Properties

Label 780.2.cc.b.121.3
Level $780$
Weight $2$
Character 780.121
Analytic conductor $6.228$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [780,2,Mod(121,780)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(780, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("780.121"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 780 = 2^{2} \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 780.cc (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.22833135766\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 121.3
Root \(-0.965926 - 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 780.121
Dual form 780.2.cc.b.361.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{3} +1.00000i q^{5} +(0.0590182 - 0.0340742i) q^{7} +(-0.500000 - 0.866025i) q^{9} +(-3.59077 - 2.07313i) q^{11} +(-1.86250 + 3.08725i) q^{13} +(-0.866025 - 0.500000i) q^{15} +(1.27646 + 2.21089i) q^{17} +(-6.89363 + 3.98004i) q^{19} +0.0681483i q^{21} +(2.96971 - 5.14368i) q^{23} -1.00000 q^{25} +1.00000 q^{27} +(-1.80701 + 3.12983i) q^{29} +1.42883i q^{31} +(3.59077 - 2.07313i) q^{33} +(0.0340742 + 0.0590182i) q^{35} +(-9.87127 - 5.69918i) q^{37} +(-1.74238 - 3.15660i) q^{39} +(-0.807007 - 0.465926i) q^{41} +(-1.23388 - 2.13713i) q^{43} +(0.866025 - 0.500000i) q^{45} -4.63859i q^{47} +(-3.49768 + 6.05816i) q^{49} -2.55291 q^{51} -6.36308 q^{53} +(2.07313 - 3.59077i) q^{55} -7.96008i q^{57} +(-0.0773604 + 0.0446641i) q^{59} +(3.41894 + 5.92178i) q^{61} +(-0.0590182 - 0.0340742i) q^{63} +(-3.08725 - 1.86250i) q^{65} +(-5.03699 - 2.90811i) q^{67} +(2.96971 + 5.14368i) q^{69} +(-5.41239 + 3.12484i) q^{71} +13.8812i q^{73} +(0.500000 - 0.866025i) q^{75} -0.282561 q^{77} +1.19615 q^{79} +(-0.500000 + 0.866025i) q^{81} +2.38234i q^{83} +(-2.21089 + 1.27646i) q^{85} +(-1.80701 - 3.12983i) q^{87} +(9.04758 + 5.22362i) q^{89} +(-0.00472611 + 0.245667i) q^{91} +(-1.23740 - 0.714413i) q^{93} +(-3.98004 - 6.89363i) q^{95} +(6.15111 - 3.55135i) q^{97} +4.14626i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} - 4 q^{9} - 12 q^{11} + 4 q^{17} + 12 q^{19} + 4 q^{23} - 8 q^{25} + 8 q^{27} - 8 q^{29} + 12 q^{33} + 8 q^{35} - 24 q^{37} - 16 q^{43} - 4 q^{49} - 8 q^{51} + 16 q^{53} + 4 q^{55} + 24 q^{59}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/780\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(301\) \(391\) \(521\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 0.0590182 0.0340742i 0.0223068 0.0128788i −0.488805 0.872393i \(-0.662567\pi\)
0.511112 + 0.859514i \(0.329234\pi\)
\(8\) 0 0
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) −3.59077 2.07313i −1.08266 0.625073i −0.151046 0.988527i \(-0.548264\pi\)
−0.931612 + 0.363454i \(0.881597\pi\)
\(12\) 0 0
\(13\) −1.86250 + 3.08725i −0.516565 + 0.856248i
\(14\) 0 0
\(15\) −0.866025 0.500000i −0.223607 0.129099i
\(16\) 0 0
\(17\) 1.27646 + 2.21089i 0.309586 + 0.536219i 0.978272 0.207326i \(-0.0664761\pi\)
−0.668686 + 0.743545i \(0.733143\pi\)
\(18\) 0 0
\(19\) −6.89363 + 3.98004i −1.58151 + 0.913084i −0.586868 + 0.809683i \(0.699639\pi\)
−0.994640 + 0.103401i \(0.967028\pi\)
\(20\) 0 0
\(21\) 0.0681483i 0.0148712i
\(22\) 0 0
\(23\) 2.96971 5.14368i 0.619227 1.07253i −0.370400 0.928872i \(-0.620779\pi\)
0.989627 0.143660i \(-0.0458872\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −1.80701 + 3.12983i −0.335553 + 0.581195i −0.983591 0.180413i \(-0.942256\pi\)
0.648038 + 0.761608i \(0.275590\pi\)
\(30\) 0 0
\(31\) 1.42883i 0.256625i 0.991734 + 0.128312i \(0.0409560\pi\)
−0.991734 + 0.128312i \(0.959044\pi\)
\(32\) 0 0
\(33\) 3.59077 2.07313i 0.625073 0.360886i
\(34\) 0 0
\(35\) 0.0340742 + 0.0590182i 0.00575959 + 0.00997590i
\(36\) 0 0
\(37\) −9.87127 5.69918i −1.62283 0.936939i −0.986159 0.165800i \(-0.946979\pi\)
−0.636667 0.771139i \(-0.719687\pi\)
\(38\) 0 0
\(39\) −1.74238 3.15660i −0.279005 0.505460i
\(40\) 0 0
\(41\) −0.807007 0.465926i −0.126033 0.0727654i 0.435658 0.900112i \(-0.356516\pi\)
−0.561691 + 0.827347i \(0.689849\pi\)
\(42\) 0 0
\(43\) −1.23388 2.13713i −0.188164 0.325910i 0.756474 0.654024i \(-0.226920\pi\)
−0.944638 + 0.328114i \(0.893587\pi\)
\(44\) 0 0
\(45\) 0.866025 0.500000i 0.129099 0.0745356i
\(46\) 0 0
\(47\) 4.63859i 0.676608i −0.941037 0.338304i \(-0.890147\pi\)
0.941037 0.338304i \(-0.109853\pi\)
\(48\) 0 0
\(49\) −3.49768 + 6.05816i −0.499668 + 0.865451i
\(50\) 0 0
\(51\) −2.55291 −0.357480
\(52\) 0 0
\(53\) −6.36308 −0.874036 −0.437018 0.899453i \(-0.643965\pi\)
−0.437018 + 0.899453i \(0.643965\pi\)
\(54\) 0 0
\(55\) 2.07313 3.59077i 0.279541 0.484179i
\(56\) 0 0
\(57\) 7.96008i 1.05434i
\(58\) 0 0
\(59\) −0.0773604 + 0.0446641i −0.0100715 + 0.00581476i −0.505027 0.863103i \(-0.668518\pi\)
0.494956 + 0.868918i \(0.335184\pi\)
\(60\) 0 0
\(61\) 3.41894 + 5.92178i 0.437750 + 0.758206i 0.997516 0.0704453i \(-0.0224420\pi\)
−0.559765 + 0.828651i \(0.689109\pi\)
\(62\) 0 0
\(63\) −0.0590182 0.0340742i −0.00743559 0.00429294i
\(64\) 0 0
\(65\) −3.08725 1.86250i −0.382926 0.231015i
\(66\) 0 0
\(67\) −5.03699 2.90811i −0.615367 0.355282i 0.159696 0.987166i \(-0.448949\pi\)
−0.775063 + 0.631884i \(0.782282\pi\)
\(68\) 0 0
\(69\) 2.96971 + 5.14368i 0.357511 + 0.619227i
\(70\) 0 0
\(71\) −5.41239 + 3.12484i −0.642332 + 0.370851i −0.785512 0.618846i \(-0.787601\pi\)
0.143180 + 0.989697i \(0.454267\pi\)
\(72\) 0 0
\(73\) 13.8812i 1.62468i 0.583187 + 0.812338i \(0.301805\pi\)
−0.583187 + 0.812338i \(0.698195\pi\)
\(74\) 0 0
\(75\) 0.500000 0.866025i 0.0577350 0.100000i
\(76\) 0 0
\(77\) −0.282561 −0.0322008
\(78\) 0 0
\(79\) 1.19615 0.134578 0.0672888 0.997734i \(-0.478565\pi\)
0.0672888 + 0.997734i \(0.478565\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 2.38234i 0.261495i 0.991416 + 0.130748i \(0.0417378\pi\)
−0.991416 + 0.130748i \(0.958262\pi\)
\(84\) 0 0
\(85\) −2.21089 + 1.27646i −0.239805 + 0.138451i
\(86\) 0 0
\(87\) −1.80701 3.12983i −0.193732 0.335553i
\(88\) 0 0
\(89\) 9.04758 + 5.22362i 0.959042 + 0.553703i 0.895878 0.444300i \(-0.146548\pi\)
0.0631639 + 0.998003i \(0.479881\pi\)
\(90\) 0 0
\(91\) −0.00472611 + 0.245667i −0.000495431 + 0.0257529i
\(92\) 0 0
\(93\) −1.23740 0.714413i −0.128312 0.0740811i
\(94\) 0 0
\(95\) −3.98004 6.89363i −0.408343 0.707272i
\(96\) 0 0
\(97\) 6.15111 3.55135i 0.624551 0.360585i −0.154088 0.988057i \(-0.549244\pi\)
0.778639 + 0.627472i \(0.215910\pi\)
\(98\) 0 0
\(99\) 4.14626i 0.416715i
\(100\) 0 0
\(101\) 8.67593 15.0272i 0.863288 1.49526i −0.00544959 0.999985i \(-0.501735\pi\)
0.868737 0.495273i \(-0.164932\pi\)
\(102\) 0 0
\(103\) −3.56147 −0.350922 −0.175461 0.984486i \(-0.556142\pi\)
−0.175461 + 0.984486i \(0.556142\pi\)
\(104\) 0 0
\(105\) −0.0681483 −0.00665060
\(106\) 0 0
\(107\) 9.47055 16.4035i 0.915552 1.58578i 0.109461 0.993991i \(-0.465087\pi\)
0.806091 0.591792i \(-0.201579\pi\)
\(108\) 0 0
\(109\) 16.6875i 1.59837i 0.601084 + 0.799186i \(0.294736\pi\)
−0.601084 + 0.799186i \(0.705264\pi\)
\(110\) 0 0
\(111\) 9.87127 5.69918i 0.936939 0.540942i
\(112\) 0 0
\(113\) 6.02458 + 10.4349i 0.566745 + 0.981631i 0.996885 + 0.0788687i \(0.0251308\pi\)
−0.430140 + 0.902762i \(0.641536\pi\)
\(114\) 0 0
\(115\) 5.14368 + 2.96971i 0.479651 + 0.276927i
\(116\) 0 0
\(117\) 3.60488 + 0.0693504i 0.333272 + 0.00641144i
\(118\) 0 0
\(119\) 0.150668 + 0.0869884i 0.0138118 + 0.00797422i
\(120\) 0 0
\(121\) 3.09575 + 5.36200i 0.281432 + 0.487455i
\(122\) 0 0
\(123\) 0.807007 0.465926i 0.0727654 0.0420111i
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) −5.92032 + 10.2543i −0.525343 + 0.909921i 0.474221 + 0.880406i \(0.342730\pi\)
−0.999564 + 0.0295154i \(0.990604\pi\)
\(128\) 0 0
\(129\) 2.46775 0.217273
\(130\) 0 0
\(131\) −8.87127 −0.775086 −0.387543 0.921852i \(-0.626676\pi\)
−0.387543 + 0.921852i \(0.626676\pi\)
\(132\) 0 0
\(133\) −0.271233 + 0.469790i −0.0235189 + 0.0407359i
\(134\) 0 0
\(135\) 1.00000i 0.0860663i
\(136\) 0 0
\(137\) 15.2938 8.82989i 1.30664 0.754388i 0.325105 0.945678i \(-0.394600\pi\)
0.981534 + 0.191290i \(0.0612670\pi\)
\(138\) 0 0
\(139\) 1.87894 + 3.25442i 0.159369 + 0.276036i 0.934641 0.355592i \(-0.115721\pi\)
−0.775272 + 0.631627i \(0.782387\pi\)
\(140\) 0 0
\(141\) 4.01714 + 2.31930i 0.338304 + 0.195320i
\(142\) 0 0
\(143\) 13.0881 7.22438i 1.09448 0.604133i
\(144\) 0 0
\(145\) −3.12983 1.80701i −0.259918 0.150064i
\(146\) 0 0
\(147\) −3.49768 6.05816i −0.288484 0.499668i
\(148\) 0 0
\(149\) −11.9050 + 6.87333i −0.975292 + 0.563085i −0.900846 0.434140i \(-0.857052\pi\)
−0.0744467 + 0.997225i \(0.523719\pi\)
\(150\) 0 0
\(151\) 10.1669i 0.827373i 0.910419 + 0.413686i \(0.135759\pi\)
−0.910419 + 0.413686i \(0.864241\pi\)
\(152\) 0 0
\(153\) 1.27646 2.21089i 0.103195 0.178740i
\(154\) 0 0
\(155\) −1.42883 −0.114766
\(156\) 0 0
\(157\) 9.13746 0.729248 0.364624 0.931155i \(-0.381197\pi\)
0.364624 + 0.931155i \(0.381197\pi\)
\(158\) 0 0
\(159\) 3.18154 5.51059i 0.252313 0.437018i
\(160\) 0 0
\(161\) 0.404761i 0.0318997i
\(162\) 0 0
\(163\) 15.0653 8.69798i 1.18001 0.681278i 0.223992 0.974591i \(-0.428091\pi\)
0.956016 + 0.293313i \(0.0947578\pi\)
\(164\) 0 0
\(165\) 2.07313 + 3.59077i 0.161393 + 0.279541i
\(166\) 0 0
\(167\) −12.0063 6.93185i −0.929077 0.536403i −0.0425574 0.999094i \(-0.513551\pi\)
−0.886519 + 0.462691i \(0.846884\pi\)
\(168\) 0 0
\(169\) −6.06218 11.5000i −0.466321 0.884615i
\(170\) 0 0
\(171\) 6.89363 + 3.98004i 0.527169 + 0.304361i
\(172\) 0 0
\(173\) 8.21587 + 14.2303i 0.624641 + 1.08191i 0.988610 + 0.150499i \(0.0480881\pi\)
−0.363969 + 0.931411i \(0.618579\pi\)
\(174\) 0 0
\(175\) −0.0590182 + 0.0340742i −0.00446136 + 0.00257577i
\(176\) 0 0
\(177\) 0.0893281i 0.00671431i
\(178\) 0 0
\(179\) −5.89716 + 10.2142i −0.440774 + 0.763443i −0.997747 0.0670875i \(-0.978629\pi\)
0.556973 + 0.830531i \(0.311963\pi\)
\(180\) 0 0
\(181\) −5.88953 −0.437765 −0.218883 0.975751i \(-0.570241\pi\)
−0.218883 + 0.975751i \(0.570241\pi\)
\(182\) 0 0
\(183\) −6.83788 −0.505471
\(184\) 0 0
\(185\) 5.69918 9.87127i 0.419012 0.725750i
\(186\) 0 0
\(187\) 10.5851i 0.774056i
\(188\) 0 0
\(189\) 0.0590182 0.0340742i 0.00429294 0.00247853i
\(190\) 0 0
\(191\) 9.10916 + 15.7775i 0.659116 + 1.14162i 0.980845 + 0.194791i \(0.0624027\pi\)
−0.321729 + 0.946832i \(0.604264\pi\)
\(192\) 0 0
\(193\) −4.77886 2.75908i −0.343990 0.198603i 0.318045 0.948076i \(-0.396974\pi\)
−0.662035 + 0.749473i \(0.730307\pi\)
\(194\) 0 0
\(195\) 3.15660 1.74238i 0.226049 0.124775i
\(196\) 0 0
\(197\) 21.9309 + 12.6618i 1.56252 + 0.902119i 0.997002 + 0.0773796i \(0.0246553\pi\)
0.565514 + 0.824739i \(0.308678\pi\)
\(198\) 0 0
\(199\) 11.9595 + 20.7144i 0.847783 + 1.46840i 0.883182 + 0.469031i \(0.155397\pi\)
−0.0353984 + 0.999373i \(0.511270\pi\)
\(200\) 0 0
\(201\) 5.03699 2.90811i 0.355282 0.205122i
\(202\) 0 0
\(203\) 0.246289i 0.0172861i
\(204\) 0 0
\(205\) 0.465926 0.807007i 0.0325417 0.0563638i
\(206\) 0 0
\(207\) −5.93942 −0.412818
\(208\) 0 0
\(209\) 33.0046 2.28298
\(210\) 0 0
\(211\) 8.59273 14.8830i 0.591548 1.02459i −0.402476 0.915430i \(-0.631850\pi\)
0.994024 0.109160i \(-0.0348162\pi\)
\(212\) 0 0
\(213\) 6.24969i 0.428222i
\(214\) 0 0
\(215\) 2.13713 1.23388i 0.145751 0.0841496i
\(216\) 0 0
\(217\) 0.0486860 + 0.0843267i 0.00330502 + 0.00572447i
\(218\) 0 0
\(219\) −12.0215 6.94062i −0.812338 0.469003i
\(220\) 0 0
\(221\) −9.20296 0.177046i −0.619058 0.0119094i
\(222\) 0 0
\(223\) 6.28913 + 3.63103i 0.421151 + 0.243152i 0.695570 0.718459i \(-0.255152\pi\)
−0.274419 + 0.961610i \(0.588485\pi\)
\(224\) 0 0
\(225\) 0.500000 + 0.866025i 0.0333333 + 0.0577350i
\(226\) 0 0
\(227\) −6.91347 + 3.99149i −0.458863 + 0.264925i −0.711566 0.702619i \(-0.752014\pi\)
0.252703 + 0.967544i \(0.418680\pi\)
\(228\) 0 0
\(229\) 0.146993i 0.00971359i 0.999988 + 0.00485680i \(0.00154597\pi\)
−0.999988 + 0.00485680i \(0.998454\pi\)
\(230\) 0 0
\(231\) 0.141281 0.244705i 0.00929558 0.0161004i
\(232\) 0 0
\(233\) −7.72424 −0.506032 −0.253016 0.967462i \(-0.581422\pi\)
−0.253016 + 0.967462i \(0.581422\pi\)
\(234\) 0 0
\(235\) 4.63859 0.302589
\(236\) 0 0
\(237\) −0.598076 + 1.03590i −0.0388492 + 0.0672888i
\(238\) 0 0
\(239\) 14.4529i 0.934880i −0.884025 0.467440i \(-0.845176\pi\)
0.884025 0.467440i \(-0.154824\pi\)
\(240\) 0 0
\(241\) −20.7437 + 11.9764i −1.33622 + 0.771467i −0.986245 0.165292i \(-0.947143\pi\)
−0.349976 + 0.936759i \(0.613810\pi\)
\(242\) 0 0
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) 0 0
\(245\) −6.05816 3.49768i −0.387041 0.223458i
\(246\) 0 0
\(247\) 0.552034 28.6952i 0.0351251 1.82583i
\(248\) 0 0
\(249\) −2.06316 1.19117i −0.130748 0.0754872i
\(250\) 0 0
\(251\) −12.9040 22.3503i −0.814491 1.41074i −0.909693 0.415282i \(-0.863683\pi\)
0.0952019 0.995458i \(-0.469650\pi\)
\(252\) 0 0
\(253\) −21.3271 + 12.3132i −1.34082 + 0.774124i
\(254\) 0 0
\(255\) 2.55291i 0.159870i
\(256\) 0 0
\(257\) 3.08920 5.35066i 0.192699 0.333765i −0.753445 0.657511i \(-0.771609\pi\)
0.946144 + 0.323746i \(0.104942\pi\)
\(258\) 0 0
\(259\) −0.776779 −0.0482667
\(260\) 0 0
\(261\) 3.61401 0.223702
\(262\) 0 0
\(263\) −3.77244 + 6.53405i −0.232618 + 0.402907i −0.958578 0.284831i \(-0.908063\pi\)
0.725960 + 0.687737i \(0.241396\pi\)
\(264\) 0 0
\(265\) 6.36308i 0.390881i
\(266\) 0 0
\(267\) −9.04758 + 5.22362i −0.553703 + 0.319681i
\(268\) 0 0
\(269\) 7.56106 + 13.0961i 0.461006 + 0.798486i 0.999011 0.0444558i \(-0.0141554\pi\)
−0.538006 + 0.842941i \(0.680822\pi\)
\(270\) 0 0
\(271\) 17.6604 + 10.1962i 1.07279 + 0.619377i 0.928943 0.370222i \(-0.120719\pi\)
0.143850 + 0.989600i \(0.454052\pi\)
\(272\) 0 0
\(273\) −0.210391 0.126926i −0.0127334 0.00768193i
\(274\) 0 0
\(275\) 3.59077 + 2.07313i 0.216532 + 0.125015i
\(276\) 0 0
\(277\) −2.38891 4.13770i −0.143535 0.248611i 0.785290 0.619128i \(-0.212514\pi\)
−0.928826 + 0.370517i \(0.879180\pi\)
\(278\) 0 0
\(279\) 1.23740 0.714413i 0.0740811 0.0427708i
\(280\) 0 0
\(281\) 6.07274i 0.362269i −0.983458 0.181135i \(-0.942023\pi\)
0.983458 0.181135i \(-0.0579770\pi\)
\(282\) 0 0
\(283\) −10.0906 + 17.4775i −0.599827 + 1.03893i 0.393020 + 0.919530i \(0.371430\pi\)
−0.992846 + 0.119400i \(0.961903\pi\)
\(284\) 0 0
\(285\) 7.96008 0.471514
\(286\) 0 0
\(287\) −0.0635042 −0.00374853
\(288\) 0 0
\(289\) 5.24131 9.07822i 0.308313 0.534013i
\(290\) 0 0
\(291\) 7.10270i 0.416367i
\(292\) 0 0
\(293\) −9.87380 + 5.70064i −0.576833 + 0.333035i −0.759874 0.650071i \(-0.774739\pi\)
0.183041 + 0.983105i \(0.441406\pi\)
\(294\) 0 0
\(295\) −0.0446641 0.0773604i −0.00260044 0.00450410i
\(296\) 0 0
\(297\) −3.59077 2.07313i −0.208358 0.120295i
\(298\) 0 0
\(299\) 10.3487 + 18.7483i 0.598483 + 1.08424i
\(300\) 0 0
\(301\) −0.145642 0.0840865i −0.00839467 0.00484667i
\(302\) 0 0
\(303\) 8.67593 + 15.0272i 0.498419 + 0.863288i
\(304\) 0 0
\(305\) −5.92178 + 3.41894i −0.339080 + 0.195768i
\(306\) 0 0
\(307\) 10.8374i 0.618523i −0.950977 0.309262i \(-0.899918\pi\)
0.950977 0.309262i \(-0.100082\pi\)
\(308\) 0 0
\(309\) 1.78074 3.08433i 0.101303 0.175461i
\(310\) 0 0
\(311\) −26.4772 −1.50138 −0.750691 0.660654i \(-0.770279\pi\)
−0.750691 + 0.660654i \(0.770279\pi\)
\(312\) 0 0
\(313\) 16.3534 0.924348 0.462174 0.886789i \(-0.347070\pi\)
0.462174 + 0.886789i \(0.347070\pi\)
\(314\) 0 0
\(315\) 0.0340742 0.0590182i 0.00191986 0.00332530i
\(316\) 0 0
\(317\) 22.0168i 1.23658i −0.785948 0.618292i \(-0.787825\pi\)
0.785948 0.618292i \(-0.212175\pi\)
\(318\) 0 0
\(319\) 12.9771 7.49233i 0.726578 0.419490i
\(320\) 0 0
\(321\) 9.47055 + 16.4035i 0.528594 + 0.915552i
\(322\) 0 0
\(323\) −17.5988 10.1607i −0.979226 0.565356i
\(324\) 0 0
\(325\) 1.86250 3.08725i 0.103313 0.171250i
\(326\) 0 0
\(327\) −14.4518 8.34374i −0.799186 0.461410i
\(328\) 0 0
\(329\) −0.158056 0.273761i −0.00871392 0.0150930i
\(330\) 0 0
\(331\) −21.1031 + 12.1839i −1.15993 + 0.669686i −0.951287 0.308306i \(-0.900238\pi\)
−0.208642 + 0.977992i \(0.566904\pi\)
\(332\) 0 0
\(333\) 11.3984i 0.624626i
\(334\) 0 0
\(335\) 2.90811 5.03699i 0.158887 0.275200i
\(336\) 0 0
\(337\) −11.9178 −0.649201 −0.324601 0.945851i \(-0.605230\pi\)
−0.324601 + 0.945851i \(0.605230\pi\)
\(338\) 0 0
\(339\) −12.0492 −0.654420
\(340\) 0 0
\(341\) 2.96214 5.13058i 0.160409 0.277837i
\(342\) 0 0
\(343\) 0.953760i 0.0514982i
\(344\) 0 0
\(345\) −5.14368 + 2.96971i −0.276927 + 0.159884i
\(346\) 0 0
\(347\) 3.57457 + 6.19134i 0.191893 + 0.332369i 0.945878 0.324524i \(-0.105204\pi\)
−0.753984 + 0.656892i \(0.771871\pi\)
\(348\) 0 0
\(349\) −0.245478 0.141727i −0.0131401 0.00758647i 0.493416 0.869794i \(-0.335748\pi\)
−0.506556 + 0.862207i \(0.669082\pi\)
\(350\) 0 0
\(351\) −1.86250 + 3.08725i −0.0994130 + 0.164785i
\(352\) 0 0
\(353\) −11.9619 6.90620i −0.636667 0.367580i 0.146662 0.989187i \(-0.453147\pi\)
−0.783330 + 0.621607i \(0.786480\pi\)
\(354\) 0 0
\(355\) −3.12484 5.41239i −0.165850 0.287260i
\(356\) 0 0
\(357\) −0.150668 + 0.0869884i −0.00797422 + 0.00460392i
\(358\) 0 0
\(359\) 24.0727i 1.27051i 0.772302 + 0.635255i \(0.219105\pi\)
−0.772302 + 0.635255i \(0.780895\pi\)
\(360\) 0 0
\(361\) 22.1814 38.4194i 1.16744 2.02207i
\(362\) 0 0
\(363\) −6.19151 −0.324970
\(364\) 0 0
\(365\) −13.8812 −0.726577
\(366\) 0 0
\(367\) −0.0199778 + 0.0346025i −0.00104283 + 0.00180623i −0.866546 0.499097i \(-0.833665\pi\)
0.865504 + 0.500903i \(0.166999\pi\)
\(368\) 0 0
\(369\) 0.931852i 0.0485103i
\(370\) 0 0
\(371\) −0.375538 + 0.216817i −0.0194969 + 0.0112566i
\(372\) 0 0
\(373\) 1.59127 + 2.75616i 0.0823927 + 0.142708i 0.904277 0.426946i \(-0.140410\pi\)
−0.821884 + 0.569654i \(0.807077\pi\)
\(374\) 0 0
\(375\) 0.866025 + 0.500000i 0.0447214 + 0.0258199i
\(376\) 0 0
\(377\) −6.29700 11.4080i −0.324312 0.587541i
\(378\) 0 0
\(379\) −21.2413 12.2637i −1.09109 0.629943i −0.157226 0.987563i \(-0.550255\pi\)
−0.933867 + 0.357620i \(0.883588\pi\)
\(380\) 0 0
\(381\) −5.92032 10.2543i −0.303307 0.525343i
\(382\) 0 0
\(383\) −0.238601 + 0.137756i −0.0121919 + 0.00703902i −0.506084 0.862484i \(-0.668907\pi\)
0.493892 + 0.869523i \(0.335574\pi\)
\(384\) 0 0
\(385\) 0.282561i 0.0144006i
\(386\) 0 0
\(387\) −1.23388 + 2.13713i −0.0627214 + 0.108637i
\(388\) 0 0
\(389\) −0.575090 −0.0291582 −0.0145791 0.999894i \(-0.504641\pi\)
−0.0145791 + 0.999894i \(0.504641\pi\)
\(390\) 0 0
\(391\) 15.1628 0.766817
\(392\) 0 0
\(393\) 4.43563 7.68274i 0.223748 0.387543i
\(394\) 0 0
\(395\) 1.19615i 0.0601850i
\(396\) 0 0
\(397\) 2.87663 1.66082i 0.144374 0.0833544i −0.426073 0.904689i \(-0.640103\pi\)
0.570447 + 0.821334i \(0.306770\pi\)
\(398\) 0 0
\(399\) −0.271233 0.469790i −0.0135786 0.0235189i
\(400\) 0 0
\(401\) −9.70261 5.60181i −0.484525 0.279741i 0.237775 0.971320i \(-0.423582\pi\)
−0.722300 + 0.691579i \(0.756915\pi\)
\(402\) 0 0
\(403\) −4.41114 2.66119i −0.219734 0.132563i
\(404\) 0 0
\(405\) −0.866025 0.500000i −0.0430331 0.0248452i
\(406\) 0 0
\(407\) 23.6303 + 40.9289i 1.17131 + 2.02877i
\(408\) 0 0
\(409\) −21.3919 + 12.3506i −1.05776 + 0.610698i −0.924812 0.380425i \(-0.875778\pi\)
−0.132948 + 0.991123i \(0.542444\pi\)
\(410\) 0 0
\(411\) 17.6598i 0.871092i
\(412\) 0 0
\(413\) −0.00304378 + 0.00527198i −0.000149775 + 0.000259417i
\(414\) 0 0
\(415\) −2.38234 −0.116944
\(416\) 0 0
\(417\) −3.75787 −0.184024
\(418\) 0 0
\(419\) −8.59633 + 14.8893i −0.419958 + 0.727389i −0.995935 0.0900770i \(-0.971289\pi\)
0.575976 + 0.817466i \(0.304622\pi\)
\(420\) 0 0
\(421\) 35.9492i 1.75206i 0.482261 + 0.876028i \(0.339816\pi\)
−0.482261 + 0.876028i \(0.660184\pi\)
\(422\) 0 0
\(423\) −4.01714 + 2.31930i −0.195320 + 0.112768i
\(424\) 0 0
\(425\) −1.27646 2.21089i −0.0619173 0.107244i
\(426\) 0 0
\(427\) 0.403559 + 0.232995i 0.0195296 + 0.0112754i
\(428\) 0 0
\(429\) −0.287545 + 14.9468i −0.0138828 + 0.721638i
\(430\) 0 0
\(431\) −28.7200 16.5815i −1.38339 0.798702i −0.390833 0.920462i \(-0.627813\pi\)
−0.992560 + 0.121760i \(0.961146\pi\)
\(432\) 0 0
\(433\) −14.4710 25.0645i −0.695431 1.20452i −0.970035 0.242965i \(-0.921880\pi\)
0.274604 0.961558i \(-0.411453\pi\)
\(434\) 0 0
\(435\) 3.12983 1.80701i 0.150064 0.0866394i
\(436\) 0 0
\(437\) 47.2782i 2.26162i
\(438\) 0 0
\(439\) 10.1317 17.5487i 0.483561 0.837553i −0.516260 0.856432i \(-0.672676\pi\)
0.999822 + 0.0188789i \(0.00600969\pi\)
\(440\) 0 0
\(441\) 6.99536 0.333112
\(442\) 0 0
\(443\) 34.9067 1.65847 0.829234 0.558902i \(-0.188777\pi\)
0.829234 + 0.558902i \(0.188777\pi\)
\(444\) 0 0
\(445\) −5.22362 + 9.04758i −0.247624 + 0.428897i
\(446\) 0 0
\(447\) 13.7467i 0.650195i
\(448\) 0 0
\(449\) 12.9893 7.49938i 0.613003 0.353918i −0.161137 0.986932i \(-0.551516\pi\)
0.774140 + 0.633015i \(0.218183\pi\)
\(450\) 0 0
\(451\) 1.93185 + 3.34607i 0.0909673 + 0.157560i
\(452\) 0 0
\(453\) −8.80482 5.08346i −0.413686 0.238842i
\(454\) 0 0
\(455\) −0.245667 0.00472611i −0.0115170 0.000221564i
\(456\) 0 0
\(457\) −28.4511 16.4263i −1.33089 0.768388i −0.345452 0.938437i \(-0.612274\pi\)
−0.985436 + 0.170048i \(0.945608\pi\)
\(458\) 0 0
\(459\) 1.27646 + 2.21089i 0.0595799 + 0.103195i
\(460\) 0 0
\(461\) −25.8488 + 14.9238i −1.20390 + 0.695071i −0.961420 0.275086i \(-0.911294\pi\)
−0.242478 + 0.970157i \(0.577960\pi\)
\(462\) 0 0
\(463\) 12.8467i 0.597036i −0.954404 0.298518i \(-0.903508\pi\)
0.954404 0.298518i \(-0.0964923\pi\)
\(464\) 0 0
\(465\) 0.714413 1.23740i 0.0331301 0.0573830i
\(466\) 0 0
\(467\) −11.9000 −0.550665 −0.275333 0.961349i \(-0.588788\pi\)
−0.275333 + 0.961349i \(0.588788\pi\)
\(468\) 0 0
\(469\) −0.396366 −0.0183025
\(470\) 0 0
\(471\) −4.56873 + 7.91327i −0.210516 + 0.364624i
\(472\) 0 0
\(473\) 10.2319i 0.470465i
\(474\) 0 0
\(475\) 6.89363 3.98004i 0.316301 0.182617i
\(476\) 0 0
\(477\) 3.18154 + 5.51059i 0.145673 + 0.252313i
\(478\) 0 0
\(479\) −26.7475 15.4427i −1.22212 0.705594i −0.256754 0.966477i \(-0.582653\pi\)
−0.965371 + 0.260883i \(0.915986\pi\)
\(480\) 0 0
\(481\) 35.9800 19.8603i 1.64055 0.905552i
\(482\) 0 0
\(483\) 0.350534 + 0.202381i 0.0159498 + 0.00920864i
\(484\) 0 0
\(485\) 3.55135 + 6.15111i 0.161258 + 0.279308i
\(486\) 0 0
\(487\) −6.17388 + 3.56449i −0.279765 + 0.161522i −0.633317 0.773892i \(-0.718307\pi\)
0.353552 + 0.935415i \(0.384974\pi\)
\(488\) 0 0
\(489\) 17.3960i 0.786672i
\(490\) 0 0
\(491\) −13.0878 + 22.6688i −0.590646 + 1.02303i 0.403499 + 0.914980i \(0.367794\pi\)
−0.994146 + 0.108049i \(0.965540\pi\)
\(492\) 0 0
\(493\) −9.22627 −0.415530
\(494\) 0 0
\(495\) −4.14626 −0.186361
\(496\) 0 0
\(497\) −0.212953 + 0.368845i −0.00955225 + 0.0165450i
\(498\) 0 0
\(499\) 16.8601i 0.754761i −0.926058 0.377381i \(-0.876825\pi\)
0.926058 0.377381i \(-0.123175\pi\)
\(500\) 0 0
\(501\) 12.0063 6.93185i 0.536403 0.309692i
\(502\) 0 0
\(503\) −3.82503 6.62514i −0.170550 0.295400i 0.768063 0.640375i \(-0.221221\pi\)
−0.938612 + 0.344974i \(0.887888\pi\)
\(504\) 0 0
\(505\) 15.0272 + 8.67593i 0.668700 + 0.386074i
\(506\) 0 0
\(507\) 12.9904 + 0.500000i 0.576923 + 0.0222058i
\(508\) 0 0
\(509\) −34.8439 20.1171i −1.54443 0.891676i −0.998551 0.0538111i \(-0.982863\pi\)
−0.545877 0.837865i \(-0.683804\pi\)
\(510\) 0 0
\(511\) 0.472992 + 0.819245i 0.0209239 + 0.0362413i
\(512\) 0 0
\(513\) −6.89363 + 3.98004i −0.304361 + 0.175723i
\(514\) 0 0
\(515\) 3.56147i 0.156937i
\(516\) 0 0
\(517\) −9.61642 + 16.6561i −0.422930 + 0.732536i
\(518\) 0 0
\(519\) −16.4317 −0.721274
\(520\) 0 0
\(521\) −21.8581 −0.957619 −0.478810 0.877919i \(-0.658932\pi\)
−0.478810 + 0.877919i \(0.658932\pi\)
\(522\) 0 0
\(523\) 20.5828 35.6505i 0.900024 1.55889i 0.0725626 0.997364i \(-0.476882\pi\)
0.827461 0.561523i \(-0.189784\pi\)
\(524\) 0 0
\(525\) 0.0681483i 0.00297424i
\(526\) 0 0
\(527\) −3.15897 + 1.82383i −0.137607 + 0.0794475i
\(528\) 0 0
\(529\) −6.13833 10.6319i −0.266884 0.462256i
\(530\) 0 0
\(531\) 0.0773604 + 0.0446641i 0.00335716 + 0.00193825i
\(532\) 0 0
\(533\) 2.94148 1.62364i 0.127410 0.0703278i
\(534\) 0 0
\(535\) 16.4035 + 9.47055i 0.709184 + 0.409447i
\(536\) 0 0
\(537\) −5.89716 10.2142i −0.254481 0.440774i
\(538\) 0 0
\(539\) 25.1187 14.5023i 1.08194 0.624658i
\(540\) 0 0
\(541\) 7.83663i 0.336923i −0.985708 0.168462i \(-0.946120\pi\)
0.985708 0.168462i \(-0.0538799\pi\)
\(542\) 0 0
\(543\) 2.94476 5.10048i 0.126372 0.218883i
\(544\) 0 0
\(545\) −16.6875 −0.714813
\(546\) 0 0
\(547\) 12.9185 0.552355 0.276178 0.961107i \(-0.410932\pi\)
0.276178 + 0.961107i \(0.410932\pi\)
\(548\) 0 0
\(549\) 3.41894 5.92178i 0.145917 0.252735i
\(550\) 0 0
\(551\) 28.7678i 1.22555i
\(552\) 0 0
\(553\) 0.0705948 0.0407579i 0.00300199 0.00173320i
\(554\) 0 0
\(555\) 5.69918 + 9.87127i 0.241917 + 0.419012i
\(556\) 0 0
\(557\) 25.4603 + 14.6995i 1.07879 + 0.622839i 0.930569 0.366116i \(-0.119313\pi\)
0.148219 + 0.988955i \(0.452646\pi\)
\(558\) 0 0
\(559\) 8.89595 + 0.171139i 0.376259 + 0.00723842i
\(560\) 0 0
\(561\) 9.16693 + 5.29253i 0.387028 + 0.223451i
\(562\) 0 0
\(563\) 2.49886 + 4.32816i 0.105314 + 0.182410i 0.913867 0.406014i \(-0.133082\pi\)
−0.808552 + 0.588425i \(0.799748\pi\)
\(564\) 0 0
\(565\) −10.4349 + 6.02458i −0.438999 + 0.253456i
\(566\) 0 0
\(567\) 0.0681483i 0.00286196i
\(568\) 0 0
\(569\) 16.1680 28.0038i 0.677799 1.17398i −0.297844 0.954615i \(-0.596267\pi\)
0.975642 0.219367i \(-0.0703993\pi\)
\(570\) 0 0
\(571\) 27.8943 1.16734 0.583671 0.811990i \(-0.301616\pi\)
0.583671 + 0.811990i \(0.301616\pi\)
\(572\) 0 0
\(573\) −18.2183 −0.761082
\(574\) 0 0
\(575\) −2.96971 + 5.14368i −0.123845 + 0.214506i
\(576\) 0 0
\(577\) 0.0715833i 0.00298005i −0.999999 0.00149003i \(-0.999526\pi\)
0.999999 0.00149003i \(-0.000474290\pi\)
\(578\) 0 0
\(579\) 4.77886 2.75908i 0.198603 0.114663i
\(580\) 0 0
\(581\) 0.0811762 + 0.140601i 0.00336776 + 0.00583312i
\(582\) 0 0
\(583\) 22.8484 + 13.1915i 0.946282 + 0.546336i
\(584\) 0 0
\(585\) −0.0693504 + 3.60488i −0.00286728 + 0.149044i
\(586\) 0 0
\(587\) 28.7686 + 16.6096i 1.18741 + 0.685551i 0.957717 0.287712i \(-0.0928947\pi\)
0.229692 + 0.973263i \(0.426228\pi\)
\(588\) 0 0
\(589\) −5.68678 9.84980i −0.234320 0.405854i
\(590\) 0 0
\(591\) −21.9309 + 12.6618i −0.902119 + 0.520838i
\(592\) 0 0
\(593\) 12.0914i 0.496536i 0.968691 + 0.248268i \(0.0798614\pi\)
−0.968691 + 0.248268i \(0.920139\pi\)
\(594\) 0 0
\(595\) −0.0869884 + 0.150668i −0.00356618 + 0.00617680i
\(596\) 0 0
\(597\) −23.9189 −0.978936
\(598\) 0 0
\(599\) −17.7145 −0.723794 −0.361897 0.932218i \(-0.617871\pi\)
−0.361897 + 0.932218i \(0.617871\pi\)
\(600\) 0 0
\(601\) 21.0964 36.5400i 0.860538 1.49050i −0.0108722 0.999941i \(-0.503461\pi\)
0.871410 0.490555i \(-0.163206\pi\)
\(602\) 0 0
\(603\) 5.81622i 0.236855i
\(604\) 0 0
\(605\) −5.36200 + 3.09575i −0.217996 + 0.125860i
\(606\) 0 0
\(607\) 7.00720 + 12.1368i 0.284413 + 0.492619i 0.972467 0.233042i \(-0.0748678\pi\)
−0.688053 + 0.725660i \(0.741534\pi\)
\(608\) 0 0
\(609\) −0.213293 0.123145i −0.00864305 0.00499007i
\(610\) 0 0
\(611\) 14.3205 + 8.63939i 0.579345 + 0.349512i
\(612\) 0 0
\(613\) −37.1083 21.4245i −1.49879 0.865328i −0.498792 0.866722i \(-0.666223\pi\)
−0.999999 + 0.00139405i \(0.999556\pi\)
\(614\) 0 0
\(615\) 0.465926 + 0.807007i 0.0187879 + 0.0325417i
\(616\) 0 0
\(617\) 20.3603 11.7550i 0.819676 0.473240i −0.0306285 0.999531i \(-0.509751\pi\)
0.850305 + 0.526290i \(0.176418\pi\)
\(618\) 0 0
\(619\) 1.39570i 0.0560981i 0.999607 + 0.0280491i \(0.00892946\pi\)
−0.999607 + 0.0280491i \(0.991071\pi\)
\(620\) 0 0
\(621\) 2.96971 5.14368i 0.119170 0.206409i
\(622\) 0 0
\(623\) 0.711963 0.0285242
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −16.5023 + 28.5828i −0.659038 + 1.14149i
\(628\) 0 0
\(629\) 29.0990i 1.16025i
\(630\) 0 0
\(631\) 1.70150 0.982362i 0.0677357 0.0391072i −0.465750 0.884917i \(-0.654215\pi\)
0.533485 + 0.845809i \(0.320882\pi\)
\(632\) 0 0
\(633\) 8.59273 + 14.8830i 0.341530 + 0.591548i
\(634\) 0 0
\(635\) −10.2543 5.92032i −0.406929 0.234941i
\(636\) 0 0
\(637\) −12.1886 22.0815i −0.482929 0.874902i
\(638\) 0 0
\(639\) 5.41239 + 3.12484i 0.214111 + 0.123617i
\(640\) 0 0
\(641\) −5.82684 10.0924i −0.230146 0.398625i 0.727705 0.685891i \(-0.240587\pi\)
−0.957851 + 0.287265i \(0.907254\pi\)
\(642\) 0 0
\(643\) −1.19971 + 0.692653i −0.0473120 + 0.0273156i −0.523469 0.852044i \(-0.675363\pi\)
0.476157 + 0.879360i \(0.342029\pi\)
\(644\) 0 0
\(645\) 2.46775i 0.0971676i
\(646\) 0 0
\(647\) −16.4545 + 28.5000i −0.646892 + 1.12045i 0.336969 + 0.941516i \(0.390598\pi\)
−0.983861 + 0.178934i \(0.942735\pi\)
\(648\) 0 0
\(649\) 0.370378 0.0145386
\(650\) 0 0
\(651\) −0.0973721 −0.00381631
\(652\) 0 0
\(653\) −12.4251 + 21.5209i −0.486233 + 0.842180i −0.999875 0.0158248i \(-0.994963\pi\)
0.513642 + 0.858005i \(0.328296\pi\)
\(654\) 0 0
\(655\) 8.87127i 0.346629i
\(656\) 0 0
\(657\) 12.0215 6.94062i 0.469003 0.270779i
\(658\) 0 0
\(659\) 22.4723 + 38.9232i 0.875398 + 1.51623i 0.856338 + 0.516416i \(0.172734\pi\)
0.0190604 + 0.999818i \(0.493933\pi\)
\(660\) 0 0
\(661\) −22.3820 12.9222i −0.870557 0.502617i −0.00302403 0.999995i \(-0.500963\pi\)
−0.867533 + 0.497379i \(0.834296\pi\)
\(662\) 0 0
\(663\) 4.75481 7.88147i 0.184661 0.306091i
\(664\) 0 0
\(665\) −0.469790 0.271233i −0.0182177 0.0105180i
\(666\) 0 0
\(667\) 10.7326 + 18.5894i 0.415567 + 0.719783i
\(668\) 0 0
\(669\) −6.28913 + 3.63103i −0.243152 + 0.140384i
\(670\) 0 0
\(671\) 28.3517i 1.09450i
\(672\) 0 0
\(673\) 4.03736 6.99291i 0.155629 0.269557i −0.777659 0.628686i \(-0.783593\pi\)
0.933288 + 0.359129i \(0.116926\pi\)
\(674\) 0 0
\(675\) −1.00000 −0.0384900
\(676\) 0 0
\(677\) 34.5084 1.32626 0.663132 0.748502i \(-0.269227\pi\)
0.663132 + 0.748502i \(0.269227\pi\)
\(678\) 0 0
\(679\) 0.242018 0.419188i 0.00928782 0.0160870i
\(680\) 0 0
\(681\) 7.98298i 0.305909i
\(682\) 0 0
\(683\) 14.7325 8.50582i 0.563724 0.325466i −0.190915 0.981607i \(-0.561145\pi\)
0.754639 + 0.656140i \(0.227812\pi\)
\(684\) 0 0
\(685\) 8.82989 + 15.2938i 0.337373 + 0.584347i
\(686\) 0 0
\(687\) −0.127300 0.0734967i −0.00485680 0.00280407i
\(688\) 0 0
\(689\) 11.8512 19.6444i 0.451497 0.748392i
\(690\) 0 0
\(691\) 9.99871 + 5.77276i 0.380369 + 0.219606i 0.677979 0.735082i \(-0.262856\pi\)
−0.297610 + 0.954688i \(0.596189\pi\)
\(692\) 0 0
\(693\) 0.141281 + 0.244705i 0.00536680 + 0.00929558i
\(694\) 0 0
\(695\) −3.25442 + 1.87894i −0.123447 + 0.0712722i
\(696\) 0 0
\(697\) 2.37894i 0.0901087i
\(698\) 0 0
\(699\) 3.86212 6.68939i 0.146079 0.253016i
\(700\) 0 0
\(701\) 17.9804 0.679110 0.339555 0.940586i \(-0.389724\pi\)
0.339555 + 0.940586i \(0.389724\pi\)
\(702\) 0 0
\(703\) 90.7318 3.42202
\(704\) 0 0
\(705\) −2.31930 + 4.01714i −0.0873498 + 0.151294i
\(706\) 0 0
\(707\) 1.18250i 0.0444725i
\(708\) 0 0
\(709\) 2.78105 1.60564i 0.104445 0.0603011i −0.446868 0.894600i \(-0.647461\pi\)
0.551312 + 0.834299i \(0.314127\pi\)
\(710\) 0 0
\(711\) −0.598076 1.03590i −0.0224296 0.0388492i
\(712\) 0 0
\(713\) 7.34943 + 4.24319i 0.275238 + 0.158909i
\(714\) 0 0
\(715\) 7.22438 + 13.0881i 0.270177 + 0.489467i
\(716\) 0 0
\(717\) 12.5166 + 7.22644i 0.467440 + 0.269877i
\(718\) 0 0
\(719\) 21.5201 + 37.2739i 0.802563 + 1.39008i 0.917924 + 0.396756i \(0.129864\pi\)
−0.115361 + 0.993324i \(0.536802\pi\)
\(720\) 0 0
\(721\) −0.210192 + 0.121354i −0.00782795 + 0.00451947i
\(722\) 0 0
\(723\) 23.9528i 0.890814i
\(724\) 0 0
\(725\) 1.80701 3.12983i 0.0671106 0.116239i
\(726\) 0 0
\(727\) −8.96129 −0.332356 −0.166178 0.986096i \(-0.553143\pi\)
−0.166178 + 0.986096i \(0.553143\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 3.14998 5.45592i 0.116506 0.201795i
\(732\) 0 0
\(733\) 13.4176i 0.495592i −0.968812 0.247796i \(-0.920294\pi\)
0.968812 0.247796i \(-0.0797063\pi\)
\(734\) 0 0
\(735\) 6.05816 3.49768i 0.223458 0.129014i
\(736\) 0 0
\(737\) 12.0578 + 20.8847i 0.444154 + 0.769298i
\(738\) 0 0
\(739\) −18.0531 10.4229i −0.664092 0.383414i 0.129742 0.991548i \(-0.458585\pi\)
−0.793835 + 0.608134i \(0.791918\pi\)
\(740\) 0 0
\(741\) 24.5747 + 14.8257i 0.902775 + 0.544634i
\(742\) 0 0
\(743\) −4.78027 2.75989i −0.175371 0.101250i 0.409745 0.912200i \(-0.365618\pi\)
−0.585116 + 0.810950i \(0.698951\pi\)
\(744\) 0 0
\(745\) −6.87333 11.9050i −0.251819 0.436164i
\(746\) 0 0
\(747\) 2.06316 1.19117i 0.0754872 0.0435826i
\(748\) 0 0
\(749\) 1.29080i 0.0471650i
\(750\) 0 0
\(751\) −27.0426 + 46.8391i −0.986797 + 1.70918i −0.353137 + 0.935572i \(0.614885\pi\)
−0.633660 + 0.773611i \(0.718448\pi\)
\(752\) 0 0
\(753\) 25.8079 0.940493
\(754\) 0 0
\(755\) −10.1669 −0.370012
\(756\) 0 0
\(757\) −2.03564 + 3.52583i −0.0739866 + 0.128149i −0.900645 0.434555i \(-0.856906\pi\)
0.826659 + 0.562704i \(0.190239\pi\)
\(758\) 0 0
\(759\) 24.6264i 0.893881i
\(760\) 0 0
\(761\) 5.34009 3.08310i 0.193578 0.111762i −0.400079 0.916481i \(-0.631017\pi\)
0.593656 + 0.804719i \(0.297684\pi\)
\(762\) 0 0
\(763\) 0.568612 + 0.984865i 0.0205851 + 0.0356545i
\(764\) 0 0
\(765\) 2.21089 + 1.27646i 0.0799348 + 0.0461504i
\(766\) 0 0
\(767\) 0.00619494 0.322017i 0.000223686 0.0116274i
\(768\) 0 0
\(769\) −0.266481 0.153853i −0.00960955 0.00554808i 0.495188 0.868786i \(-0.335099\pi\)
−0.504797 + 0.863238i \(0.668433\pi\)
\(770\) 0 0
\(771\) 3.08920 + 5.35066i 0.111255 + 0.192699i
\(772\) 0 0
\(773\) 18.8391 10.8767i 0.677594 0.391209i −0.121354 0.992609i \(-0.538724\pi\)
0.798948 + 0.601400i \(0.205390\pi\)
\(774\) 0 0
\(775\) 1.42883i 0.0513249i
\(776\) 0 0
\(777\) 0.388390 0.672711i 0.0139334 0.0241334i
\(778\) 0 0
\(779\) 7.41761 0.265764
\(780\) 0 0
\(781\) 25.9129 0.927235
\(782\) 0 0
\(783\) −1.80701 + 3.12983i −0.0645772 + 0.111851i
\(784\) 0 0
\(785\) 9.13746i 0.326130i
\(786\) 0 0
\(787\) −26.0848 + 15.0601i −0.929822 + 0.536833i −0.886755 0.462239i \(-0.847046\pi\)
−0.0430670 + 0.999072i \(0.513713\pi\)
\(788\) 0 0
\(789\) −3.77244 6.53405i −0.134302 0.232618i
\(790\) 0 0
\(791\) 0.711120 + 0.410565i 0.0252845 + 0.0145980i
\(792\) 0 0
\(793\) −24.6498 0.474209i −0.875339 0.0168397i
\(794\) 0 0
\(795\) 5.51059 + 3.18154i 0.195440 + 0.112838i
\(796\) 0 0
\(797\) 6.58127 + 11.3991i 0.233120 + 0.403776i 0.958725 0.284336i \(-0.0917730\pi\)
−0.725604 + 0.688112i \(0.758440\pi\)
\(798\) 0 0
\(799\) 10.2554 5.92097i 0.362810 0.209469i
\(800\) 0 0
\(801\) 10.4472i 0.369135i
\(802\) 0 0
\(803\) 28.7776 49.8443i 1.01554 1.75897i
\(804\) 0 0
\(805\) 0.404761 0.0142660
\(806\) 0 0
\(807\) −15.1221 −0.532324
\(808\) 0 0
\(809\) −13.1402 + 22.7595i −0.461985 + 0.800182i −0.999060 0.0433528i \(-0.986196\pi\)
0.537075 + 0.843535i \(0.319529\pi\)
\(810\) 0 0
\(811\) 35.6658i 1.25240i 0.779664 + 0.626198i \(0.215390\pi\)
−0.779664 + 0.626198i \(0.784610\pi\)
\(812\) 0 0
\(813\) −17.6604 + 10.1962i −0.619377 + 0.357598i
\(814\) 0 0
\(815\) 8.69798 + 15.0653i 0.304677 + 0.527716i
\(816\) 0 0
\(817\) 17.0118 + 9.82174i 0.595166 + 0.343619i
\(818\) 0 0
\(819\) 0.215117 0.118741i 0.00751679 0.00414913i
\(820\) 0 0
\(821\) 21.3249 + 12.3119i 0.744245 + 0.429690i 0.823611 0.567156i \(-0.191956\pi\)
−0.0793658 + 0.996846i \(0.525290\pi\)
\(822\) 0 0
\(823\) −1.57509 2.72814i −0.0549042 0.0950968i 0.837267 0.546794i \(-0.184152\pi\)
−0.892171 + 0.451697i \(0.850819\pi\)
\(824\) 0 0
\(825\) −3.59077 + 2.07313i −0.125015 + 0.0721772i
\(826\) 0 0
\(827\) 26.3343i 0.915733i 0.889021 + 0.457866i \(0.151386\pi\)
−0.889021 + 0.457866i \(0.848614\pi\)
\(828\) 0 0
\(829\) 1.85189 3.20757i 0.0643189 0.111404i −0.832073 0.554667i \(-0.812846\pi\)
0.896392 + 0.443263i \(0.146179\pi\)
\(830\) 0 0
\(831\) 4.77781 0.165740
\(832\) 0 0
\(833\) −17.8585 −0.618762
\(834\) 0 0
\(835\) 6.93185 12.0063i 0.239887 0.415496i
\(836\) 0 0
\(837\) 1.42883i 0.0493874i
\(838\) 0 0
\(839\) −3.32218 + 1.91806i −0.114694 + 0.0662188i −0.556250 0.831015i \(-0.687760\pi\)
0.441555 + 0.897234i \(0.354427\pi\)
\(840\) 0 0
\(841\) 7.96945 + 13.8035i 0.274809 + 0.475982i
\(842\) 0 0
\(843\) 5.25915 + 3.03637i 0.181135 + 0.104578i
\(844\) 0 0
\(845\) 11.5000 6.06218i 0.395612 0.208545i
\(846\) 0 0
\(847\) 0.365412 + 0.210971i 0.0125557 + 0.00724903i
\(848\) 0 0
\(849\) −10.0906 17.4775i −0.346310 0.599827i
\(850\) 0 0
\(851\) −58.6296 + 33.8498i −2.00980 + 1.16036i
\(852\) 0 0
\(853\) 18.6089i 0.637155i 0.947897 + 0.318578i \(0.103205\pi\)
−0.947897 + 0.318578i \(0.896795\pi\)
\(854\) 0 0
\(855\) −3.98004 + 6.89363i −0.136114 + 0.235757i
\(856\) 0 0
\(857\) −25.1469 −0.859002 −0.429501 0.903066i \(-0.641311\pi\)
−0.429501 + 0.903066i \(0.641311\pi\)
\(858\) 0 0
\(859\) 51.8717 1.76984 0.884920 0.465744i \(-0.154213\pi\)
0.884920 + 0.465744i \(0.154213\pi\)
\(860\) 0 0
\(861\) 0.0317521 0.0549962i 0.00108211 0.00187427i
\(862\) 0 0
\(863\) 2.53391i 0.0862552i −0.999070 0.0431276i \(-0.986268\pi\)
0.999070 0.0431276i \(-0.0137322\pi\)
\(864\) 0 0
\(865\) −14.2303 + 8.21587i −0.483845 + 0.279348i
\(866\) 0 0
\(867\) 5.24131 + 9.07822i 0.178004 + 0.308313i
\(868\) 0 0
\(869\) −4.29511 2.47978i −0.145702 0.0841208i
\(870\) 0 0
\(871\) 18.3595 10.1341i 0.622086 0.343380i
\(872\) 0 0
\(873\) −6.15111 3.55135i −0.208184 0.120195i
\(874\) 0 0
\(875\) −0.0340742 0.0590182i −0.00115192 0.00199518i
\(876\) 0 0
\(877\) 32.7720 18.9209i 1.10663 0.638914i 0.168676 0.985672i \(-0.446051\pi\)
0.937955 + 0.346758i \(0.112717\pi\)
\(878\) 0 0
\(879\) 11.4013i 0.384556i
\(880\) 0 0
\(881\) 12.4488 21.5619i 0.419409 0.726438i −0.576471 0.817118i \(-0.695571\pi\)
0.995880 + 0.0906794i \(0.0289039\pi\)
\(882\) 0 0
\(883\) −3.54539 −0.119312 −0.0596559 0.998219i \(-0.519000\pi\)
−0.0596559 + 0.998219i \(0.519000\pi\)
\(884\) 0 0
\(885\) 0.0893281 0.00300273
\(886\) 0 0
\(887\) −0.00386375 + 0.00669220i −0.000129732 + 0.000224702i −0.866090 0.499888i \(-0.833375\pi\)
0.865961 + 0.500112i \(0.166708\pi\)
\(888\) 0 0
\(889\) 0.806920i 0.0270632i
\(890\) 0 0
\(891\) 3.59077 2.07313i 0.120295 0.0694525i
\(892\) 0 0
\(893\) 18.4618 + 31.9768i 0.617800 + 1.07006i
\(894\) 0 0
\(895\) −10.2142 5.89716i −0.341422 0.197120i
\(896\) 0 0
\(897\) −21.4109 0.411901i −0.714889 0.0137530i
\(898\) 0 0
\(899\) −4.47198 2.58190i −0.149149 0.0861111i
\(900\) 0 0
\(901\) −8.12220 14.0681i −0.270590 0.468675i
\(902\) 0 0
\(903\) 0.145642 0.0840865i 0.00484667 0.00279822i
\(904\) 0 0
\(905\) 5.88953i 0.195775i
\(906\) 0 0
\(907\) −15.1775 + 26.2882i −0.503962 + 0.872887i 0.496028 + 0.868307i \(0.334791\pi\)
−0.999990 + 0.00458044i \(0.998542\pi\)
\(908\) 0 0
\(909\) −17.3519 −0.575525
\(910\) 0 0
\(911\) −17.1302 −0.567550 −0.283775 0.958891i \(-0.591587\pi\)
−0.283775 + 0.958891i \(0.591587\pi\)
\(912\) 0 0
\(913\) 4.93890 8.55443i 0.163454 0.283110i
\(914\) 0 0
\(915\) 6.83788i 0.226053i
\(916\) 0 0
\(917\) −0.523566 + 0.302281i −0.0172897 + 0.00998220i
\(918\) 0 0
\(919\) −14.8453 25.7127i −0.489700 0.848185i 0.510230 0.860038i \(-0.329560\pi\)
−0.999930 + 0.0118531i \(0.996227\pi\)
\(920\) 0 0
\(921\) 9.38546 + 5.41870i 0.309262 + 0.178552i
\(922\) 0 0
\(923\) 0.433418 22.5294i 0.0142661 0.741564i
\(924\) 0 0
\(925\) 9.87127 + 5.69918i 0.324565 + 0.187388i
\(926\) 0 0
\(927\) 1.78074 + 3.08433i 0.0584871 + 0.101303i
\(928\) 0 0
\(929\) 39.2752 22.6755i 1.28858 0.743961i 0.310177 0.950679i \(-0.399612\pi\)
0.978400 + 0.206718i \(0.0662784\pi\)
\(930\) 0 0
\(931\) 55.6836i 1.82496i
\(932\) 0 0
\(933\) 13.2386 22.9299i 0.433412 0.750691i
\(934\) 0 0
\(935\) 10.5851 0.346168
\(936\) 0 0
\(937\) 11.4107 0.372770 0.186385 0.982477i \(-0.440323\pi\)
0.186385 + 0.982477i \(0.440323\pi\)
\(938\) 0 0
\(939\) −8.17669 + 14.1624i −0.266836 + 0.462174i
\(940\) 0 0
\(941\) 44.7284i 1.45810i −0.684459 0.729051i \(-0.739962\pi\)
0.684459 0.729051i \(-0.260038\pi\)
\(942\) 0 0
\(943\) −4.79315 + 2.76733i −0.156086 + 0.0901166i
\(944\) 0 0
\(945\) 0.0340742 + 0.0590182i 0.00110843 + 0.00191986i
\(946\) 0 0
\(947\) 13.6568 + 7.88476i 0.443786 + 0.256220i 0.705202 0.709006i \(-0.250856\pi\)
−0.261416 + 0.965226i \(0.584189\pi\)
\(948\) 0 0
\(949\) −42.8548 25.8538i −1.39113 0.839250i
\(950\) 0 0
\(951\) 19.0671 + 11.0084i 0.618292 + 0.356971i
\(952\) 0 0
\(953\) −15.8843 27.5124i −0.514543 0.891214i −0.999858 0.0168748i \(-0.994628\pi\)
0.485315 0.874339i \(-0.338705\pi\)
\(954\) 0 0
\(955\) −15.7775 + 9.10916i −0.510549 + 0.294766i
\(956\) 0 0
\(957\) 14.9847i 0.484385i
\(958\) 0 0
\(959\) 0.601742 1.04225i 0.0194313 0.0336559i
\(960\) 0 0
\(961\) 28.9585 0.934144
\(962\) 0 0
\(963\) −18.9411 −0.610368
\(964\) 0 0
\(965\) 2.75908 4.77886i 0.0888178 0.153837i
\(966\) 0 0
\(967\) 45.9318i 1.47707i 0.674216 + 0.738534i \(0.264482\pi\)
−0.674216 + 0.738534i \(0.735518\pi\)
\(968\) 0 0
\(969\) 17.5988 10.1607i 0.565356 0.326409i
\(970\) 0 0
\(971\) −7.07794 12.2594i −0.227142 0.393421i 0.729818 0.683642i \(-0.239605\pi\)
−0.956960 + 0.290220i \(0.906271\pi\)
\(972\) 0 0
\(973\) 0.221783 + 0.128046i 0.00711004 + 0.00410498i
\(974\) 0 0
\(975\) 1.74238 + 3.15660i 0.0558009 + 0.101092i
\(976\) 0 0
\(977\) −33.4755 19.3271i −1.07098 0.618328i −0.142528 0.989791i \(-0.545523\pi\)
−0.928448 + 0.371463i \(0.878856\pi\)
\(978\) 0 0
\(979\) −21.6585 37.5137i −0.692210 1.19894i
\(980\) 0 0
\(981\) 14.4518 8.34374i 0.461410 0.266395i
\(982\) 0 0
\(983\) 8.18510i 0.261064i −0.991444 0.130532i \(-0.958331\pi\)
0.991444 0.130532i \(-0.0416686\pi\)
\(984\) 0 0
\(985\) −12.6618 + 21.9309i −0.403440 + 0.698778i
\(986\) 0 0
\(987\) 0.316113 0.0100620
\(988\) 0 0
\(989\) −14.6570 −0.466065
\(990\) 0 0
\(991\) −14.7104 + 25.4791i −0.467290 + 0.809370i −0.999302 0.0373668i \(-0.988103\pi\)
0.532011 + 0.846737i \(0.321436\pi\)
\(992\) 0 0
\(993\) 24.3677i 0.773286i
\(994\) 0 0
\(995\) −20.7144 + 11.9595i −0.656690 + 0.379140i
\(996\) 0 0
\(997\) 17.7596 + 30.7605i 0.562452 + 0.974196i 0.997282 + 0.0736832i \(0.0234754\pi\)
−0.434829 + 0.900513i \(0.643191\pi\)
\(998\) 0 0
\(999\) −9.87127 5.69918i −0.312313 0.180314i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 780.2.cc.b.121.3 8
3.2 odd 2 2340.2.dj.c.901.1 8
5.2 odd 4 3900.2.bw.l.2149.3 8
5.3 odd 4 3900.2.bw.g.2149.2 8
5.4 even 2 3900.2.cd.l.901.2 8
13.10 even 6 inner 780.2.cc.b.361.1 yes 8
39.23 odd 6 2340.2.dj.c.361.3 8
65.23 odd 12 3900.2.bw.l.49.3 8
65.49 even 6 3900.2.cd.l.2701.2 8
65.62 odd 12 3900.2.bw.g.49.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
780.2.cc.b.121.3 8 1.1 even 1 trivial
780.2.cc.b.361.1 yes 8 13.10 even 6 inner
2340.2.dj.c.361.3 8 39.23 odd 6
2340.2.dj.c.901.1 8 3.2 odd 2
3900.2.bw.g.49.2 8 65.62 odd 12
3900.2.bw.g.2149.2 8 5.3 odd 4
3900.2.bw.l.49.3 8 65.23 odd 12
3900.2.bw.l.2149.3 8 5.2 odd 4
3900.2.cd.l.901.2 8 5.4 even 2
3900.2.cd.l.2701.2 8 65.49 even 6