi\)
\(588\) 0 0
\(589\) 9.49063 16.4383i 0.391055 0.677326i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 45.4778i 1.86755i 0.357863 + 0.933774i \(0.383505\pi\)
−0.357863 + 0.933774i \(0.616495\pi\)
\(594\) 0 0
\(595\) 1.08699 + 1.88272i 0.0445622 + 0.0771840i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −24.7863 −1.01274 −0.506370 0.862316i \(-0.669013\pi\)
−0.506370 + 0.862316i \(0.669013\pi\)
\(600\) 0 0
\(601\) −12.3643 21.4156i −0.504350 0.873560i −0.999987 0.00503065i \(-0.998399\pi\)
0.495637 0.868530i \(-0.334935\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −8.02226 4.63165i −0.326151 0.188303i
\(606\) 0 0
\(607\) −2.61489 + 4.52913i −0.106135 + 0.183832i −0.914201 0.405260i \(-0.867181\pi\)
0.808066 + 0.589092i \(0.200514\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −23.8039 + 14.3606i −0.963002 + 0.580968i
\(612\) 0 0
\(613\) −12.0686 + 6.96780i −0.487446 + 0.281427i −0.723514 0.690310i \(-0.757474\pi\)
0.236069 + 0.971736i \(0.424141\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −39.2999 22.6898i −1.58216 0.913458i −0.994544 0.104314i \(-0.966735\pi\)
−0.587611 0.809144i \(-0.699931\pi\)
\(618\) 0 0
\(619\) 12.7094i 0.510834i −0.966831 0.255417i \(-0.917787\pi\)
0.966831 0.255417i \(-0.0822128\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 70.4248 2.82151
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0.259955i 0.0103651i
\(630\) 0 0
\(631\) 3.49465 + 2.01764i 0.139120 + 0.0803209i 0.567944 0.823067i \(-0.307739\pi\)
−0.428825 + 0.903388i \(0.641072\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 16.5303 9.54378i 0.655986 0.378734i
\(636\) 0 0
\(637\) −14.7396 + 26.7031i −0.584005 + 1.05802i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 16.7616 29.0320i 0.662044 1.14669i −0.318034 0.948079i \(-0.603023\pi\)
0.980078 0.198614i \(-0.0636441\pi\)
\(642\) 0 0
\(643\) −42.9054 24.7714i −1.69202 0.976891i −0.952882 0.303341i \(-0.901898\pi\)
−0.739142 0.673550i \(-0.764769\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 6.27758 + 10.8731i 0.246797 + 0.427465i 0.962635 0.270801i \(-0.0872886\pi\)
−0.715838 + 0.698266i \(0.753955\pi\)
\(648\) 0 0
\(649\) −17.1550 −0.673392
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.0389761 + 0.0675086i 0.00152525 + 0.00264181i 0.866787 0.498679i \(-0.166181\pi\)
−0.865262 + 0.501320i \(0.832848\pi\)
\(654\) 0 0
\(655\) 1.40717i 0.0549825i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 21.5441 37.3155i 0.839241 1.45361i −0.0512899 0.998684i \(-0.516333\pi\)
0.890531 0.454924i \(-0.150333\pi\)
\(660\) 0 0
\(661\) −15.6898 + 9.05853i −0.610264 + 0.352336i −0.773069 0.634322i \(-0.781279\pi\)
0.162805 + 0.986658i \(0.447946\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −18.4698 + 10.6635i −0.716228 + 0.413514i
\(666\) 0 0
\(667\) 0.731535 1.26706i 0.0283252 0.0490606i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0.825259i 0.0318588i
\(672\) 0 0
\(673\) −4.96556 8.60060i −0.191408 0.331529i 0.754309 0.656520i \(-0.227972\pi\)
−0.945717 + 0.324991i \(0.894639\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 36.7571 1.41269 0.706345 0.707868i \(-0.250343\pi\)
0.706345 + 0.707868i \(0.250343\pi\)
\(678\) 0 0
\(679\) −10.3138 17.8641i −0.395808 0.685559i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 13.5889 + 7.84557i 0.519966 + 0.300202i 0.736921 0.675979i \(-0.236279\pi\)
−0.216955 + 0.976182i \(0.569612\pi\)
\(684\) 0 0
\(685\) −5.82989 + 10.0977i −0.222749 + 0.385812i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −6.39746 10.6043i −0.243724 0.403992i
\(690\) 0 0
\(691\) −17.7308 + 10.2369i −0.674510 + 0.389428i −0.797783 0.602944i \(-0.793994\pi\)
0.123273 + 0.992373i \(0.460661\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.94174 + 1.12106i 0.0736543 + 0.0425243i
\(696\) 0 0
\(697\) 1.62106i 0.0614021i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 23.8368 0.900303 0.450152 0.892952i \(-0.351370\pi\)
0.450152 + 0.892952i \(0.351370\pi\)
\(702\) 0 0
\(703\) 2.55020 0.0961826
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 54.9226i 2.06558i
\(708\) 0 0
\(709\) −1.63746 0.945386i −0.0614960 0.0355047i 0.468937 0.883232i \(-0.344637\pi\)
−0.530433 + 0.847727i \(0.677971\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.44046 0.831651i 0.0539457 0.0311456i
\(714\) 0 0
\(715\) −2.29618 + 4.15988i −0.0858722 + 0.155571i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −2.99659 + 5.19025i −0.111754 + 0.193564i −0.916478 0.400086i \(-0.868980\pi\)
0.804724 + 0.593650i \(0.202314\pi\)
\(720\) 0 0
\(721\) −58.6462 33.8594i −2.18410 1.26099i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.53906 + 2.66573i 0.0571592 + 0.0990026i
\(726\) 0 0
\(727\) −39.0387 −1.44787 −0.723933 0.689870i \(-0.757667\pi\)
−0.723933 + 0.689870i \(0.757667\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −0.385921 0.668435i −0.0142738 0.0247230i
\(732\) 0 0
\(733\) 17.4176i 0.643336i −0.946853 0.321668i \(-0.895757\pi\)
0.946853 0.321668i \(-0.104243\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8.39754 14.5450i 0.309327 0.535771i
\(738\) 0 0
\(739\) 12.3018 7.10243i 0.452528 0.261267i −0.256369 0.966579i \(-0.582526\pi\)
0.708897 + 0.705312i \(0.249193\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −7.53155 + 4.34834i −0.276306 + 0.159525i −0.631750 0.775172i \(-0.717663\pi\)
0.355444 + 0.934698i \(0.384330\pi\)
\(744\) 0 0
\(745\) −9.32282 + 16.1476i −0.341562 + 0.591602i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 37.8267i 1.38216i
\(750\) 0 0
\(751\) −9.79460 16.9647i −0.357410 0.619052i 0.630117 0.776500i \(-0.283007\pi\)
−0.987527 + 0.157448i \(0.949673\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0.368970 0.0134282
\(756\) 0 0
\(757\) −7.03616 12.1870i −0.255733 0.442943i 0.709361 0.704845i \(-0.248984\pi\)
−0.965094 + 0.261902i \(0.915650\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 15.3926 + 8.88695i 0.557983 + 0.322152i 0.752336 0.658780i \(-0.228927\pi\)
−0.194353 + 0.980932i \(0.562261\pi\)
\(762\) 0 0
\(763\) −23.8891 + 41.3772i −0.864844 + 1.49795i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −0.902770 46.9267i −0.0325972 1.69442i
\(768\) 0 0
\(769\) −39.1066 + 22.5782i −1.41022 + 0.814191i −0.995409 0.0957170i \(-0.969486\pi\)
−0.414811 + 0.909908i \(0.636152\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −42.6776 24.6399i −1.53501 0.886237i −0.999120 0.0419470i \(-0.986644\pi\)
−0.535887 0.844290i \(-0.680023\pi\)
\(774\) 0 0
\(775\) 3.49938i 0.125701i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −15.9029 −0.569780
\(780\) 0 0
\(781\) 6.87175 0.245890
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 4.71895i 0.168427i
\(786\) 0 0
\(787\) 27.6925 + 15.9883i 0.987131 + 0.569920i 0.904415 0.426653i \(-0.140307\pi\)
0.0827152 + 0.996573i \(0.473641\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −2.50427 + 1.44584i −0.0890416 + 0.0514082i
\(792\) 0 0
\(793\) 2.25746 0.0434287i 0.0801647 0.00154220i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 13.6338 23.6145i 0.482935 0.836468i −0.516873 0.856062i \(-0.672904\pi\)
0.999808 + 0.0195943i \(0.00623745\pi\)
\(798\) 0 0
\(799\) 3.69203 + 2.13159i 0.130615 + 0.0754103i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 4.58148 + 7.93536i 0.161677 + 0.280033i
\(804\) 0 0
\(805\) −1.86886 −0.0658688
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 22.1803 + 38.4174i 0.779818 + 1.35068i 0.932047 + 0.362339i \(0.118022\pi\)
−0.152229 + 0.988345i \(0.548645\pi\)
\(810\) 0 0
\(811\) 54.1521i 1.90154i −0.309900 0.950769i \(-0.600296\pi\)
0.309900 0.950769i \(-0.399704\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −6.76612 + 11.7193i −0.237007 + 0.410508i
\(816\) 0 0
\(817\) 6.55746 3.78595i 0.229417 0.132454i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 7.71723 4.45554i 0.269333 0.155499i −0.359251 0.933241i \(-0.616968\pi\)
0.628584 + 0.777741i \(0.283635\pi\)
\(822\) 0 0
\(823\) −0.817215 + 1.41546i −0.0284863 + 0.0493398i −0.879917 0.475127i \(-0.842402\pi\)
0.851431 + 0.524467i \(0.175735\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 19.5497i 0.679809i −0.940460 0.339904i \(-0.889605\pi\)
0.940460 0.339904i \(-0.110395\pi\)
\(828\) 0 0
\(829\) 26.2725 + 45.5052i 0.912480 + 1.58046i 0.810549 + 0.585671i \(0.199169\pi\)
0.101931 + 0.994791i \(0.467498\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 4.67735 0.162061
\(834\) 0 0
\(835\) 3.06815 + 5.31419i 0.106178 + 0.183905i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 3.01757 + 1.74219i 0.104178 + 0.0601472i 0.551184 0.834384i \(-0.314176\pi\)
−0.447006 + 0.894531i \(0.647510\pi\)
\(840\) 0 0
\(841\) 9.76260 16.9093i 0.336641 0.583080i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −11.5000 6.06218i −0.395612 0.208545i
\(846\) 0 0
\(847\) −31.5423 + 18.2110i −1.08381 + 0.625736i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0.193531 + 0.111735i 0.00663417 + 0.00383024i
\(852\) 0 0
\(853\) 6.46294i 0.221287i −0.993860 0.110643i \(-0.964709\pi\)
0.993860 0.110643i \(-0.0352912\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 20.1736 0.689117 0.344559 0.938765i \(-0.388029\pi\)
0.344559 + 0.938765i \(0.388029\pi\)
\(858\) 0 0
\(859\) 15.3052 0.522207 0.261104 0.965311i \(-0.415914\pi\)
0.261104 + 0.965311i \(0.415914\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 36.1031i 1.22896i 0.788931 + 0.614482i \(0.210635\pi\)
−0.788931 + 0.614482i \(0.789365\pi\)
\(864\) 0 0
\(865\) −0.429946 0.248229i −0.0146186 0.00844004i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.36515 0.788167i 0.0463094 0.0267367i
\(870\) 0 0
\(871\) 40.2290 + 22.2057i 1.36311 + 0.752410i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.96593 3.40508i 0.0664604 0.115113i
\(876\) 0 0
\(877\) 46.1562 + 26.6483i 1.55859 + 0.899850i 0.997393 + 0.0721642i \(0.0229906\pi\)
0.561192 + 0.827685i \(0.310343\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 6.59235 + 11.4183i 0.222102 + 0.384692i 0.955446 0.295166i \(-0.0953748\pi\)
−0.733344 + 0.679858i \(0.762042\pi\)
\(882\) 0 0
\(883\) 36.3300 1.22260 0.611301 0.791398i \(-0.290647\pi\)
0.611301 + 0.791398i \(0.290647\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −17.0039 29.4516i −0.570934 0.988886i −0.996470 0.0839452i \(-0.973248\pi\)
0.425537 0.904941i \(-0.360085\pi\)
\(888\) 0 0
\(889\) 75.0495i 2.51708i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −20.9113 + 36.2194i −0.699769 + 1.21204i
\(894\) 0 0
\(895\) 3.41032 1.96895i 0.113995 0.0658148i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −9.32838 + 5.38575i −0.311119 + 0.179625i
\(900\) 0 0
\(901\) −0.949596 + 1.64475i −0.0316356 + 0.0547945i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 3.35363i 0.111478i
\(906\) 0 0
\(907\) −7.07118 12.2476i −0.234795 0.406677i 0.724418 0.689361i \(-0.242108\pi\)
−0.959213 + 0.282684i \(0.908775\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 36.7262 1.21679 0.608396 0.793634i \(-0.291813\pi\)
0.608396 + 0.793634i \(0.291813\pi\)
\(912\) 0 0
\(913\) 8.52520 + 14.7661i 0.282143 + 0.488686i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −4.79152 2.76638i −0.158230 0.0913540i
\(918\) 0 0
\(919\) −9.74320 + 16.8757i −0.321399 + 0.556679i −0.980777 0.195133i \(-0.937486\pi\)
0.659378 + 0.751811i \(0.270820\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0.361621 + 18.7974i 0.0119029 + 0.618722i
\(924\) 0 0
\(925\) −0.407165 + 0.235077i −0.0133875 + 0.00772928i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 24.0598 + 13.8909i 0.789377 + 0.455747i 0.839743 0.542984i \(-0.182706\pi\)
−0.0503664 + 0.998731i \(0.516039\pi\)
\(930\) 0 0
\(931\) 45.8856i 1.50384i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.728651 0.0238294
\(936\) 0 0
\(937\) 49.0868 1.60359 0.801797 0.597596i \(-0.203877\pi\)
0.801797 + 0.597596i \(0.203877\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 7.01554i 0.228700i 0.993441 + 0.114350i \(0.0364785\pi\)
−0.993441 + 0.114350i \(0.963521\pi\)
\(942\) 0 0
\(943\) −1.20685 0.696775i −0.0393004 0.0226901i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 15.9773 9.22450i 0.519193 0.299756i −0.217412 0.976080i \(-0.569761\pi\)
0.736604 + 0.676324i \(0.236428\pi\)
\(948\) 0 0
\(949\) −21.4657 + 12.9500i −0.696807 + 0.420376i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 27.0965 46.9325i 0.877741 1.52029i 0.0239264 0.999714i \(-0.492383\pi\)
0.853814 0.520578i \(-0.174283\pi\)
\(954\) 0 0
\(955\) −17.8109 10.2831i −0.576348 0.332755i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 22.9223 + 39.7025i 0.740198 + 1.28206i
\(960\) 0 0
\(961\) 18.7544 0.604979
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 2.75908 + 4.77886i 0.0888178 + 0.153837i
\(966\) 0 0
\(967\) 52.8600i 1.69986i 0.526892 + 0.849932i \(0.323357\pi\)
−0.526892 + 0.849932i \(0.676643\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −10.3459 + 17.9196i −0.332015 + 0.575068i −0.982907 0.184103i \(-0.941062\pi\)
0.650892 + 0.759171i \(0.274395\pi\)
\(972\) 0 0
\(973\) 7.63462 4.40785i 0.244755 0.141309i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −4.40368 + 2.54247i −0.140886 + 0.0813407i −0.568786 0.822485i \(-0.692587\pi\)
0.427900 + 0.903826i \(0.359254\pi\)
\(978\) 0 0
\(979\) 11.8021 20.4419i 0.377197 0.653325i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 16.8646i 0.537897i 0.963155 + 0.268949i \(0.0866762\pi\)
−0.963155 + 0.268949i \(0.913324\pi\)
\(984\) 0 0
\(985\) 3.92979 + 6.80659i 0.125213 + 0.216876i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.663516 0.0210986
\(990\) 0 0
\(991\) 25.4424 + 44.0676i 0.808205 + 1.39985i 0.914106 + 0.405475i \(0.132894\pi\)
−0.105901 + 0.994377i \(0.533773\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −6.05413 3.49536i −0.191929 0.110810i
\(996\) 0 0
\(997\) −12.1519 + 21.0477i −0.384855 + 0.666588i −0.991749 0.128194i \(-0.959082\pi\)
0.606894 + 0.794783i \(0.292415\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.dj.c.361.4 8
3.2 odd 2 780.2.cc.b.361.2 yes 8
13.4 even 6 inner 2340.2.dj.c.901.2 8
15.2 even 4 3900.2.bw.g.49.1 8
15.8 even 4 3900.2.bw.l.49.4 8
15.14 odd 2 3900.2.cd.l.2701.1 8
39.17 odd 6 780.2.cc.b.121.4 8
195.17 even 12 3900.2.bw.l.2149.4 8
195.134 odd 6 3900.2.cd.l.901.1 8
195.173 even 12 3900.2.bw.g.2149.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
780.2.cc.b.121.4 8 39.17 odd 6
780.2.cc.b.361.2 yes 8 3.2 odd 2
2340.2.dj.c.361.4 8 1.1 even 1 trivial
2340.2.dj.c.901.2 8 13.4 even 6 inner
3900.2.bw.g.49.1 8 15.2 even 4
3900.2.bw.g.2149.1 8 195.173 even 12
3900.2.bw.l.49.4 8 15.8 even 4
3900.2.bw.l.2149.4 8 195.17 even 12
3900.2.cd.l.901.1 8 195.134 odd 6
3900.2.cd.l.2701.1 8 15.14 odd 2