L(s) = 1 | + (−0.5 + 0.866i)3-s + i·5-s + (0.0590 − 0.0340i)7-s + (−0.499 − 0.866i)9-s + (−3.59 − 2.07i)11-s + (−1.86 + 3.08i)13-s + (−0.866 − 0.5i)15-s + (1.27 + 2.21i)17-s + (−6.89 + 3.98i)19-s + 0.0681i·21-s + (2.96 − 5.14i)23-s − 25-s + 0.999·27-s + (−1.80 + 3.12i)29-s + 1.42i·31-s + ⋯ |
L(s) = 1 | + (−0.288 + 0.499i)3-s + 0.447i·5-s + (0.0223 − 0.0128i)7-s + (−0.166 − 0.288i)9-s + (−1.08 − 0.625i)11-s + (−0.516 + 0.856i)13-s + (−0.223 − 0.129i)15-s + (0.309 + 0.536i)17-s + (−1.58 + 0.913i)19-s + 0.0148i·21-s + (0.619 − 1.07i)23-s − 0.200·25-s + 0.192·27-s + (−0.335 + 0.581i)29-s + 0.256i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 780 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 - 0.00641i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 780 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 - 0.00641i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.00128703 + 0.401453i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.00128703 + 0.401453i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.5 - 0.866i)T \) |
| 5 | \( 1 - iT \) |
| 13 | \( 1 + (1.86 - 3.08i)T \) |
good | 7 | \( 1 + (-0.0590 + 0.0340i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (3.59 + 2.07i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.27 - 2.21i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (6.89 - 3.98i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.96 + 5.14i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.80 - 3.12i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 1.42iT - 31T^{2} \) |
| 37 | \( 1 + (9.87 + 5.69i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.807 + 0.465i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.23 + 2.13i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 4.63iT - 47T^{2} \) |
| 53 | \( 1 + 6.36T + 53T^{2} \) |
| 59 | \( 1 + (0.0773 - 0.0446i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.41 - 5.92i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (5.03 + 2.90i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (5.41 - 3.12i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 13.8iT - 73T^{2} \) |
| 79 | \( 1 - 1.19T + 79T^{2} \) |
| 83 | \( 1 - 2.38iT - 83T^{2} \) |
| 89 | \( 1 + (-9.04 - 5.22i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-6.15 + 3.55i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.52643307042258596762414974448, −10.25663913049918670745226525373, −8.952267443014790458689434862264, −8.320401143220317146883419411968, −7.18619772103263667040477417697, −6.30352081725946566025861726787, −5.40218857270864913981640210302, −4.39403568117825330785079330240, −3.35396272808966752071713157188, −2.10176890598852736596873502744,
0.19335769029523642491072894949, 1.94078705551874945981544256667, 3.09443318278187612874927881751, 4.75466034623525292135142028367, 5.23714674537796480068054965075, 6.39474996339170932292578322864, 7.40682587061090262827244618373, 7.989014047196030567705576079246, 8.985122793077705529354188507178, 9.970412771423983902347450258886