L(s) = 1 | + (−0.5 + 0.866i)3-s − i·5-s + (−2.18 + 1.25i)7-s + (−0.499 − 0.866i)9-s + (0.590 + 0.341i)11-s + (−3.08 − 1.86i)13-s + (0.866 + 0.5i)15-s + (−2.39 − 4.15i)17-s + (5.65 − 3.26i)19-s − 2.51i·21-s + (3.68 − 6.38i)23-s − 25-s + 0.999·27-s + (−2.31 + 4.00i)29-s + 0.600i·31-s + ⋯ |
L(s) = 1 | + (−0.288 + 0.499i)3-s − 0.447i·5-s + (−0.824 + 0.475i)7-s + (−0.166 − 0.288i)9-s + (0.178 + 0.102i)11-s + (−0.856 − 0.516i)13-s + (0.223 + 0.129i)15-s + (−0.581 − 1.00i)17-s + (1.29 − 0.748i)19-s − 0.549i·21-s + (0.768 − 1.33i)23-s − 0.200·25-s + 0.192·27-s + (−0.429 + 0.744i)29-s + 0.107i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 780 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.00641 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 780 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.00641 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.540771 - 0.544249i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.540771 - 0.544249i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.5 - 0.866i)T \) |
| 5 | \( 1 + iT \) |
| 13 | \( 1 + (3.08 + 1.86i)T \) |
good | 7 | \( 1 + (2.18 - 1.25i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.590 - 0.341i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (2.39 + 4.15i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-5.65 + 3.26i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.68 + 6.38i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (2.31 - 4.00i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 0.600iT - 31T^{2} \) |
| 37 | \( 1 + (8.85 + 5.11i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (1.31 + 0.758i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (3.47 + 6.01i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 4.73iT - 47T^{2} \) |
| 53 | \( 1 - 10.3T + 53T^{2} \) |
| 59 | \( 1 + (-8.19 + 4.73i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (5.66 + 9.80i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3.81 + 2.20i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-0.291 + 0.168i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 4.50iT - 73T^{2} \) |
| 79 | \( 1 + 9.19T + 79T^{2} \) |
| 83 | \( 1 - 10.0iT - 83T^{2} \) |
| 89 | \( 1 + (-11.2 - 6.51i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-7.97 + 4.60i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.998154081421848729799330801741, −9.212964164087928492524484637059, −8.759156294398344214248223454453, −7.30540314648672309895938893822, −6.66603549461512455429100664975, −5.29717562944458899343452415546, −4.96882951450913543394369452463, −3.52517707516495961564036255334, −2.52340532411149461527086331210, −0.40010761981483010194213582068,
1.53823765138649913682329658082, 3.00677533638737660281070678991, 3.98329991401844379823774898082, 5.33972553745805284477006268946, 6.26592194252501752253272763770, 7.07795896495830808509084566953, 7.64029807273659204141828596234, 8.873352940987226584957176906869, 9.843787880192748917485811678908, 10.36846533396042528396653361049