Properties

Label 2340.2.dj.c.361.3
Level $2340$
Weight $2$
Character 2340.361
Analytic conductor $18.685$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2340,2,Mod(361,2340)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2340, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2340.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2340 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2340.dj (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.6849940730\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 780)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 361.3
Root \(-0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 2340.361
Dual form 2340.2.dj.c.901.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{5} +(0.0590182 + 0.0340742i) q^{7} +(3.59077 - 2.07313i) q^{11} +(-1.86250 - 3.08725i) q^{13} +(-1.27646 + 2.21089i) q^{17} +(-6.89363 - 3.98004i) q^{19} +(-2.96971 - 5.14368i) q^{23} -1.00000 q^{25} +(1.80701 + 3.12983i) q^{29} -1.42883i q^{31} +(-0.0340742 + 0.0590182i) q^{35} +(-9.87127 + 5.69918i) q^{37} +(0.807007 - 0.465926i) q^{41} +(-1.23388 + 2.13713i) q^{43} -4.63859i q^{47} +(-3.49768 - 6.05816i) q^{49} +6.36308 q^{53} +(2.07313 + 3.59077i) q^{55} +(0.0773604 + 0.0446641i) q^{59} +(3.41894 - 5.92178i) q^{61} +(3.08725 - 1.86250i) q^{65} +(-5.03699 + 2.90811i) q^{67} +(5.41239 + 3.12484i) q^{71} -13.8812i q^{73} +0.282561 q^{77} +1.19615 q^{79} +2.38234i q^{83} +(-2.21089 - 1.27646i) q^{85} +(-9.04758 + 5.22362i) q^{89} +(-0.00472611 - 0.245667i) q^{91} +(3.98004 - 6.89363i) q^{95} +(6.15111 + 3.55135i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 12 q^{11} - 4 q^{17} + 12 q^{19} - 4 q^{23} - 8 q^{25} + 8 q^{29} - 8 q^{35} - 24 q^{37} - 16 q^{43} - 4 q^{49} - 16 q^{53} + 4 q^{55} - 24 q^{59} + 8 q^{61} + 24 q^{67} + 12 q^{71} + 8 q^{77} - 32 q^{79}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2340\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(1171\) \(2081\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 0.0590182 + 0.0340742i 0.0223068 + 0.0128788i 0.511112 0.859514i \(-0.329234\pi\)
−0.488805 + 0.872393i \(0.662567\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.59077 2.07313i 1.08266 0.625073i 0.151046 0.988527i \(-0.451736\pi\)
0.931612 + 0.363454i \(0.118403\pi\)
\(12\) 0 0
\(13\) −1.86250 3.08725i −0.516565 0.856248i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.27646 + 2.21089i −0.309586 + 0.536219i −0.978272 0.207326i \(-0.933524\pi\)
0.668686 + 0.743545i \(0.266857\pi\)
\(18\) 0 0
\(19\) −6.89363 3.98004i −1.58151 0.913084i −0.994640 0.103401i \(-0.967028\pi\)
−0.586868 0.809683i \(-0.699639\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.96971 5.14368i −0.619227 1.07253i −0.989627 0.143660i \(-0.954113\pi\)
0.370400 0.928872i \(-0.379221\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.80701 + 3.12983i 0.335553 + 0.581195i 0.983591 0.180413i \(-0.0577436\pi\)
−0.648038 + 0.761608i \(0.724410\pi\)
\(30\) 0 0
\(31\) 1.42883i 0.256625i −0.991734 0.128312i \(-0.959044\pi\)
0.991734 0.128312i \(-0.0409560\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.0340742 + 0.0590182i −0.00575959 + 0.00997590i
\(36\) 0 0
\(37\) −9.87127 + 5.69918i −1.62283 + 0.936939i −0.636667 + 0.771139i \(0.719687\pi\)
−0.986159 + 0.165800i \(0.946979\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.807007 0.465926i 0.126033 0.0727654i −0.435658 0.900112i \(-0.643484\pi\)
0.561691 + 0.827347i \(0.310151\pi\)
\(42\) 0 0
\(43\) −1.23388 + 2.13713i −0.188164 + 0.325910i −0.944638 0.328114i \(-0.893587\pi\)
0.756474 + 0.654024i \(0.226920\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.63859i 0.676608i −0.941037 0.338304i \(-0.890147\pi\)
0.941037 0.338304i \(-0.109853\pi\)
\(48\) 0 0
\(49\) −3.49768 6.05816i −0.499668 0.865451i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.36308 0.874036 0.437018 0.899453i \(-0.356035\pi\)
0.437018 + 0.899453i \(0.356035\pi\)
\(54\) 0 0
\(55\) 2.07313 + 3.59077i 0.279541 + 0.484179i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.0773604 + 0.0446641i 0.0100715 + 0.00581476i 0.505027 0.863103i \(-0.331482\pi\)
−0.494956 + 0.868918i \(0.664816\pi\)
\(60\) 0 0
\(61\) 3.41894 5.92178i 0.437750 0.758206i −0.559765 0.828651i \(-0.689109\pi\)
0.997516 + 0.0704453i \(0.0224420\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.08725 1.86250i 0.382926 0.231015i
\(66\) 0 0
\(67\) −5.03699 + 2.90811i −0.615367 + 0.355282i −0.775063 0.631884i \(-0.782282\pi\)
0.159696 + 0.987166i \(0.448949\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.41239 + 3.12484i 0.642332 + 0.370851i 0.785512 0.618846i \(-0.212399\pi\)
−0.143180 + 0.989697i \(0.545733\pi\)
\(72\) 0 0
\(73\) 13.8812i 1.62468i −0.583187 0.812338i \(-0.698195\pi\)
0.583187 0.812338i \(-0.301805\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.282561 0.0322008
\(78\) 0 0
\(79\) 1.19615 0.134578 0.0672888 0.997734i \(-0.478565\pi\)
0.0672888 + 0.997734i \(0.478565\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.38234i 0.261495i 0.991416 + 0.130748i \(0.0417378\pi\)
−0.991416 + 0.130748i \(0.958262\pi\)
\(84\) 0 0
\(85\) −2.21089 1.27646i −0.239805 0.138451i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −9.04758 + 5.22362i −0.959042 + 0.553703i −0.895878 0.444300i \(-0.853452\pi\)
−0.0631639 + 0.998003i \(0.520119\pi\)
\(90\) 0 0
\(91\) −0.00472611 0.245667i −0.000495431 0.0257529i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.98004 6.89363i 0.408343 0.707272i
\(96\) 0 0
\(97\) 6.15111 + 3.55135i 0.624551 + 0.360585i 0.778639 0.627472i \(-0.215910\pi\)
−0.154088 + 0.988057i \(0.549244\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −8.67593 15.0272i −0.863288 1.49526i −0.868737 0.495273i \(-0.835068\pi\)
0.00544959 0.999985i \(-0.498265\pi\)
\(102\) 0 0
\(103\) −3.56147 −0.350922 −0.175461 0.984486i \(-0.556142\pi\)
−0.175461 + 0.984486i \(0.556142\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −9.47055 16.4035i −0.915552 1.58578i −0.806091 0.591792i \(-0.798421\pi\)
−0.109461 0.993991i \(-0.534913\pi\)
\(108\) 0 0
\(109\) 16.6875i 1.59837i −0.601084 0.799186i \(-0.705264\pi\)
0.601084 0.799186i \(-0.294736\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.02458 + 10.4349i −0.566745 + 0.981631i 0.430140 + 0.902762i \(0.358464\pi\)
−0.996885 + 0.0788687i \(0.974869\pi\)
\(114\) 0 0
\(115\) 5.14368 2.96971i 0.479651 0.276927i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.150668 + 0.0869884i −0.0138118 + 0.00797422i
\(120\) 0 0
\(121\) 3.09575 5.36200i 0.281432 0.487455i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) −5.92032 10.2543i −0.525343 0.909921i −0.999564 0.0295154i \(-0.990604\pi\)
0.474221 0.880406i \(-0.342730\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 8.87127 0.775086 0.387543 0.921852i \(-0.373324\pi\)
0.387543 + 0.921852i \(0.373324\pi\)
\(132\) 0 0
\(133\) −0.271233 0.469790i −0.0235189 0.0407359i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −15.2938 8.82989i −1.30664 0.754388i −0.325105 0.945678i \(-0.605400\pi\)
−0.981534 + 0.191290i \(0.938733\pi\)
\(138\) 0 0
\(139\) 1.87894 3.25442i 0.159369 0.276036i −0.775272 0.631627i \(-0.782387\pi\)
0.934641 + 0.355592i \(0.115721\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −13.0881 7.22438i −1.09448 0.604133i
\(144\) 0 0
\(145\) −3.12983 + 1.80701i −0.259918 + 0.150064i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 11.9050 + 6.87333i 0.975292 + 0.563085i 0.900846 0.434140i \(-0.142948\pi\)
0.0744467 + 0.997225i \(0.476281\pi\)
\(150\) 0 0
\(151\) 10.1669i 0.827373i −0.910419 0.413686i \(-0.864241\pi\)
0.910419 0.413686i \(-0.135759\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.42883 0.114766
\(156\) 0 0
\(157\) 9.13746 0.729248 0.364624 0.931155i \(-0.381197\pi\)
0.364624 + 0.931155i \(0.381197\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.404761i 0.0318997i
\(162\) 0 0
\(163\) 15.0653 + 8.69798i 1.18001 + 0.681278i 0.956016 0.293313i \(-0.0947578\pi\)
0.223992 + 0.974591i \(0.428091\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.0063 6.93185i 0.929077 0.536403i 0.0425574 0.999094i \(-0.486449\pi\)
0.886519 + 0.462691i \(0.153116\pi\)
\(168\) 0 0
\(169\) −6.06218 + 11.5000i −0.466321 + 0.884615i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −8.21587 + 14.2303i −0.624641 + 1.08191i 0.363969 + 0.931411i \(0.381421\pi\)
−0.988610 + 0.150499i \(0.951912\pi\)
\(174\) 0 0
\(175\) −0.0590182 0.0340742i −0.00446136 0.00257577i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 5.89716 + 10.2142i 0.440774 + 0.763443i 0.997747 0.0670875i \(-0.0213707\pi\)
−0.556973 + 0.830531i \(0.688037\pi\)
\(180\) 0 0
\(181\) −5.88953 −0.437765 −0.218883 0.975751i \(-0.570241\pi\)
−0.218883 + 0.975751i \(0.570241\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −5.69918 9.87127i −0.419012 0.725750i
\(186\) 0 0
\(187\) 10.5851i 0.774056i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −9.10916 + 15.7775i −0.659116 + 1.14162i 0.321729 + 0.946832i \(0.395736\pi\)
−0.980845 + 0.194791i \(0.937597\pi\)
\(192\) 0 0
\(193\) −4.77886 + 2.75908i −0.343990 + 0.198603i −0.662035 0.749473i \(-0.730307\pi\)
0.318045 + 0.948076i \(0.396974\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −21.9309 + 12.6618i −1.56252 + 0.902119i −0.565514 + 0.824739i \(0.691322\pi\)
−0.997002 + 0.0773796i \(0.975345\pi\)
\(198\) 0 0
\(199\) 11.9595 20.7144i 0.847783 1.46840i −0.0353984 0.999373i \(-0.511270\pi\)
0.883182 0.469031i \(-0.155397\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.246289i 0.0172861i
\(204\) 0 0
\(205\) 0.465926 + 0.807007i 0.0325417 + 0.0563638i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −33.0046 −2.28298
\(210\) 0 0
\(211\) 8.59273 + 14.8830i 0.591548 + 1.02459i 0.994024 + 0.109160i \(0.0348162\pi\)
−0.402476 + 0.915430i \(0.631850\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −2.13713 1.23388i −0.145751 0.0841496i
\(216\) 0 0
\(217\) 0.0486860 0.0843267i 0.00330502 0.00572447i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 9.20296 0.177046i 0.619058 0.0119094i
\(222\) 0 0
\(223\) 6.28913 3.63103i 0.421151 0.243152i −0.274419 0.961610i \(-0.588485\pi\)
0.695570 + 0.718459i \(0.255152\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 6.91347 + 3.99149i 0.458863 + 0.264925i 0.711566 0.702619i \(-0.247986\pi\)
−0.252703 + 0.967544i \(0.581320\pi\)
\(228\) 0 0
\(229\) 0.146993i 0.00971359i −0.999988 0.00485680i \(-0.998454\pi\)
0.999988 0.00485680i \(-0.00154597\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 7.72424 0.506032 0.253016 0.967462i \(-0.418578\pi\)
0.253016 + 0.967462i \(0.418578\pi\)
\(234\) 0 0
\(235\) 4.63859 0.302589
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 14.4529i 0.934880i −0.884025 0.467440i \(-0.845176\pi\)
0.884025 0.467440i \(-0.154824\pi\)
\(240\) 0 0
\(241\) −20.7437 11.9764i −1.33622 0.771467i −0.349976 0.936759i \(-0.613810\pi\)
−0.986245 + 0.165292i \(0.947143\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 6.05816 3.49768i 0.387041 0.223458i
\(246\) 0 0
\(247\) 0.552034 + 28.6952i 0.0351251 + 1.82583i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 12.9040 22.3503i 0.814491 1.41074i −0.0952019 0.995458i \(-0.530350\pi\)
0.909693 0.415282i \(-0.136317\pi\)
\(252\) 0 0
\(253\) −21.3271 12.3132i −1.34082 0.774124i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3.08920 5.35066i −0.192699 0.333765i 0.753445 0.657511i \(-0.228391\pi\)
−0.946144 + 0.323746i \(0.895058\pi\)
\(258\) 0 0
\(259\) −0.776779 −0.0482667
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3.77244 + 6.53405i 0.232618 + 0.402907i 0.958578 0.284831i \(-0.0919374\pi\)
−0.725960 + 0.687737i \(0.758604\pi\)
\(264\) 0 0
\(265\) 6.36308i 0.390881i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −7.56106 + 13.0961i −0.461006 + 0.798486i −0.999011 0.0444558i \(-0.985845\pi\)
0.538006 + 0.842941i \(0.319178\pi\)
\(270\) 0 0
\(271\) 17.6604 10.1962i 1.07279 0.619377i 0.143850 0.989600i \(-0.454052\pi\)
0.928943 + 0.370222i \(0.120719\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3.59077 + 2.07313i −0.216532 + 0.125015i
\(276\) 0 0
\(277\) −2.38891 + 4.13770i −0.143535 + 0.248611i −0.928826 0.370517i \(-0.879180\pi\)
0.785290 + 0.619128i \(0.212514\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6.07274i 0.362269i −0.983458 0.181135i \(-0.942023\pi\)
0.983458 0.181135i \(-0.0579770\pi\)
\(282\) 0 0
\(283\) −10.0906 17.4775i −0.599827 1.03893i −0.992846 0.119400i \(-0.961903\pi\)
0.393020 0.919530i \(-0.371430\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.0635042 0.00374853
\(288\) 0 0
\(289\) 5.24131 + 9.07822i 0.308313 + 0.534013i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 9.87380 + 5.70064i 0.576833 + 0.333035i 0.759874 0.650071i \(-0.225261\pi\)
−0.183041 + 0.983105i \(0.558594\pi\)
\(294\) 0 0
\(295\) −0.0446641 + 0.0773604i −0.00260044 + 0.00450410i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −10.3487 + 18.7483i −0.598483 + 1.08424i
\(300\) 0 0
\(301\) −0.145642 + 0.0840865i −0.00839467 + 0.00484667i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 5.92178 + 3.41894i 0.339080 + 0.195768i
\(306\) 0 0
\(307\) 10.8374i 0.618523i 0.950977 + 0.309262i \(0.100082\pi\)
−0.950977 + 0.309262i \(0.899918\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 26.4772 1.50138 0.750691 0.660654i \(-0.229721\pi\)
0.750691 + 0.660654i \(0.229721\pi\)
\(312\) 0 0
\(313\) 16.3534 0.924348 0.462174 0.886789i \(-0.347070\pi\)
0.462174 + 0.886789i \(0.347070\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 22.0168i 1.23658i −0.785948 0.618292i \(-0.787825\pi\)
0.785948 0.618292i \(-0.212175\pi\)
\(318\) 0 0
\(319\) 12.9771 + 7.49233i 0.726578 + 0.419490i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 17.5988 10.1607i 0.979226 0.565356i
\(324\) 0 0
\(325\) 1.86250 + 3.08725i 0.103313 + 0.171250i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.158056 0.273761i 0.00871392 0.0150930i
\(330\) 0 0
\(331\) −21.1031 12.1839i −1.15993 0.669686i −0.208642 0.977992i \(-0.566904\pi\)
−0.951287 + 0.308306i \(0.900238\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −2.90811 5.03699i −0.158887 0.275200i
\(336\) 0 0
\(337\) −11.9178 −0.649201 −0.324601 0.945851i \(-0.605230\pi\)
−0.324601 + 0.945851i \(0.605230\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −2.96214 5.13058i −0.160409 0.277837i
\(342\) 0 0
\(343\) 0.953760i 0.0514982i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3.57457 + 6.19134i −0.191893 + 0.332369i −0.945878 0.324524i \(-0.894796\pi\)
0.753984 + 0.656892i \(0.228129\pi\)
\(348\) 0 0
\(349\) −0.245478 + 0.141727i −0.0131401 + 0.00758647i −0.506556 0.862207i \(-0.669082\pi\)
0.493416 + 0.869794i \(0.335748\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 11.9619 6.90620i 0.636667 0.367580i −0.146662 0.989187i \(-0.546853\pi\)
0.783330 + 0.621607i \(0.213520\pi\)
\(354\) 0 0
\(355\) −3.12484 + 5.41239i −0.165850 + 0.287260i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 24.0727i 1.27051i 0.772302 + 0.635255i \(0.219105\pi\)
−0.772302 + 0.635255i \(0.780895\pi\)
\(360\) 0 0
\(361\) 22.1814 + 38.4194i 1.16744 + 2.02207i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 13.8812 0.726577
\(366\) 0 0
\(367\) −0.0199778 0.0346025i −0.00104283 0.00180623i 0.865504 0.500903i \(-0.166999\pi\)
−0.866546 + 0.499097i \(0.833665\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.375538 + 0.216817i 0.0194969 + 0.0112566i
\(372\) 0 0
\(373\) 1.59127 2.75616i 0.0823927 0.142708i −0.821884 0.569654i \(-0.807077\pi\)
0.904277 + 0.426946i \(0.140410\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6.29700 11.4080i 0.324312 0.587541i
\(378\) 0 0
\(379\) −21.2413 + 12.2637i −1.09109 + 0.629943i −0.933867 0.357620i \(-0.883588\pi\)
−0.157226 + 0.987563i \(0.550255\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0.238601 + 0.137756i 0.0121919 + 0.00703902i 0.506084 0.862484i \(-0.331093\pi\)
−0.493892 + 0.869523i \(0.664426\pi\)
\(384\) 0 0
\(385\) 0.282561i 0.0144006i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0.575090 0.0291582 0.0145791 0.999894i \(-0.495359\pi\)
0.0145791 + 0.999894i \(0.495359\pi\)
\(390\) 0 0
\(391\) 15.1628 0.766817
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.19615i 0.0601850i
\(396\) 0 0
\(397\) 2.87663 + 1.66082i 0.144374 + 0.0833544i 0.570447 0.821334i \(-0.306770\pi\)
−0.426073 + 0.904689i \(0.640103\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 9.70261 5.60181i 0.484525 0.279741i −0.237775 0.971320i \(-0.576418\pi\)
0.722300 + 0.691579i \(0.243085\pi\)
\(402\) 0 0
\(403\) −4.41114 + 2.66119i −0.219734 + 0.132563i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −23.6303 + 40.9289i −1.17131 + 2.02877i
\(408\) 0 0
\(409\) −21.3919 12.3506i −1.05776 0.610698i −0.132948 0.991123i \(-0.542444\pi\)
−0.924812 + 0.380425i \(0.875778\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0.00304378 + 0.00527198i 0.000149775 + 0.000259417i
\(414\) 0 0
\(415\) −2.38234 −0.116944
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 8.59633 + 14.8893i 0.419958 + 0.727389i 0.995935 0.0900770i \(-0.0287113\pi\)
−0.575976 + 0.817466i \(0.695378\pi\)
\(420\) 0 0
\(421\) 35.9492i 1.75206i −0.482261 0.876028i \(-0.660184\pi\)
0.482261 0.876028i \(-0.339816\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.27646 2.21089i 0.0619173 0.107244i
\(426\) 0 0
\(427\) 0.403559 0.232995i 0.0195296 0.0112754i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 28.7200 16.5815i 1.38339 0.798702i 0.390833 0.920462i \(-0.372187\pi\)
0.992560 + 0.121760i \(0.0388538\pi\)
\(432\) 0 0
\(433\) −14.4710 + 25.0645i −0.695431 + 1.20452i 0.274604 + 0.961558i \(0.411453\pi\)
−0.970035 + 0.242965i \(0.921880\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 47.2782i 2.26162i
\(438\) 0 0
\(439\) 10.1317 + 17.5487i 0.483561 + 0.837553i 0.999822 0.0188789i \(-0.00600969\pi\)
−0.516260 + 0.856432i \(0.672676\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −34.9067 −1.65847 −0.829234 0.558902i \(-0.811223\pi\)
−0.829234 + 0.558902i \(0.811223\pi\)
\(444\) 0 0
\(445\) −5.22362 9.04758i −0.247624 0.428897i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −12.9893 7.49938i −0.613003 0.353918i 0.161137 0.986932i \(-0.448484\pi\)
−0.774140 + 0.633015i \(0.781817\pi\)
\(450\) 0 0
\(451\) 1.93185 3.34607i 0.0909673 0.157560i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.245667 0.00472611i 0.0115170 0.000221564i
\(456\) 0 0
\(457\) −28.4511 + 16.4263i −1.33089 + 0.768388i −0.985436 0.170048i \(-0.945608\pi\)
−0.345452 + 0.938437i \(0.612274\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 25.8488 + 14.9238i 1.20390 + 0.695071i 0.961420 0.275086i \(-0.0887064\pi\)
0.242478 + 0.970157i \(0.422040\pi\)
\(462\) 0 0
\(463\) 12.8467i 0.597036i 0.954404 + 0.298518i \(0.0964923\pi\)
−0.954404 + 0.298518i \(0.903508\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 11.9000 0.550665 0.275333 0.961349i \(-0.411212\pi\)
0.275333 + 0.961349i \(0.411212\pi\)
\(468\) 0 0
\(469\) −0.396366 −0.0183025
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 10.2319i 0.470465i
\(474\) 0 0
\(475\) 6.89363 + 3.98004i 0.316301 + 0.182617i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 26.7475 15.4427i 1.22212 0.705594i 0.256754 0.966477i \(-0.417347\pi\)
0.965371 + 0.260883i \(0.0840135\pi\)
\(480\) 0 0
\(481\) 35.9800 + 19.8603i 1.64055 + 0.905552i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3.55135 + 6.15111i −0.161258 + 0.279308i
\(486\) 0 0
\(487\) −6.17388 3.56449i −0.279765 0.161522i 0.353552 0.935415i \(-0.384974\pi\)
−0.633317 + 0.773892i \(0.718307\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 13.0878 + 22.6688i 0.590646 + 1.02303i 0.994146 + 0.108049i \(0.0344604\pi\)
−0.403499 + 0.914980i \(0.632206\pi\)
\(492\) 0 0
\(493\) −9.22627 −0.415530
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.212953 + 0.368845i 0.00955225 + 0.0165450i
\(498\) 0 0
\(499\) 16.8601i 0.754761i 0.926058 + 0.377381i \(0.123175\pi\)
−0.926058 + 0.377381i \(0.876825\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 3.82503 6.62514i 0.170550 0.295400i −0.768063 0.640375i \(-0.778779\pi\)
0.938612 + 0.344974i \(0.112112\pi\)
\(504\) 0 0
\(505\) 15.0272 8.67593i 0.668700 0.386074i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 34.8439 20.1171i 1.54443 0.891676i 0.545877 0.837865i \(-0.316196\pi\)
0.998551 0.0538111i \(-0.0171369\pi\)
\(510\) 0 0
\(511\) 0.472992 0.819245i 0.0209239 0.0362413i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3.56147i 0.156937i
\(516\) 0 0
\(517\) −9.61642 16.6561i −0.422930 0.732536i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 21.8581 0.957619 0.478810 0.877919i \(-0.341068\pi\)
0.478810 + 0.877919i \(0.341068\pi\)
\(522\) 0 0
\(523\) 20.5828 + 35.6505i 0.900024 + 1.55889i 0.827461 + 0.561523i \(0.189784\pi\)
0.0725626 + 0.997364i \(0.476882\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.15897 + 1.82383i 0.137607 + 0.0794475i
\(528\) 0 0
\(529\) −6.13833 + 10.6319i −0.266884 + 0.462256i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −2.94148 1.62364i −0.127410 0.0703278i
\(534\) 0 0
\(535\) 16.4035 9.47055i 0.709184 0.409447i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −25.1187 14.5023i −1.08194 0.624658i
\(540\) 0 0
\(541\) 7.83663i 0.336923i 0.985708 + 0.168462i \(0.0538799\pi\)
−0.985708 + 0.168462i \(0.946120\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 16.6875 0.714813
\(546\) 0 0
\(547\) 12.9185 0.552355 0.276178 0.961107i \(-0.410932\pi\)
0.276178 + 0.961107i \(0.410932\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 28.7678i 1.22555i
\(552\) 0 0
\(553\) 0.0705948 + 0.0407579i 0.00300199 + 0.00173320i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −25.4603 + 14.6995i −1.07879 + 0.622839i −0.930569 0.366116i \(-0.880687\pi\)
−0.148219 + 0.988955i \(0.547354\pi\)
\(558\) 0 0
\(559\) 8.89595 0.171139i 0.376259 0.00723842i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −2.49886 + 4.32816i −0.105314 + 0.182410i −0.913867 0.406014i \(-0.866918\pi\)
0.808552 + 0.588425i \(0.200252\pi\)
\(564\) 0 0
\(565\) −10.4349 6.02458i −0.438999 0.253456i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −16.1680 28.0038i −0.677799 1.17398i −0.975642 0.219367i \(-0.929601\pi\)
0.297844 0.954615i \(-0.403733\pi\)
\(570\) 0 0
\(571\) 27.8943 1.16734 0.583671 0.811990i \(-0.301616\pi\)
0.583671 + 0.811990i \(0.301616\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.96971 + 5.14368i 0.123845 + 0.214506i
\(576\) 0 0
\(577\) 0.0715833i 0.00298005i 0.999999 + 0.00149003i \(0.000474290\pi\)
−0.999999 + 0.00149003i \(0.999526\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −0.0811762 + 0.140601i −0.00336776 + 0.00583312i
\(582\) 0 0
\(583\) 22.8484 13.1915i 0.946282 0.546336i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −28.7686 + 16.6096i −1.18741 + 0.685551i −0.957717 0.287712i \(-0.907105\pi\)
−0.229692 + 0.973263i \(0.573772\pi\)
\(588\) 0 0
\(589\) −5.68678 + 9.84980i −0.234320 + 0.405854i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 12.0914i 0.496536i 0.968691 + 0.248268i \(0.0798614\pi\)
−0.968691 + 0.248268i \(0.920139\pi\)
\(594\) 0 0
\(595\) −0.0869884 0.150668i −0.00356618 0.00617680i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 17.7145 0.723794 0.361897 0.932218i \(-0.382129\pi\)
0.361897 + 0.932218i \(0.382129\pi\)
\(600\) 0 0
\(601\) 21.0964 + 36.5400i 0.860538 + 1.49050i 0.871410 + 0.490555i \(0.163206\pi\)
−0.0108722 + 0.999941i \(0.503461\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 5.36200 + 3.09575i 0.217996 + 0.125860i
\(606\) 0 0
\(607\) 7.00720 12.1368i 0.284413 0.492619i −0.688053 0.725660i \(-0.741534\pi\)
0.972467 + 0.233042i \(0.0748678\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −14.3205 + 8.63939i −0.579345 + 0.349512i
\(612\) 0 0
\(613\) −37.1083 + 21.4245i −1.49879 + 0.865328i −0.999999 0.00139405i \(-0.999556\pi\)
−0.498792 + 0.866722i \(0.666223\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −20.3603 11.7550i −0.819676 0.473240i 0.0306285 0.999531i \(-0.490249\pi\)
−0.850305 + 0.526290i \(0.823582\pi\)
\(618\) 0 0
\(619\) 1.39570i 0.0560981i −0.999607 0.0280491i \(-0.991071\pi\)
0.999607 0.0280491i \(-0.00892946\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −0.711963 −0.0285242
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 29.0990i 1.16025i
\(630\) 0 0
\(631\) 1.70150 + 0.982362i 0.0677357 + 0.0391072i 0.533485 0.845809i \(-0.320882\pi\)
−0.465750 + 0.884917i \(0.654215\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 10.2543 5.92032i 0.406929 0.234941i
\(636\) 0 0
\(637\) −12.1886 + 22.0815i −0.482929 + 0.874902i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 5.82684 10.0924i 0.230146 0.398625i −0.727705 0.685891i \(-0.759413\pi\)
0.957851 + 0.287265i \(0.0927461\pi\)
\(642\) 0 0
\(643\) −1.19971 0.692653i −0.0473120 0.0273156i 0.476157 0.879360i \(-0.342029\pi\)
−0.523469 + 0.852044i \(0.675363\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 16.4545 + 28.5000i 0.646892 + 1.12045i 0.983861 + 0.178934i \(0.0572649\pi\)
−0.336969 + 0.941516i \(0.609402\pi\)
\(648\) 0 0
\(649\) 0.370378 0.0145386
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 12.4251 + 21.5209i 0.486233 + 0.842180i 0.999875 0.0158248i \(-0.00503739\pi\)
−0.513642 + 0.858005i \(0.671704\pi\)
\(654\) 0 0
\(655\) 8.87127i 0.346629i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −22.4723 + 38.9232i −0.875398 + 1.51623i −0.0190604 + 0.999818i \(0.506067\pi\)
−0.856338 + 0.516416i \(0.827266\pi\)
\(660\) 0 0
\(661\) −22.3820 + 12.9222i −0.870557 + 0.502617i −0.867533 0.497379i \(-0.834296\pi\)
−0.00302403 + 0.999995i \(0.500963\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.469790 0.271233i 0.0182177 0.0105180i
\(666\) 0 0
\(667\) 10.7326 18.5894i 0.415567 0.719783i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 28.3517i 1.09450i
\(672\) 0 0
\(673\) 4.03736 + 6.99291i 0.155629 + 0.269557i 0.933288 0.359129i \(-0.116926\pi\)
−0.777659 + 0.628686i \(0.783593\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −34.5084 −1.32626 −0.663132 0.748502i \(-0.730773\pi\)
−0.663132 + 0.748502i \(0.730773\pi\)
\(678\) 0 0
\(679\) 0.242018 + 0.419188i 0.00928782 + 0.0160870i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −14.7325 8.50582i −0.563724 0.325466i 0.190915 0.981607i \(-0.438855\pi\)
−0.754639 + 0.656140i \(0.772188\pi\)
\(684\) 0 0
\(685\) 8.82989 15.2938i 0.337373 0.584347i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −11.8512 19.6444i −0.451497 0.748392i
\(690\) 0 0
\(691\) 9.99871 5.77276i 0.380369 0.219606i −0.297610 0.954688i \(-0.596189\pi\)
0.677979 + 0.735082i \(0.262856\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3.25442 + 1.87894i 0.123447 + 0.0712722i
\(696\) 0 0
\(697\) 2.37894i 0.0901087i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −17.9804 −0.679110 −0.339555 0.940586i \(-0.610276\pi\)
−0.339555 + 0.940586i \(0.610276\pi\)
\(702\) 0 0
\(703\) 90.7318 3.42202
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.18250i 0.0444725i
\(708\) 0 0
\(709\) 2.78105 + 1.60564i 0.104445 + 0.0603011i 0.551312 0.834299i \(-0.314127\pi\)
−0.446868 + 0.894600i \(0.647461\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −7.34943 + 4.24319i −0.275238 + 0.158909i
\(714\) 0 0
\(715\) 7.22438 13.0881i 0.270177 0.489467i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −21.5201 + 37.2739i −0.802563 + 1.39008i 0.115361 + 0.993324i \(0.463198\pi\)
−0.917924 + 0.396756i \(0.870136\pi\)
\(720\) 0 0
\(721\) −0.210192 0.121354i −0.00782795 0.00451947i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1.80701 3.12983i −0.0671106 0.116239i
\(726\) 0 0
\(727\) −8.96129 −0.332356 −0.166178 0.986096i \(-0.553143\pi\)
−0.166178 + 0.986096i \(0.553143\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −3.14998 5.45592i −0.116506 0.201795i
\(732\) 0 0
\(733\) 13.4176i 0.495592i 0.968812 + 0.247796i \(0.0797063\pi\)
−0.968812 + 0.247796i \(0.920294\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −12.0578 + 20.8847i −0.444154 + 0.769298i
\(738\) 0 0
\(739\) −18.0531 + 10.4229i −0.664092 + 0.383414i −0.793835 0.608134i \(-0.791918\pi\)
0.129742 + 0.991548i \(0.458585\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 4.78027 2.75989i 0.175371 0.101250i −0.409745 0.912200i \(-0.634382\pi\)
0.585116 + 0.810950i \(0.301049\pi\)
\(744\) 0 0
\(745\) −6.87333 + 11.9050i −0.251819 + 0.436164i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.29080i 0.0471650i
\(750\) 0 0
\(751\) −27.0426 46.8391i −0.986797 1.70918i −0.633660 0.773611i \(-0.718448\pi\)
−0.353137 0.935572i \(-0.614885\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 10.1669 0.370012
\(756\) 0 0
\(757\) −2.03564 3.52583i −0.0739866 0.128149i 0.826659 0.562704i \(-0.190239\pi\)
−0.900645 + 0.434555i \(0.856906\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −5.34009 3.08310i −0.193578 0.111762i 0.400079 0.916481i \(-0.368983\pi\)
−0.593656 + 0.804719i \(0.702316\pi\)
\(762\) 0 0
\(763\) 0.568612 0.984865i 0.0205851 0.0356545i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −0.00619494 0.322017i −0.000223686 0.0116274i
\(768\) 0 0
\(769\) −0.266481 + 0.153853i −0.00960955 + 0.00554808i −0.504797 0.863238i \(-0.668433\pi\)
0.495188 + 0.868786i \(0.335099\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −18.8391 10.8767i −0.677594 0.391209i 0.121354 0.992609i \(-0.461276\pi\)
−0.798948 + 0.601400i \(0.794610\pi\)
\(774\) 0 0
\(775\) 1.42883i 0.0513249i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −7.41761 −0.265764
\(780\) 0 0
\(781\) 25.9129 0.927235
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 9.13746i 0.326130i
\(786\) 0 0
\(787\) −26.0848 15.0601i −0.929822 0.536833i −0.0430670 0.999072i \(-0.513713\pi\)
−0.886755 + 0.462239i \(0.847046\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −0.711120 + 0.410565i −0.0252845 + 0.0145980i
\(792\) 0 0
\(793\) −24.6498 + 0.474209i −0.875339 + 0.0168397i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −6.58127 + 11.3991i −0.233120 + 0.403776i −0.958725 0.284336i \(-0.908227\pi\)
0.725604 + 0.688112i \(0.241560\pi\)
\(798\) 0 0
\(799\) 10.2554 + 5.92097i 0.362810 + 0.209469i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −28.7776 49.8443i −1.01554 1.75897i
\(804\) 0 0
\(805\) 0.404761 0.0142660
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 13.1402 + 22.7595i 0.461985 + 0.800182i 0.999060 0.0433528i \(-0.0138040\pi\)
−0.537075 + 0.843535i \(0.680471\pi\)
\(810\) 0 0
\(811\) 35.6658i 1.25240i −0.779664 0.626198i \(-0.784610\pi\)
0.779664 0.626198i \(-0.215390\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −8.69798 + 15.0653i −0.304677 + 0.527716i
\(816\) 0 0
\(817\) 17.0118 9.82174i 0.595166 0.343619i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −21.3249 + 12.3119i −0.744245 + 0.429690i −0.823611 0.567156i \(-0.808044\pi\)
0.0793658 + 0.996846i \(0.474710\pi\)
\(822\) 0 0
\(823\) −1.57509 + 2.72814i −0.0549042 + 0.0950968i −0.892171 0.451697i \(-0.850819\pi\)
0.837267 + 0.546794i \(0.184152\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 26.3343i 0.915733i 0.889021 + 0.457866i \(0.151386\pi\)
−0.889021 + 0.457866i \(0.848614\pi\)
\(828\) 0 0
\(829\) 1.85189 + 3.20757i 0.0643189 + 0.111404i 0.896392 0.443263i \(-0.146179\pi\)
−0.832073 + 0.554667i \(0.812846\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 17.8585 0.618762
\(834\) 0 0
\(835\) 6.93185 + 12.0063i 0.239887 + 0.415496i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 3.32218 + 1.91806i 0.114694 + 0.0662188i 0.556250 0.831015i \(-0.312240\pi\)
−0.441555 + 0.897234i \(0.645573\pi\)
\(840\) 0 0
\(841\) 7.96945 13.8035i 0.274809 0.475982i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −11.5000 6.06218i −0.395612 0.208545i
\(846\) 0 0
\(847\) 0.365412 0.210971i 0.0125557 0.00724903i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 58.6296 + 33.8498i 2.00980 + 1.16036i
\(852\) 0 0
\(853\) 18.6089i 0.637155i −0.947897 0.318578i \(-0.896795\pi\)
0.947897 0.318578i \(-0.103205\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 25.1469 0.859002 0.429501 0.903066i \(-0.358689\pi\)
0.429501 + 0.903066i \(0.358689\pi\)
\(858\) 0 0
\(859\) 51.8717 1.76984 0.884920 0.465744i \(-0.154213\pi\)
0.884920 + 0.465744i \(0.154213\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 2.53391i 0.0862552i −0.999070 0.0431276i \(-0.986268\pi\)
0.999070 0.0431276i \(-0.0137322\pi\)
\(864\) 0 0
\(865\) −14.2303 8.21587i −0.483845 0.279348i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 4.29511 2.47978i 0.145702 0.0841208i
\(870\) 0 0
\(871\) 18.3595 + 10.1341i 0.622086 + 0.343380i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0.0340742 0.0590182i 0.00115192 0.00199518i
\(876\) 0 0
\(877\) 32.7720 + 18.9209i 1.10663 + 0.638914i 0.937955 0.346758i \(-0.112717\pi\)
0.168676 + 0.985672i \(0.446051\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −12.4488 21.5619i −0.419409 0.726438i 0.576471 0.817118i \(-0.304429\pi\)
−0.995880 + 0.0906794i \(0.971096\pi\)
\(882\) 0 0
\(883\) −3.54539 −0.119312 −0.0596559 0.998219i \(-0.519000\pi\)
−0.0596559 + 0.998219i \(0.519000\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0.00386375 + 0.00669220i 0.000129732 + 0.000224702i 0.866090 0.499888i \(-0.166625\pi\)
−0.865961 + 0.500112i \(0.833292\pi\)
\(888\) 0 0
\(889\) 0.806920i 0.0270632i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −18.4618 + 31.9768i −0.617800 + 1.07006i
\(894\) 0 0
\(895\) −10.2142 + 5.89716i −0.341422 + 0.197120i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 4.47198 2.58190i 0.149149 0.0861111i
\(900\) 0 0
\(901\) −8.12220 + 14.0681i −0.270590 + 0.468675i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 5.88953i 0.195775i
\(906\) 0 0
\(907\) −15.1775 26.2882i −0.503962 0.872887i −0.999990 0.00458044i \(-0.998542\pi\)
0.496028 0.868307i \(-0.334791\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 17.1302 0.567550 0.283775 0.958891i \(-0.408413\pi\)
0.283775 + 0.958891i \(0.408413\pi\)
\(912\) 0 0
\(913\) 4.93890 + 8.55443i 0.163454 + 0.283110i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0.523566 + 0.302281i 0.0172897 + 0.00998220i
\(918\) 0 0
\(919\) −14.8453 + 25.7127i −0.489700 + 0.848185i −0.999930 0.0118531i \(-0.996227\pi\)
0.510230 + 0.860038i \(0.329560\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −0.433418 22.5294i −0.0142661 0.741564i
\(924\) 0 0
\(925\) 9.87127 5.69918i 0.324565 0.187388i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −39.2752 22.6755i −1.28858 0.743961i −0.310177 0.950679i \(-0.600388\pi\)
−0.978400 + 0.206718i \(0.933722\pi\)
\(930\) 0 0
\(931\) 55.6836i 1.82496i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −10.5851 −0.346168
\(936\) 0 0
\(937\) 11.4107 0.372770 0.186385 0.982477i \(-0.440323\pi\)
0.186385 + 0.982477i \(0.440323\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 44.7284i 1.45810i −0.684459 0.729051i \(-0.739962\pi\)
0.684459 0.729051i \(-0.260038\pi\)
\(942\) 0 0
\(943\) −4.79315 2.76733i −0.156086 0.0901166i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −13.6568 + 7.88476i −0.443786 + 0.256220i −0.705202 0.709006i \(-0.749144\pi\)
0.261416 + 0.965226i \(0.415811\pi\)
\(948\) 0 0
\(949\) −42.8548 + 25.8538i −1.39113 + 0.839250i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 15.8843 27.5124i 0.514543 0.891214i −0.485315 0.874339i \(-0.661295\pi\)
0.999858 0.0168748i \(-0.00537166\pi\)
\(954\) 0 0
\(955\) −15.7775 9.10916i −0.510549 0.294766i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −0.601742 1.04225i −0.0194313 0.0336559i
\(960\) 0 0
\(961\) 28.9585 0.934144
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −2.75908 4.77886i −0.0888178 0.153837i
\(966\) 0 0
\(967\) 45.9318i 1.47707i −0.674216 0.738534i \(-0.735518\pi\)
0.674216 0.738534i \(-0.264482\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 7.07794 12.2594i 0.227142 0.393421i −0.729818 0.683642i \(-0.760395\pi\)
0.956960 + 0.290220i \(0.0937285\pi\)
\(972\) 0 0
\(973\) 0.221783 0.128046i 0.00711004 0.00410498i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 33.4755 19.3271i 1.07098 0.618328i 0.142528 0.989791i \(-0.454477\pi\)
0.928448 + 0.371463i \(0.121144\pi\)
\(978\) 0 0
\(979\) −21.6585 + 37.5137i −0.692210 + 1.19894i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 8.18510i 0.261064i −0.991444 0.130532i \(-0.958331\pi\)
0.991444 0.130532i \(-0.0416686\pi\)
\(984\) 0 0
\(985\) −12.6618 21.9309i −0.403440 0.698778i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 14.6570 0.466065
\(990\) 0 0
\(991\) −14.7104 25.4791i −0.467290 0.809370i 0.532011 0.846737i \(-0.321436\pi\)
−0.999302 + 0.0373668i \(0.988103\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 20.7144 + 11.9595i 0.656690 + 0.379140i
\(996\) 0 0
\(997\) 17.7596 30.7605i 0.562452 0.974196i −0.434829 0.900513i \(-0.643191\pi\)
0.997282 0.0736832i \(-0.0234754\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2340.2.dj.c.361.3 8
3.2 odd 2 780.2.cc.b.361.1 yes 8
13.4 even 6 inner 2340.2.dj.c.901.1 8
15.2 even 4 3900.2.bw.g.49.2 8
15.8 even 4 3900.2.bw.l.49.3 8
15.14 odd 2 3900.2.cd.l.2701.2 8
39.17 odd 6 780.2.cc.b.121.3 8
195.17 even 12 3900.2.bw.l.2149.3 8
195.134 odd 6 3900.2.cd.l.901.2 8
195.173 even 12 3900.2.bw.g.2149.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
780.2.cc.b.121.3 8 39.17 odd 6
780.2.cc.b.361.1 yes 8 3.2 odd 2
2340.2.dj.c.361.3 8 1.1 even 1 trivial
2340.2.dj.c.901.1 8 13.4 even 6 inner
3900.2.bw.g.49.2 8 15.2 even 4
3900.2.bw.g.2149.2 8 195.173 even 12
3900.2.bw.l.49.3 8 15.8 even 4
3900.2.bw.l.2149.3 8 195.17 even 12
3900.2.cd.l.901.2 8 195.134 odd 6
3900.2.cd.l.2701.2 8 15.14 odd 2