Properties

Label 780.2.cc.b
Level $780$
Weight $2$
Character orbit 780.cc
Analytic conductor $6.228$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [780,2,Mod(121,780)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(780, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("780.121"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 780 = 2^{2} \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 780.cc (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.22833135766\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{24}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{24}^{4} - 1) q^{3} + \zeta_{24}^{6} q^{5} + ( - \zeta_{24}^{7} - 2 \zeta_{24}^{6} + \cdots + \zeta_{24}) q^{7} - \zeta_{24}^{4} q^{9} + ( - \zeta_{24}^{7} + \zeta_{24}^{5} + \cdots - 1) q^{11} + \cdots + (\zeta_{24}^{6} - \zeta_{24}^{5} + \cdots - 1) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} - 4 q^{9} - 12 q^{11} + 4 q^{17} + 12 q^{19} + 4 q^{23} - 8 q^{25} + 8 q^{27} - 8 q^{29} + 12 q^{33} + 8 q^{35} - 24 q^{37} - 16 q^{43} - 4 q^{49} - 8 q^{51} + 16 q^{53} + 4 q^{55} + 24 q^{59}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/780\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(301\) \(391\) \(521\)
\(\chi(n)\) \(1\) \(\zeta_{24}^{4}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
121.1
0.258819 0.965926i
−0.258819 + 0.965926i
−0.965926 0.258819i
0.965926 + 0.258819i
−0.965926 + 0.258819i
0.965926 0.258819i
0.258819 + 0.965926i
−0.258819 0.965926i
0 −0.500000 + 0.866025i 0 1.00000i 0 −2.18034 + 1.25882i 0 −0.500000 0.866025i 0
121.2 0 −0.500000 + 0.866025i 0 1.00000i 0 −1.28376 + 0.741181i 0 −0.500000 0.866025i 0
121.3 0 −0.500000 + 0.866025i 0 1.00000i 0 0.0590182 0.0340742i 0 −0.500000 0.866025i 0
121.4 0 −0.500000 + 0.866025i 0 1.00000i 0 3.40508 1.96593i 0 −0.500000 0.866025i 0
361.1 0 −0.500000 0.866025i 0 1.00000i 0 0.0590182 + 0.0340742i 0 −0.500000 + 0.866025i 0
361.2 0 −0.500000 0.866025i 0 1.00000i 0 3.40508 + 1.96593i 0 −0.500000 + 0.866025i 0
361.3 0 −0.500000 0.866025i 0 1.00000i 0 −2.18034 1.25882i 0 −0.500000 + 0.866025i 0
361.4 0 −0.500000 0.866025i 0 1.00000i 0 −1.28376 0.741181i 0 −0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 121.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.e even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 780.2.cc.b 8
3.b odd 2 1 2340.2.dj.c 8
5.b even 2 1 3900.2.cd.l 8
5.c odd 4 1 3900.2.bw.g 8
5.c odd 4 1 3900.2.bw.l 8
13.e even 6 1 inner 780.2.cc.b 8
39.h odd 6 1 2340.2.dj.c 8
65.l even 6 1 3900.2.cd.l 8
65.r odd 12 1 3900.2.bw.g 8
65.r odd 12 1 3900.2.bw.l 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
780.2.cc.b 8 1.a even 1 1 trivial
780.2.cc.b 8 13.e even 6 1 inner
2340.2.dj.c 8 3.b odd 2 1
2340.2.dj.c 8 39.h odd 6 1
3900.2.bw.g 8 5.c odd 4 1
3900.2.bw.g 8 65.r odd 12 1
3900.2.bw.l 8 5.c odd 4 1
3900.2.bw.l 8 65.r odd 12 1
3900.2.cd.l 8 5.b even 2 1
3900.2.cd.l 8 65.l even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{8} - 12T_{7}^{6} + 143T_{7}^{4} + 288T_{7}^{3} + 180T_{7}^{2} - 24T_{7} + 1 \) acting on \(S_{2}^{\mathrm{new}}(780, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{2} + T + 1)^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} + 1)^{4} \) Copy content Toggle raw display
$7$ \( T^{8} - 12 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{8} + 12 T^{7} + \cdots + 64 \) Copy content Toggle raw display
$13$ \( T^{8} + 191 T^{4} + 28561 \) Copy content Toggle raw display
$17$ \( T^{8} - 4 T^{7} + \cdots + 2116 \) Copy content Toggle raw display
$19$ \( T^{8} - 12 T^{7} + \cdots + 685584 \) Copy content Toggle raw display
$23$ \( T^{8} - 4 T^{7} + \cdots + 33856 \) Copy content Toggle raw display
$29$ \( T^{8} + 8 T^{7} + \cdots + 21316 \) Copy content Toggle raw display
$31$ \( T^{8} + 84 T^{6} + \cdots + 625 \) Copy content Toggle raw display
$37$ \( T^{8} + 24 T^{7} + \cdots + 160000 \) Copy content Toggle raw display
$41$ \( T^{8} - 6 T^{6} + \cdots + 4 \) Copy content Toggle raw display
$43$ \( T^{8} + 16 T^{7} + \cdots + 36481 \) Copy content Toggle raw display
$47$ \( T^{8} + 252 T^{6} + \cdots + 4268356 \) Copy content Toggle raw display
$53$ \( (T^{4} - 8 T^{3} + \cdots - 128)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} - 24 T^{7} + \cdots + 8836 \) Copy content Toggle raw display
$61$ \( T^{8} - 8 T^{7} + \cdots + 330625 \) Copy content Toggle raw display
$67$ \( T^{8} - 24 T^{7} + \cdots + 13667809 \) Copy content Toggle raw display
$71$ \( T^{8} + 12 T^{7} + \cdots + 2116 \) Copy content Toggle raw display
$73$ \( T^{8} + 392 T^{6} + \cdots + 24690961 \) Copy content Toggle raw display
$79$ \( (T^{2} + 8 T - 11)^{4} \) Copy content Toggle raw display
$83$ \( T^{8} + 360 T^{6} + \cdots + 8248384 \) Copy content Toggle raw display
$89$ \( T^{8} + 12 T^{7} + \cdots + 928908484 \) Copy content Toggle raw display
$97$ \( T^{8} - 48 T^{7} + \cdots + 32615521 \) Copy content Toggle raw display
show more
show less