Properties

Label 775.2.k.c.126.1
Level $775$
Weight $2$
Character 775.126
Analytic conductor $6.188$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [775,2,Mod(101,775)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("775.101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(775, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 775 = 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 775.k (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.18840615665\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 126.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 775.126
Dual form 775.2.k.c.326.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.30902 + 0.951057i) q^{2} +(-0.809017 + 0.587785i) q^{3} +(0.190983 + 0.587785i) q^{4} -1.61803 q^{6} +(-0.927051 - 2.85317i) q^{7} +(0.690983 - 2.12663i) q^{8} +(-0.618034 + 1.90211i) q^{9} +(-1.61803 - 4.97980i) q^{11} +(-0.500000 - 0.363271i) q^{12} +(-1.50000 + 1.08981i) q^{13} +(1.50000 - 4.61653i) q^{14} +(3.92705 - 2.85317i) q^{16} +(1.30902 - 4.02874i) q^{17} +(-2.61803 + 1.90211i) q^{18} +(-4.04508 - 2.93893i) q^{19} +(2.42705 + 1.76336i) q^{21} +(2.61803 - 8.05748i) q^{22} +(-1.07295 + 3.30220i) q^{23} +(0.690983 + 2.12663i) q^{24} -3.00000 q^{26} +(-1.54508 - 4.75528i) q^{27} +(1.50000 - 1.08981i) q^{28} +(5.16312 + 3.75123i) q^{29} +(0.0450850 - 5.56758i) q^{31} +3.38197 q^{32} +(4.23607 + 3.07768i) q^{33} +(5.54508 - 4.02874i) q^{34} -1.23607 q^{36} +4.23607 q^{37} +(-2.50000 - 7.69421i) q^{38} +(0.572949 - 1.76336i) q^{39} +(2.00000 + 1.45309i) q^{41} +(1.50000 + 4.61653i) q^{42} +(-1.92705 - 1.40008i) q^{43} +(2.61803 - 1.90211i) q^{44} +(-4.54508 + 3.30220i) q^{46} +(-4.54508 + 3.30220i) q^{47} +(-1.50000 + 4.61653i) q^{48} +(-1.61803 + 1.17557i) q^{49} +(1.30902 + 4.02874i) q^{51} +(-0.927051 - 0.673542i) q^{52} +(-0.218847 + 0.673542i) q^{53} +(2.50000 - 7.69421i) q^{54} -6.70820 q^{56} +5.00000 q^{57} +(3.19098 + 9.82084i) q^{58} +(-0.427051 + 0.310271i) q^{59} +10.9443 q^{61} +(5.35410 - 7.24518i) q^{62} +6.00000 q^{63} +(-3.42705 - 2.48990i) q^{64} +(2.61803 + 8.05748i) q^{66} -0.236068 q^{67} +2.61803 q^{68} +(-1.07295 - 3.30220i) q^{69} +(-3.42705 + 10.5474i) q^{71} +(3.61803 + 2.62866i) q^{72} +(-3.57295 - 10.9964i) q^{73} +(5.54508 + 4.02874i) q^{74} +(0.954915 - 2.93893i) q^{76} +(-12.7082 + 9.23305i) q^{77} +(2.42705 - 1.76336i) q^{78} +(-0.809017 - 0.587785i) q^{81} +(1.23607 + 3.80423i) q^{82} +(5.73607 + 4.16750i) q^{83} +(-0.572949 + 1.76336i) q^{84} +(-1.19098 - 3.66547i) q^{86} -6.38197 q^{87} -11.7082 q^{88} +(-2.66312 - 8.19624i) q^{89} +(4.50000 + 3.26944i) q^{91} -2.14590 q^{92} +(3.23607 + 4.53077i) q^{93} -9.09017 q^{94} +(-2.73607 + 1.98787i) q^{96} +(5.78115 + 17.7926i) q^{97} -3.23607 q^{98} +10.4721 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{2} - q^{3} + 3 q^{4} - 2 q^{6} + 3 q^{7} + 5 q^{8} + 2 q^{9} - 2 q^{11} - 2 q^{12} - 6 q^{13} + 6 q^{14} + 9 q^{16} + 3 q^{17} - 6 q^{18} - 5 q^{19} + 3 q^{21} + 6 q^{22} - 11 q^{23} + 5 q^{24}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/775\mathbb{Z}\right)^\times\).

\(n\) \(251\) \(652\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.30902 + 0.951057i 0.925615 + 0.672499i 0.944915 0.327315i \(-0.106144\pi\)
−0.0193004 + 0.999814i \(0.506144\pi\)
\(3\) −0.809017 + 0.587785i −0.467086 + 0.339358i −0.796305 0.604896i \(-0.793215\pi\)
0.329218 + 0.944254i \(0.393215\pi\)
\(4\) 0.190983 + 0.587785i 0.0954915 + 0.293893i
\(5\) 0 0
\(6\) −1.61803 −0.660560
\(7\) −0.927051 2.85317i −0.350392 1.07840i −0.958633 0.284644i \(-0.908125\pi\)
0.608241 0.793752i \(-0.291875\pi\)
\(8\) 0.690983 2.12663i 0.244299 0.751876i
\(9\) −0.618034 + 1.90211i −0.206011 + 0.634038i
\(10\) 0 0
\(11\) −1.61803 4.97980i −0.487856 1.50147i −0.827802 0.561020i \(-0.810409\pi\)
0.339946 0.940445i \(-0.389591\pi\)
\(12\) −0.500000 0.363271i −0.144338 0.104867i
\(13\) −1.50000 + 1.08981i −0.416025 + 0.302260i −0.776037 0.630688i \(-0.782773\pi\)
0.360011 + 0.932948i \(0.382773\pi\)
\(14\) 1.50000 4.61653i 0.400892 1.23382i
\(15\) 0 0
\(16\) 3.92705 2.85317i 0.981763 0.713292i
\(17\) 1.30902 4.02874i 0.317483 0.977113i −0.657237 0.753684i \(-0.728275\pi\)
0.974720 0.223429i \(-0.0717251\pi\)
\(18\) −2.61803 + 1.90211i −0.617077 + 0.448332i
\(19\) −4.04508 2.93893i −0.928006 0.674236i 0.0174977 0.999847i \(-0.494430\pi\)
−0.945504 + 0.325611i \(0.894430\pi\)
\(20\) 0 0
\(21\) 2.42705 + 1.76336i 0.529626 + 0.384796i
\(22\) 2.61803 8.05748i 0.558167 1.71786i
\(23\) −1.07295 + 3.30220i −0.223725 + 0.688556i 0.774693 + 0.632337i \(0.217904\pi\)
−0.998418 + 0.0562184i \(0.982096\pi\)
\(24\) 0.690983 + 2.12663i 0.141046 + 0.434096i
\(25\) 0 0
\(26\) −3.00000 −0.588348
\(27\) −1.54508 4.75528i −0.297352 0.915155i
\(28\) 1.50000 1.08981i 0.283473 0.205955i
\(29\) 5.16312 + 3.75123i 0.958767 + 0.696585i 0.952864 0.303397i \(-0.0981210\pi\)
0.00590304 + 0.999983i \(0.498121\pi\)
\(30\) 0 0
\(31\) 0.0450850 5.56758i 0.00809750 0.999967i
\(32\) 3.38197 0.597853
\(33\) 4.23607 + 3.07768i 0.737405 + 0.535756i
\(34\) 5.54508 4.02874i 0.950974 0.690923i
\(35\) 0 0
\(36\) −1.23607 −0.206011
\(37\) 4.23607 0.696405 0.348203 0.937419i \(-0.386792\pi\)
0.348203 + 0.937419i \(0.386792\pi\)
\(38\) −2.50000 7.69421i −0.405554 1.24817i
\(39\) 0.572949 1.76336i 0.0917453 0.282363i
\(40\) 0 0
\(41\) 2.00000 + 1.45309i 0.312348 + 0.226934i 0.732903 0.680333i \(-0.238165\pi\)
−0.420556 + 0.907267i \(0.638165\pi\)
\(42\) 1.50000 + 4.61653i 0.231455 + 0.712345i
\(43\) −1.92705 1.40008i −0.293873 0.213511i 0.431073 0.902317i \(-0.358135\pi\)
−0.724946 + 0.688806i \(0.758135\pi\)
\(44\) 2.61803 1.90211i 0.394683 0.286754i
\(45\) 0 0
\(46\) −4.54508 + 3.30220i −0.670136 + 0.486882i
\(47\) −4.54508 + 3.30220i −0.662969 + 0.481675i −0.867664 0.497151i \(-0.834380\pi\)
0.204695 + 0.978826i \(0.434380\pi\)
\(48\) −1.50000 + 4.61653i −0.216506 + 0.666338i
\(49\) −1.61803 + 1.17557i −0.231148 + 0.167939i
\(50\) 0 0
\(51\) 1.30902 + 4.02874i 0.183299 + 0.564136i
\(52\) −0.927051 0.673542i −0.128559 0.0934035i
\(53\) −0.218847 + 0.673542i −0.0300610 + 0.0925181i −0.964961 0.262392i \(-0.915489\pi\)
0.934900 + 0.354910i \(0.115489\pi\)
\(54\) 2.50000 7.69421i 0.340207 1.04705i
\(55\) 0 0
\(56\) −6.70820 −0.896421
\(57\) 5.00000 0.662266
\(58\) 3.19098 + 9.82084i 0.418997 + 1.28954i
\(59\) −0.427051 + 0.310271i −0.0555973 + 0.0403938i −0.615237 0.788342i \(-0.710940\pi\)
0.559640 + 0.828736i \(0.310940\pi\)
\(60\) 0 0
\(61\) 10.9443 1.40127 0.700635 0.713520i \(-0.252900\pi\)
0.700635 + 0.713520i \(0.252900\pi\)
\(62\) 5.35410 7.24518i 0.679972 0.920139i
\(63\) 6.00000 0.755929
\(64\) −3.42705 2.48990i −0.428381 0.311237i
\(65\) 0 0
\(66\) 2.61803 + 8.05748i 0.322258 + 0.991807i
\(67\) −0.236068 −0.0288403 −0.0144201 0.999896i \(-0.504590\pi\)
−0.0144201 + 0.999896i \(0.504590\pi\)
\(68\) 2.61803 0.317483
\(69\) −1.07295 3.30220i −0.129168 0.397538i
\(70\) 0 0
\(71\) −3.42705 + 10.5474i −0.406716 + 1.25174i 0.512738 + 0.858545i \(0.328631\pi\)
−0.919454 + 0.393198i \(0.871369\pi\)
\(72\) 3.61803 + 2.62866i 0.426389 + 0.309790i
\(73\) −3.57295 10.9964i −0.418182 1.28703i −0.909374 0.415980i \(-0.863438\pi\)
0.491192 0.871052i \(-0.336562\pi\)
\(74\) 5.54508 + 4.02874i 0.644603 + 0.468332i
\(75\) 0 0
\(76\) 0.954915 2.93893i 0.109536 0.337118i
\(77\) −12.7082 + 9.23305i −1.44823 + 1.05220i
\(78\) 2.42705 1.76336i 0.274809 0.199661i
\(79\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(80\) 0 0
\(81\) −0.809017 0.587785i −0.0898908 0.0653095i
\(82\) 1.23607 + 3.80423i 0.136501 + 0.420106i
\(83\) 5.73607 + 4.16750i 0.629615 + 0.457442i 0.856267 0.516534i \(-0.172778\pi\)
−0.226652 + 0.973976i \(0.572778\pi\)
\(84\) −0.572949 + 1.76336i −0.0625139 + 0.192398i
\(85\) 0 0
\(86\) −1.19098 3.66547i −0.128427 0.395258i
\(87\) −6.38197 −0.684219
\(88\) −11.7082 −1.24810
\(89\) −2.66312 8.19624i −0.282290 0.868799i −0.987198 0.159500i \(-0.949012\pi\)
0.704908 0.709299i \(-0.250988\pi\)
\(90\) 0 0
\(91\) 4.50000 + 3.26944i 0.471728 + 0.342731i
\(92\) −2.14590 −0.223725
\(93\) 3.23607 + 4.53077i 0.335565 + 0.469819i
\(94\) −9.09017 −0.937579
\(95\) 0 0
\(96\) −2.73607 + 1.98787i −0.279249 + 0.202886i
\(97\) 5.78115 + 17.7926i 0.586987 + 1.80656i 0.591140 + 0.806569i \(0.298678\pi\)
−0.00415240 + 0.999991i \(0.501322\pi\)
\(98\) −3.23607 −0.326892
\(99\) 10.4721 1.05249
\(100\) 0 0
\(101\) 2.85410 8.78402i 0.283994 0.874043i −0.702705 0.711482i \(-0.748024\pi\)
0.986698 0.162561i \(-0.0519755\pi\)
\(102\) −2.11803 + 6.51864i −0.209717 + 0.645441i
\(103\) −5.54508 4.02874i −0.546373 0.396964i 0.280073 0.959979i \(-0.409641\pi\)
−0.826447 + 0.563015i \(0.809641\pi\)
\(104\) 1.28115 + 3.94298i 0.125627 + 0.386641i
\(105\) 0 0
\(106\) −0.927051 + 0.673542i −0.0900432 + 0.0654202i
\(107\) 3.11803 9.59632i 0.301432 0.927711i −0.679553 0.733626i \(-0.737826\pi\)
0.980985 0.194085i \(-0.0621738\pi\)
\(108\) 2.50000 1.81636i 0.240563 0.174779i
\(109\) −14.8992 + 10.8249i −1.42708 + 1.03684i −0.436533 + 0.899688i \(0.643794\pi\)
−0.990551 + 0.137148i \(0.956206\pi\)
\(110\) 0 0
\(111\) −3.42705 + 2.48990i −0.325281 + 0.236331i
\(112\) −11.7812 8.55951i −1.11321 0.808798i
\(113\) −1.50000 4.61653i −0.141108 0.434286i 0.855382 0.517998i \(-0.173323\pi\)
−0.996490 + 0.0837117i \(0.973323\pi\)
\(114\) 6.54508 + 4.75528i 0.613003 + 0.445373i
\(115\) 0 0
\(116\) −1.21885 + 3.75123i −0.113167 + 0.348293i
\(117\) −1.14590 3.52671i −0.105938 0.326045i
\(118\) −0.854102 −0.0786265
\(119\) −12.7082 −1.16496
\(120\) 0 0
\(121\) −13.2812 + 9.64932i −1.20738 + 0.877211i
\(122\) 14.3262 + 10.4086i 1.29704 + 0.942352i
\(123\) −2.47214 −0.222905
\(124\) 3.28115 1.03681i 0.294656 0.0931086i
\(125\) 0 0
\(126\) 7.85410 + 5.70634i 0.699699 + 0.508361i
\(127\) 4.66312 3.38795i 0.413785 0.300632i −0.361347 0.932431i \(-0.617683\pi\)
0.775132 + 0.631799i \(0.217683\pi\)
\(128\) −4.20820 12.9515i −0.371956 1.14476i
\(129\) 2.38197 0.209720
\(130\) 0 0
\(131\) −3.42705 10.5474i −0.299423 0.921529i −0.981700 0.190435i \(-0.939010\pi\)
0.682277 0.731094i \(-0.260990\pi\)
\(132\) −1.00000 + 3.07768i −0.0870388 + 0.267878i
\(133\) −4.63525 + 14.2658i −0.401928 + 1.23701i
\(134\) −0.309017 0.224514i −0.0266950 0.0193951i
\(135\) 0 0
\(136\) −7.66312 5.56758i −0.657107 0.477416i
\(137\) 2.00000 1.45309i 0.170872 0.124145i −0.499063 0.866566i \(-0.666322\pi\)
0.669934 + 0.742420i \(0.266322\pi\)
\(138\) 1.73607 5.34307i 0.147784 0.454832i
\(139\) 0.690983 0.502029i 0.0586084 0.0425815i −0.558095 0.829777i \(-0.688468\pi\)
0.616704 + 0.787195i \(0.288468\pi\)
\(140\) 0 0
\(141\) 1.73607 5.34307i 0.146203 0.449967i
\(142\) −14.5172 + 10.5474i −1.21826 + 0.885116i
\(143\) 7.85410 + 5.70634i 0.656793 + 0.477188i
\(144\) 3.00000 + 9.23305i 0.250000 + 0.769421i
\(145\) 0 0
\(146\) 5.78115 17.7926i 0.478452 1.47252i
\(147\) 0.618034 1.90211i 0.0509746 0.156884i
\(148\) 0.809017 + 2.48990i 0.0665008 + 0.204668i
\(149\) 12.0344 0.985900 0.492950 0.870058i \(-0.335919\pi\)
0.492950 + 0.870058i \(0.335919\pi\)
\(150\) 0 0
\(151\) 5.71885 + 17.6008i 0.465393 + 1.43233i 0.858487 + 0.512835i \(0.171405\pi\)
−0.393094 + 0.919498i \(0.628595\pi\)
\(152\) −9.04508 + 6.57164i −0.733653 + 0.533030i
\(153\) 6.85410 + 4.97980i 0.554121 + 0.402593i
\(154\) −25.4164 −2.04811
\(155\) 0 0
\(156\) 1.14590 0.0917453
\(157\) −3.00000 2.17963i −0.239426 0.173953i 0.461601 0.887087i \(-0.347275\pi\)
−0.701028 + 0.713134i \(0.747275\pi\)
\(158\) 0 0
\(159\) −0.218847 0.673542i −0.0173557 0.0534154i
\(160\) 0 0
\(161\) 10.4164 0.820928
\(162\) −0.500000 1.53884i −0.0392837 0.120903i
\(163\) −0.218847 + 0.673542i −0.0171414 + 0.0527559i −0.959261 0.282520i \(-0.908830\pi\)
0.942120 + 0.335276i \(0.108830\pi\)
\(164\) −0.472136 + 1.45309i −0.0368676 + 0.113467i
\(165\) 0 0
\(166\) 3.54508 + 10.9106i 0.275152 + 0.846831i
\(167\) −3.85410 2.80017i −0.298239 0.216684i 0.428594 0.903497i \(-0.359009\pi\)
−0.726834 + 0.686813i \(0.759009\pi\)
\(168\) 5.42705 3.94298i 0.418706 0.304208i
\(169\) −2.95492 + 9.09429i −0.227301 + 0.699561i
\(170\) 0 0
\(171\) 8.09017 5.87785i 0.618671 0.449491i
\(172\) 0.454915 1.40008i 0.0346869 0.106755i
\(173\) 9.78115 7.10642i 0.743647 0.540291i −0.150204 0.988655i \(-0.547993\pi\)
0.893851 + 0.448364i \(0.147993\pi\)
\(174\) −8.35410 6.06961i −0.633323 0.460136i
\(175\) 0 0
\(176\) −20.5623 14.9394i −1.54994 1.12610i
\(177\) 0.163119 0.502029i 0.0122608 0.0377348i
\(178\) 4.30902 13.2618i 0.322974 0.994013i
\(179\) −1.48278 4.56352i −0.110828 0.341094i 0.880226 0.474555i \(-0.157391\pi\)
−0.991054 + 0.133461i \(0.957391\pi\)
\(180\) 0 0
\(181\) 17.0000 1.26360 0.631800 0.775131i \(-0.282316\pi\)
0.631800 + 0.775131i \(0.282316\pi\)
\(182\) 2.78115 + 8.55951i 0.206153 + 0.634473i
\(183\) −8.85410 + 6.43288i −0.654514 + 0.475532i
\(184\) 6.28115 + 4.56352i 0.463053 + 0.336428i
\(185\) 0 0
\(186\) −0.0729490 + 9.00854i −0.00534888 + 0.660538i
\(187\) −22.1803 −1.62199
\(188\) −2.80902 2.04087i −0.204869 0.148846i
\(189\) −12.1353 + 8.81678i −0.882710 + 0.641326i
\(190\) 0 0
\(191\) −4.90983 −0.355263 −0.177631 0.984097i \(-0.556843\pi\)
−0.177631 + 0.984097i \(0.556843\pi\)
\(192\) 4.23607 0.305712
\(193\) 1.42705 + 4.39201i 0.102721 + 0.316144i 0.989189 0.146647i \(-0.0468481\pi\)
−0.886468 + 0.462791i \(0.846848\pi\)
\(194\) −9.35410 + 28.7890i −0.671585 + 2.06693i
\(195\) 0 0
\(196\) −1.00000 0.726543i −0.0714286 0.0518959i
\(197\) 3.21885 + 9.90659i 0.229333 + 0.705815i 0.997823 + 0.0659530i \(0.0210087\pi\)
−0.768489 + 0.639863i \(0.778991\pi\)
\(198\) 13.7082 + 9.95959i 0.974200 + 0.707797i
\(199\) 10.7533 7.81272i 0.762280 0.553829i −0.137329 0.990526i \(-0.543852\pi\)
0.899609 + 0.436696i \(0.143852\pi\)
\(200\) 0 0
\(201\) 0.190983 0.138757i 0.0134709 0.00978718i
\(202\) 12.0902 8.78402i 0.850661 0.618042i
\(203\) 5.91641 18.2088i 0.415250 1.27801i
\(204\) −2.11803 + 1.53884i −0.148292 + 0.107740i
\(205\) 0 0
\(206\) −3.42705 10.5474i −0.238774 0.734871i
\(207\) −5.61803 4.08174i −0.390480 0.283701i
\(208\) −2.78115 + 8.55951i −0.192838 + 0.593495i
\(209\) −8.09017 + 24.8990i −0.559609 + 1.72230i
\(210\) 0 0
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) −0.437694 −0.0300610
\(213\) −3.42705 10.5474i −0.234818 0.722694i
\(214\) 13.2082 9.59632i 0.902894 0.655991i
\(215\) 0 0
\(216\) −11.1803 −0.760726
\(217\) −15.9271 + 5.03280i −1.08120 + 0.341649i
\(218\) −29.7984 −2.01820
\(219\) 9.35410 + 6.79615i 0.632092 + 0.459241i
\(220\) 0 0
\(221\) 2.42705 + 7.46969i 0.163261 + 0.502466i
\(222\) −6.85410 −0.460017
\(223\) 12.7082 0.851004 0.425502 0.904957i \(-0.360097\pi\)
0.425502 + 0.904957i \(0.360097\pi\)
\(224\) −3.13525 9.64932i −0.209483 0.644722i
\(225\) 0 0
\(226\) 2.42705 7.46969i 0.161445 0.496877i
\(227\) 17.5902 + 12.7800i 1.16750 + 0.848239i 0.990708 0.136009i \(-0.0434277\pi\)
0.176793 + 0.984248i \(0.443428\pi\)
\(228\) 0.954915 + 2.93893i 0.0632408 + 0.194635i
\(229\) 2.23607 + 1.62460i 0.147764 + 0.107356i 0.659211 0.751958i \(-0.270890\pi\)
−0.511447 + 0.859315i \(0.670890\pi\)
\(230\) 0 0
\(231\) 4.85410 14.9394i 0.319376 0.982940i
\(232\) 11.5451 8.38800i 0.757972 0.550699i
\(233\) −4.69098 + 3.40820i −0.307317 + 0.223279i −0.730744 0.682651i \(-0.760827\pi\)
0.423428 + 0.905930i \(0.360827\pi\)
\(234\) 1.85410 5.70634i 0.121206 0.373035i
\(235\) 0 0
\(236\) −0.263932 0.191758i −0.0171805 0.0124824i
\(237\) 0 0
\(238\) −16.6353 12.0862i −1.07830 0.783433i
\(239\) 4.14590 12.7598i 0.268176 0.825360i −0.722769 0.691090i \(-0.757131\pi\)
0.990945 0.134271i \(-0.0428691\pi\)
\(240\) 0 0
\(241\) −5.39919 16.6170i −0.347792 1.07039i −0.960072 0.279753i \(-0.909747\pi\)
0.612280 0.790641i \(-0.290253\pi\)
\(242\) −26.5623 −1.70749
\(243\) 16.0000 1.02640
\(244\) 2.09017 + 6.43288i 0.133809 + 0.411823i
\(245\) 0 0
\(246\) −3.23607 2.35114i −0.206324 0.149903i
\(247\) 9.27051 0.589868
\(248\) −11.8090 3.94298i −0.749873 0.250380i
\(249\) −7.09017 −0.449321
\(250\) 0 0
\(251\) 13.7082 9.95959i 0.865254 0.628644i −0.0640551 0.997946i \(-0.520403\pi\)
0.929309 + 0.369302i \(0.120403\pi\)
\(252\) 1.14590 + 3.52671i 0.0721848 + 0.222162i
\(253\) 18.1803 1.14299
\(254\) 9.32624 0.585180
\(255\) 0 0
\(256\) 4.19098 12.8985i 0.261936 0.806157i
\(257\) 7.85410 24.1724i 0.489925 1.50784i −0.334793 0.942292i \(-0.608666\pi\)
0.824718 0.565544i \(-0.191334\pi\)
\(258\) 3.11803 + 2.26538i 0.194120 + 0.141037i
\(259\) −3.92705 12.0862i −0.244015 0.751001i
\(260\) 0 0
\(261\) −10.3262 + 7.50245i −0.639178 + 0.464390i
\(262\) 5.54508 17.0660i 0.342576 1.05434i
\(263\) 11.1631 8.11048i 0.688347 0.500114i −0.187769 0.982213i \(-0.560126\pi\)
0.876116 + 0.482100i \(0.160126\pi\)
\(264\) 9.47214 6.88191i 0.582970 0.423552i
\(265\) 0 0
\(266\) −19.6353 + 14.2658i −1.20391 + 0.874695i
\(267\) 6.97214 + 5.06555i 0.426688 + 0.310007i
\(268\) −0.0450850 0.138757i −0.00275400 0.00847595i
\(269\) 2.92705 + 2.12663i 0.178465 + 0.129663i 0.673432 0.739249i \(-0.264820\pi\)
−0.494966 + 0.868912i \(0.664820\pi\)
\(270\) 0 0
\(271\) −3.26393 + 10.0453i −0.198270 + 0.610212i 0.801653 + 0.597790i \(0.203954\pi\)
−0.999923 + 0.0124220i \(0.996046\pi\)
\(272\) −6.35410 19.5559i −0.385274 1.18575i
\(273\) −5.56231 −0.336646
\(274\) 4.00000 0.241649
\(275\) 0 0
\(276\) 1.73607 1.26133i 0.104499 0.0759230i
\(277\) −1.88197 1.36733i −0.113076 0.0821548i 0.529810 0.848116i \(-0.322263\pi\)
−0.642886 + 0.765962i \(0.722263\pi\)
\(278\) 1.38197 0.0828848
\(279\) 10.5623 + 3.52671i 0.632349 + 0.211139i
\(280\) 0 0
\(281\) 8.11803 + 5.89810i 0.484281 + 0.351851i 0.802981 0.596005i \(-0.203246\pi\)
−0.318700 + 0.947856i \(0.603246\pi\)
\(282\) 7.35410 5.34307i 0.437930 0.318175i
\(283\) 4.19098 + 12.8985i 0.249128 + 0.766737i 0.994930 + 0.100570i \(0.0320665\pi\)
−0.745802 + 0.666168i \(0.767933\pi\)
\(284\) −6.85410 −0.406716
\(285\) 0 0
\(286\) 4.85410 + 14.9394i 0.287029 + 0.883385i
\(287\) 2.29180 7.05342i 0.135280 0.416350i
\(288\) −2.09017 + 6.43288i −0.123164 + 0.379061i
\(289\) −0.763932 0.555029i −0.0449372 0.0326488i
\(290\) 0 0
\(291\) −15.1353 10.9964i −0.887244 0.644621i
\(292\) 5.78115 4.20025i 0.338316 0.245801i
\(293\) 1.16312 3.57971i 0.0679501 0.209129i −0.911316 0.411708i \(-0.864932\pi\)
0.979266 + 0.202579i \(0.0649323\pi\)
\(294\) 2.61803 1.90211i 0.152687 0.110933i
\(295\) 0 0
\(296\) 2.92705 9.00854i 0.170131 0.523611i
\(297\) −21.1803 + 15.3884i −1.22901 + 0.892927i
\(298\) 15.7533 + 11.4454i 0.912564 + 0.663016i
\(299\) −1.98936 6.12261i −0.115047 0.354080i
\(300\) 0 0
\(301\) −2.20820 + 6.79615i −0.127279 + 0.391724i
\(302\) −9.25329 + 28.4787i −0.532467 + 1.63876i
\(303\) 2.85410 + 8.78402i 0.163964 + 0.504629i
\(304\) −24.2705 −1.39201
\(305\) 0 0
\(306\) 4.23607 + 13.0373i 0.242160 + 0.745292i
\(307\) −4.11803 + 2.99193i −0.235029 + 0.170758i −0.699066 0.715058i \(-0.746400\pi\)
0.464037 + 0.885816i \(0.346400\pi\)
\(308\) −7.85410 5.70634i −0.447529 0.325149i
\(309\) 6.85410 0.389916
\(310\) 0 0
\(311\) 7.52786 0.426866 0.213433 0.976958i \(-0.431535\pi\)
0.213433 + 0.976958i \(0.431535\pi\)
\(312\) −3.35410 2.43690i −0.189889 0.137962i
\(313\) −2.61803 + 1.90211i −0.147980 + 0.107514i −0.659312 0.751870i \(-0.729152\pi\)
0.511332 + 0.859383i \(0.329152\pi\)
\(314\) −1.85410 5.70634i −0.104633 0.322027i
\(315\) 0 0
\(316\) 0 0
\(317\) 3.05573 + 9.40456i 0.171627 + 0.528213i 0.999463 0.0327564i \(-0.0104286\pi\)
−0.827837 + 0.560969i \(0.810429\pi\)
\(318\) 0.354102 1.08981i 0.0198571 0.0611137i
\(319\) 10.3262 31.7809i 0.578158 1.77939i
\(320\) 0 0
\(321\) 3.11803 + 9.59632i 0.174032 + 0.535614i
\(322\) 13.6353 + 9.90659i 0.759863 + 0.552073i
\(323\) −17.1353 + 12.4495i −0.953431 + 0.692708i
\(324\) 0.190983 0.587785i 0.0106102 0.0326547i
\(325\) 0 0
\(326\) −0.927051 + 0.673542i −0.0513446 + 0.0373040i
\(327\) 5.69098 17.5150i 0.314712 0.968584i
\(328\) 4.47214 3.24920i 0.246932 0.179407i
\(329\) 13.6353 + 9.90659i 0.751736 + 0.546168i
\(330\) 0 0
\(331\) 18.0172 + 13.0903i 0.990316 + 0.719507i 0.959990 0.280033i \(-0.0903455\pi\)
0.0303258 + 0.999540i \(0.490346\pi\)
\(332\) −1.35410 + 4.16750i −0.0743160 + 0.228721i
\(333\) −2.61803 + 8.05748i −0.143467 + 0.441547i
\(334\) −2.38197 7.33094i −0.130335 0.401131i
\(335\) 0 0
\(336\) 14.5623 0.794439
\(337\) 8.64590 + 26.6093i 0.470972 + 1.44950i 0.851314 + 0.524657i \(0.175806\pi\)
−0.380342 + 0.924846i \(0.624194\pi\)
\(338\) −12.5172 + 9.09429i −0.680847 + 0.494664i
\(339\) 3.92705 + 2.85317i 0.213288 + 0.154963i
\(340\) 0 0
\(341\) −27.7984 + 8.78402i −1.50537 + 0.475681i
\(342\) 16.1803 0.874933
\(343\) −12.1353 8.81678i −0.655242 0.476061i
\(344\) −4.30902 + 3.13068i −0.232327 + 0.168795i
\(345\) 0 0
\(346\) 19.5623 1.05168
\(347\) 32.1246 1.72454 0.862270 0.506449i \(-0.169042\pi\)
0.862270 + 0.506449i \(0.169042\pi\)
\(348\) −1.21885 3.75123i −0.0653371 0.201087i
\(349\) −1.01722 + 3.13068i −0.0544506 + 0.167582i −0.974584 0.224025i \(-0.928080\pi\)
0.920133 + 0.391606i \(0.128080\pi\)
\(350\) 0 0
\(351\) 7.50000 + 5.44907i 0.400320 + 0.290850i
\(352\) −5.47214 16.8415i −0.291666 0.897655i
\(353\) −28.0066 20.3480i −1.49064 1.08301i −0.973929 0.226853i \(-0.927156\pi\)
−0.516711 0.856160i \(-0.672844\pi\)
\(354\) 0.690983 0.502029i 0.0367253 0.0266825i
\(355\) 0 0
\(356\) 4.30902 3.13068i 0.228377 0.165926i
\(357\) 10.2812 7.46969i 0.544136 0.395338i
\(358\) 2.39919 7.38394i 0.126801 0.390253i
\(359\) 7.82624 5.68609i 0.413053 0.300101i −0.361784 0.932262i \(-0.617832\pi\)
0.774837 + 0.632161i \(0.217832\pi\)
\(360\) 0 0
\(361\) 1.85410 + 5.70634i 0.0975843 + 0.300334i
\(362\) 22.2533 + 16.1680i 1.16961 + 0.849769i
\(363\) 5.07295 15.6129i 0.266261 0.819466i
\(364\) −1.06231 + 3.26944i −0.0556800 + 0.171365i
\(365\) 0 0
\(366\) −17.7082 −0.925623
\(367\) 2.72949 0.142478 0.0712391 0.997459i \(-0.477305\pi\)
0.0712391 + 0.997459i \(0.477305\pi\)
\(368\) 5.20820 + 16.0292i 0.271496 + 0.835580i
\(369\) −4.00000 + 2.90617i −0.208232 + 0.151289i
\(370\) 0 0
\(371\) 2.12461 0.110304
\(372\) −2.04508 + 2.76741i −0.106033 + 0.143484i
\(373\) 31.6525 1.63890 0.819452 0.573148i \(-0.194278\pi\)
0.819452 + 0.573148i \(0.194278\pi\)
\(374\) −29.0344 21.0948i −1.50134 1.09078i
\(375\) 0 0
\(376\) 3.88197 + 11.9475i 0.200197 + 0.616143i
\(377\) −11.8328 −0.609421
\(378\) −24.2705 −1.24834
\(379\) 2.60081 + 8.00448i 0.133595 + 0.411162i 0.995369 0.0961299i \(-0.0306464\pi\)
−0.861774 + 0.507292i \(0.830646\pi\)
\(380\) 0 0
\(381\) −1.78115 + 5.48183i −0.0912512 + 0.280842i
\(382\) −6.42705 4.66953i −0.328837 0.238914i
\(383\) 3.13525 + 9.64932i 0.160204 + 0.493057i 0.998651 0.0519260i \(-0.0165360\pi\)
−0.838447 + 0.544983i \(0.816536\pi\)
\(384\) 11.0172 + 8.00448i 0.562220 + 0.408477i
\(385\) 0 0
\(386\) −2.30902 + 7.10642i −0.117526 + 0.361707i
\(387\) 3.85410 2.80017i 0.195915 0.142341i
\(388\) −9.35410 + 6.79615i −0.474883 + 0.345022i
\(389\) 8.98278 27.6462i 0.455445 1.40172i −0.415167 0.909745i \(-0.636277\pi\)
0.870612 0.491970i \(-0.163723\pi\)
\(390\) 0 0
\(391\) 11.8992 + 8.64527i 0.601768 + 0.437210i
\(392\) 1.38197 + 4.25325i 0.0697998 + 0.214822i
\(393\) 8.97214 + 6.51864i 0.452584 + 0.328822i
\(394\) −5.20820 + 16.0292i −0.262386 + 0.807540i
\(395\) 0 0
\(396\) 2.00000 + 6.15537i 0.100504 + 0.309319i
\(397\) −29.7082 −1.49101 −0.745506 0.666499i \(-0.767792\pi\)
−0.745506 + 0.666499i \(0.767792\pi\)
\(398\) 21.5066 1.07803
\(399\) −4.63525 14.2658i −0.232053 0.714186i
\(400\) 0 0
\(401\) −19.2812 14.0086i −0.962855 0.699555i −0.00904282 0.999959i \(-0.502878\pi\)
−0.953812 + 0.300404i \(0.902878\pi\)
\(402\) 0.381966 0.0190507
\(403\) 6.00000 + 8.40051i 0.298881 + 0.418459i
\(404\) 5.70820 0.283994
\(405\) 0 0
\(406\) 25.0623 18.2088i 1.24382 0.903689i
\(407\) −6.85410 21.0948i −0.339745 1.04563i
\(408\) 9.47214 0.468941
\(409\) 16.1803 0.800066 0.400033 0.916501i \(-0.368999\pi\)
0.400033 + 0.916501i \(0.368999\pi\)
\(410\) 0 0
\(411\) −0.763932 + 2.35114i −0.0376820 + 0.115973i
\(412\) 1.30902 4.02874i 0.0644906 0.198482i
\(413\) 1.28115 + 0.930812i 0.0630414 + 0.0458023i
\(414\) −3.47214 10.6861i −0.170646 0.525195i
\(415\) 0 0
\(416\) −5.07295 + 3.68571i −0.248722 + 0.180707i
\(417\) −0.263932 + 0.812299i −0.0129248 + 0.0397785i
\(418\) −34.2705 + 24.8990i −1.67623 + 1.21785i
\(419\) 3.61803 2.62866i 0.176753 0.128418i −0.495891 0.868385i \(-0.665159\pi\)
0.672644 + 0.739966i \(0.265159\pi\)
\(420\) 0 0
\(421\) −15.5623 + 11.3067i −0.758460 + 0.551054i −0.898438 0.439101i \(-0.855297\pi\)
0.139977 + 0.990155i \(0.455297\pi\)
\(422\) −10.4721 7.60845i −0.509776 0.370374i
\(423\) −3.47214 10.6861i −0.168821 0.519578i
\(424\) 1.28115 + 0.930812i 0.0622183 + 0.0452042i
\(425\) 0 0
\(426\) 5.54508 17.0660i 0.268660 0.826851i
\(427\) −10.1459 31.2259i −0.490994 1.51113i
\(428\) 6.23607 0.301432
\(429\) −9.70820 −0.468717
\(430\) 0 0
\(431\) −20.0344 + 14.5559i −0.965025 + 0.701132i −0.954312 0.298811i \(-0.903410\pi\)
−0.0107127 + 0.999943i \(0.503410\pi\)
\(432\) −19.6353 14.2658i −0.944702 0.686366i
\(433\) −27.4164 −1.31755 −0.658774 0.752341i \(-0.728925\pi\)
−0.658774 + 0.752341i \(0.728925\pi\)
\(434\) −25.6353 8.55951i −1.23053 0.410870i
\(435\) 0 0
\(436\) −9.20820 6.69015i −0.440993 0.320400i
\(437\) 14.0451 10.2044i 0.671868 0.488140i
\(438\) 5.78115 + 17.7926i 0.276234 + 0.850161i
\(439\) −11.8328 −0.564749 −0.282375 0.959304i \(-0.591122\pi\)
−0.282375 + 0.959304i \(0.591122\pi\)
\(440\) 0 0
\(441\) −1.23607 3.80423i −0.0588604 0.181154i
\(442\) −3.92705 + 12.0862i −0.186791 + 0.574883i
\(443\) 0.270510 0.832544i 0.0128523 0.0395553i −0.944425 0.328728i \(-0.893380\pi\)
0.957277 + 0.289172i \(0.0933801\pi\)
\(444\) −2.11803 1.53884i −0.100517 0.0730302i
\(445\) 0 0
\(446\) 16.6353 + 12.0862i 0.787702 + 0.572299i
\(447\) −9.73607 + 7.07367i −0.460500 + 0.334573i
\(448\) −3.92705 + 12.0862i −0.185536 + 0.571020i
\(449\) 27.5623 20.0252i 1.30075 0.945047i 0.300783 0.953693i \(-0.402752\pi\)
0.999963 + 0.00864558i \(0.00275201\pi\)
\(450\) 0 0
\(451\) 4.00000 12.3107i 0.188353 0.579690i
\(452\) 2.42705 1.76336i 0.114159 0.0829413i
\(453\) −14.9721 10.8779i −0.703452 0.511088i
\(454\) 10.8713 + 33.4585i 0.510216 + 1.57028i
\(455\) 0 0
\(456\) 3.45492 10.6331i 0.161791 0.497942i
\(457\) −8.26393 + 25.4338i −0.386570 + 1.18974i 0.548764 + 0.835977i \(0.315098\pi\)
−0.935335 + 0.353764i \(0.884902\pi\)
\(458\) 1.38197 + 4.25325i 0.0645750 + 0.198742i
\(459\) −21.1803 −0.988614
\(460\) 0 0
\(461\) −9.80902 30.1891i −0.456851 1.40604i −0.868948 0.494904i \(-0.835203\pi\)
0.412096 0.911140i \(-0.364797\pi\)
\(462\) 20.5623 14.9394i 0.956645 0.695043i
\(463\) 7.38197 + 5.36331i 0.343069 + 0.249254i 0.745956 0.665996i \(-0.231993\pi\)
−0.402887 + 0.915250i \(0.631993\pi\)
\(464\) 30.9787 1.43815
\(465\) 0 0
\(466\) −9.38197 −0.434611
\(467\) 31.3713 + 22.7926i 1.45169 + 1.05472i 0.985432 + 0.170068i \(0.0543986\pi\)
0.466259 + 0.884648i \(0.345601\pi\)
\(468\) 1.85410 1.34708i 0.0857059 0.0622690i
\(469\) 0.218847 + 0.673542i 0.0101054 + 0.0311013i
\(470\) 0 0
\(471\) 3.70820 0.170865
\(472\) 0.364745 + 1.12257i 0.0167888 + 0.0516705i
\(473\) −3.85410 + 11.8617i −0.177212 + 0.545402i
\(474\) 0 0
\(475\) 0 0
\(476\) −2.42705 7.46969i −0.111244 0.342373i
\(477\) −1.14590 0.832544i −0.0524671 0.0381196i
\(478\) 17.5623 12.7598i 0.803281 0.583618i
\(479\) 2.76393 8.50651i 0.126287 0.388672i −0.867846 0.496833i \(-0.834496\pi\)
0.994133 + 0.108161i \(0.0344961\pi\)
\(480\) 0 0
\(481\) −6.35410 + 4.61653i −0.289722 + 0.210495i
\(482\) 8.73607 26.8869i 0.397917 1.22466i
\(483\) −8.42705 + 6.12261i −0.383444 + 0.278588i
\(484\) −8.20820 5.96361i −0.373100 0.271073i
\(485\) 0 0
\(486\) 20.9443 + 15.2169i 0.950051 + 0.690253i
\(487\) 12.9549 39.8711i 0.587043 1.80673i −0.00386229 0.999993i \(-0.501229\pi\)
0.590906 0.806741i \(-0.298771\pi\)
\(488\) 7.56231 23.2744i 0.342330 1.05358i
\(489\) −0.218847 0.673542i −0.00989661 0.0304586i
\(490\) 0 0
\(491\) 21.5967 0.974648 0.487324 0.873221i \(-0.337973\pi\)
0.487324 + 0.873221i \(0.337973\pi\)
\(492\) −0.472136 1.45309i −0.0212855 0.0655101i
\(493\) 21.8713 15.8904i 0.985035 0.715670i
\(494\) 12.1353 + 8.81678i 0.545991 + 0.396686i
\(495\) 0 0
\(496\) −15.7082 21.9928i −0.705319 0.987506i
\(497\) 33.2705 1.49239
\(498\) −9.28115 6.74315i −0.415898 0.302168i
\(499\) −8.78115 + 6.37988i −0.393098 + 0.285603i −0.766724 0.641977i \(-0.778114\pi\)
0.373626 + 0.927580i \(0.378114\pi\)
\(500\) 0 0
\(501\) 4.76393 0.212837
\(502\) 27.4164 1.22365
\(503\) −6.13525 18.8824i −0.273557 0.841923i −0.989597 0.143864i \(-0.954047\pi\)
0.716040 0.698059i \(-0.245953\pi\)
\(504\) 4.14590 12.7598i 0.184673 0.568365i
\(505\) 0 0
\(506\) 23.7984 + 17.2905i 1.05797 + 0.768658i
\(507\) −2.95492 9.09429i −0.131232 0.403892i
\(508\) 2.88197 + 2.09387i 0.127867 + 0.0929005i
\(509\) 10.5902 7.69421i 0.469401 0.341040i −0.327807 0.944745i \(-0.606310\pi\)
0.797208 + 0.603705i \(0.206310\pi\)
\(510\) 0 0
\(511\) −28.0623 + 20.3885i −1.24140 + 0.901932i
\(512\) −4.28115 + 3.11044i −0.189202 + 0.137463i
\(513\) −7.72542 + 23.7764i −0.341086 + 1.04975i
\(514\) 33.2705 24.1724i 1.46750 1.06620i
\(515\) 0 0
\(516\) 0.454915 + 1.40008i 0.0200265 + 0.0616353i
\(517\) 23.7984 + 17.2905i 1.04665 + 0.760437i
\(518\) 6.35410 19.5559i 0.279183 0.859238i
\(519\) −3.73607 + 11.4984i −0.163995 + 0.504725i
\(520\) 0 0
\(521\) −27.0689 −1.18591 −0.592955 0.805236i \(-0.702039\pi\)
−0.592955 + 0.805236i \(0.702039\pi\)
\(522\) −20.6525 −0.903934
\(523\) 1.89261 + 5.82485i 0.0827580 + 0.254703i 0.983870 0.178883i \(-0.0572482\pi\)
−0.901112 + 0.433586i \(0.857248\pi\)
\(524\) 5.54508 4.02874i 0.242238 0.175996i
\(525\) 0 0
\(526\) 22.3262 0.973470
\(527\) −22.3713 7.46969i −0.974510 0.325385i
\(528\) 25.4164 1.10611
\(529\) 8.85410 + 6.43288i 0.384961 + 0.279691i
\(530\) 0 0
\(531\) −0.326238 1.00406i −0.0141575 0.0435724i
\(532\) −9.27051 −0.401928
\(533\) −4.58359 −0.198537
\(534\) 4.30902 + 13.2618i 0.186469 + 0.573894i
\(535\) 0 0
\(536\) −0.163119 + 0.502029i −0.00704567 + 0.0216843i
\(537\) 3.88197 + 2.82041i 0.167519 + 0.121710i
\(538\) 1.80902 + 5.56758i 0.0779923 + 0.240035i
\(539\) 8.47214 + 6.15537i 0.364921 + 0.265130i
\(540\) 0 0
\(541\) 6.79837 20.9232i 0.292285 0.899560i −0.691835 0.722056i \(-0.743197\pi\)
0.984120 0.177505i \(-0.0568025\pi\)
\(542\) −13.8262 + 10.0453i −0.593888 + 0.431485i
\(543\) −13.7533 + 9.99235i −0.590210 + 0.428813i
\(544\) 4.42705 13.6251i 0.189808 0.584170i
\(545\) 0 0
\(546\) −7.28115 5.29007i −0.311605 0.226394i
\(547\) 3.18034 + 9.78808i 0.135982 + 0.418508i 0.995741 0.0921904i \(-0.0293869\pi\)
−0.859760 + 0.510698i \(0.829387\pi\)
\(548\) 1.23607 + 0.898056i 0.0528022 + 0.0383630i
\(549\) −6.76393 + 20.8172i −0.288678 + 0.888458i
\(550\) 0 0
\(551\) −9.86068 30.3481i −0.420079 1.29287i
\(552\) −7.76393 −0.330455
\(553\) 0 0
\(554\) −1.16312 3.57971i −0.0494162 0.152087i
\(555\) 0 0
\(556\) 0.427051 + 0.310271i 0.0181110 + 0.0131584i
\(557\) −0.111456 −0.00472255 −0.00236127 0.999997i \(-0.500752\pi\)
−0.00236127 + 0.999997i \(0.500752\pi\)
\(558\) 10.4721 + 14.6619i 0.443321 + 0.620687i
\(559\) 4.41641 0.186794
\(560\) 0 0
\(561\) 17.9443 13.0373i 0.757608 0.550434i
\(562\) 5.01722 + 15.4414i 0.211639 + 0.651357i
\(563\) −11.5623 −0.487293 −0.243647 0.969864i \(-0.578344\pi\)
−0.243647 + 0.969864i \(0.578344\pi\)
\(564\) 3.47214 0.146203
\(565\) 0 0
\(566\) −6.78115 + 20.8702i −0.285033 + 0.877242i
\(567\) −0.927051 + 2.85317i −0.0389325 + 0.119822i
\(568\) 20.0623 + 14.5761i 0.841796 + 0.611600i
\(569\) 7.56231 + 23.2744i 0.317028 + 0.975713i 0.974911 + 0.222593i \(0.0714521\pi\)
−0.657883 + 0.753120i \(0.728548\pi\)
\(570\) 0 0
\(571\) −5.66312 + 4.11450i −0.236994 + 0.172186i −0.699943 0.714199i \(-0.746791\pi\)
0.462949 + 0.886385i \(0.346791\pi\)
\(572\) −1.85410 + 5.70634i −0.0775239 + 0.238594i
\(573\) 3.97214 2.88593i 0.165938 0.120561i
\(574\) 9.70820 7.05342i 0.405213 0.294404i
\(575\) 0 0
\(576\) 6.85410 4.97980i 0.285588 0.207492i
\(577\) −6.45492 4.68977i −0.268722 0.195238i 0.445262 0.895401i \(-0.353111\pi\)
−0.713983 + 0.700163i \(0.753111\pi\)
\(578\) −0.472136 1.45309i −0.0196383 0.0604404i
\(579\) −3.73607 2.71441i −0.155266 0.112807i
\(580\) 0 0
\(581\) 6.57295 20.2295i 0.272692 0.839259i
\(582\) −9.35410 28.7890i −0.387740 1.19334i
\(583\) 3.70820 0.153578
\(584\) −25.8541 −1.06985
\(585\) 0 0
\(586\) 4.92705 3.57971i 0.203535 0.147877i
\(587\) −32.3713 23.5191i −1.33611 0.970739i −0.999577 0.0290662i \(-0.990747\pi\)
−0.336530 0.941673i \(-0.609253\pi\)
\(588\) 1.23607 0.0509746
\(589\) −16.5451 + 22.3888i −0.681728 + 0.922516i
\(590\) 0 0
\(591\) −8.42705 6.12261i −0.346643 0.251851i
\(592\) 16.6353 12.0862i 0.683705 0.496741i
\(593\) −12.9443 39.8384i −0.531558 1.63597i −0.750972 0.660334i \(-0.770415\pi\)
0.219414 0.975632i \(-0.429585\pi\)
\(594\) −42.3607 −1.73808
\(595\) 0 0
\(596\) 2.29837 + 7.07367i 0.0941451 + 0.289749i
\(597\) −4.10739 + 12.6412i −0.168104 + 0.517372i
\(598\) 3.21885 9.90659i 0.131628 0.405111i
\(599\) −4.20820 3.05744i −0.171943 0.124924i 0.498486 0.866898i \(-0.333890\pi\)
−0.670428 + 0.741974i \(0.733890\pi\)
\(600\) 0 0
\(601\) −17.7984 12.9313i −0.726011 0.527478i 0.162288 0.986743i \(-0.448113\pi\)
−0.888299 + 0.459266i \(0.848113\pi\)
\(602\) −9.35410 + 6.79615i −0.381245 + 0.276991i
\(603\) 0.145898 0.449028i 0.00594143 0.0182858i
\(604\) −9.25329 + 6.72291i −0.376511 + 0.273551i
\(605\) 0 0
\(606\) −4.61803 + 14.2128i −0.187595 + 0.577357i
\(607\) 1.14590 0.832544i 0.0465106 0.0337919i −0.564287 0.825579i \(-0.690849\pi\)
0.610798 + 0.791787i \(0.290849\pi\)
\(608\) −13.6803 9.93935i −0.554811 0.403094i
\(609\) 5.91641 + 18.2088i 0.239745 + 0.737859i
\(610\) 0 0
\(611\) 3.21885 9.90659i 0.130221 0.400778i
\(612\) −1.61803 + 4.97980i −0.0654051 + 0.201296i
\(613\) −13.2705 40.8424i −0.535991 1.64961i −0.741498 0.670955i \(-0.765885\pi\)
0.205508 0.978656i \(-0.434115\pi\)
\(614\) −8.23607 −0.332381
\(615\) 0 0
\(616\) 10.8541 + 33.4055i 0.437324 + 1.34595i
\(617\) −7.89919 + 5.73910i −0.318009 + 0.231047i −0.735326 0.677714i \(-0.762971\pi\)
0.417316 + 0.908761i \(0.362971\pi\)
\(618\) 8.97214 + 6.51864i 0.360912 + 0.262218i
\(619\) −40.0000 −1.60774 −0.803868 0.594808i \(-0.797228\pi\)
−0.803868 + 0.594808i \(0.797228\pi\)
\(620\) 0 0
\(621\) 17.3607 0.696660
\(622\) 9.85410 + 7.15942i 0.395113 + 0.287067i
\(623\) −20.9164 + 15.1967i −0.837998 + 0.608841i
\(624\) −2.78115 8.55951i −0.111335 0.342655i
\(625\) 0 0
\(626\) −5.23607 −0.209275
\(627\) −8.09017 24.8990i −0.323090 0.994370i
\(628\) 0.708204 2.17963i 0.0282604 0.0869766i
\(629\) 5.54508 17.0660i 0.221097 0.680467i
\(630\) 0 0
\(631\) −13.0623 40.2016i −0.520002 1.60040i −0.773992 0.633195i \(-0.781743\pi\)
0.253990 0.967207i \(-0.418257\pi\)
\(632\) 0 0
\(633\) 6.47214 4.70228i 0.257244 0.186899i
\(634\) −4.94427 + 15.2169i −0.196362 + 0.604340i
\(635\) 0 0
\(636\) 0.354102 0.257270i 0.0140411 0.0102014i
\(637\) 1.14590 3.52671i 0.0454021 0.139733i
\(638\) 43.7426 31.7809i 1.73179 1.25822i
\(639\) −17.9443 13.0373i −0.709864 0.515747i
\(640\) 0 0
\(641\) 24.1976 + 17.5806i 0.955746 + 0.694390i 0.952159 0.305603i \(-0.0988581\pi\)
0.00358727 + 0.999994i \(0.498858\pi\)
\(642\) −5.04508 + 15.5272i −0.199114 + 0.612809i
\(643\) −4.59017 + 14.1271i −0.181019 + 0.557118i −0.999857 0.0169060i \(-0.994618\pi\)
0.818838 + 0.574024i \(0.194618\pi\)
\(644\) 1.98936 + 6.12261i 0.0783916 + 0.241265i
\(645\) 0 0
\(646\) −34.2705 −1.34836
\(647\) −1.81966 5.60034i −0.0715382 0.220172i 0.908895 0.417026i \(-0.136928\pi\)
−0.980433 + 0.196854i \(0.936928\pi\)
\(648\) −1.80902 + 1.31433i −0.0710649 + 0.0516317i
\(649\) 2.23607 + 1.62460i 0.0877733 + 0.0637711i
\(650\) 0 0
\(651\) 9.92705 13.4333i 0.389072 0.526493i
\(652\) −0.437694 −0.0171414
\(653\) 6.75329 + 4.90655i 0.264277 + 0.192008i 0.712030 0.702149i \(-0.247776\pi\)
−0.447754 + 0.894157i \(0.647776\pi\)
\(654\) 24.1074 17.5150i 0.942674 0.684892i
\(655\) 0 0
\(656\) 12.0000 0.468521
\(657\) 23.1246 0.902177
\(658\) 8.42705 + 25.9358i 0.328521 + 1.01108i
\(659\) −11.6459 + 35.8424i −0.453660 + 1.39622i 0.419042 + 0.907967i \(0.362366\pi\)
−0.872701 + 0.488254i \(0.837634\pi\)
\(660\) 0 0
\(661\) 11.6353 + 8.45351i 0.452559 + 0.328803i 0.790605 0.612326i \(-0.209766\pi\)
−0.338046 + 0.941129i \(0.609766\pi\)
\(662\) 11.1353 + 34.2708i 0.432784 + 1.33197i
\(663\) −6.35410 4.61653i −0.246773 0.179291i
\(664\) 12.8262 9.31881i 0.497755 0.361640i
\(665\) 0 0
\(666\) −11.0902 + 8.05748i −0.429735 + 0.312221i
\(667\) −17.9271 + 13.0248i −0.694138 + 0.504321i
\(668\) 0.909830 2.80017i 0.0352024 0.108342i
\(669\) −10.2812 + 7.46969i −0.397492 + 0.288795i
\(670\) 0 0
\(671\) −17.7082 54.5002i −0.683618 2.10396i
\(672\) 8.20820 + 5.96361i 0.316638 + 0.230051i
\(673\) −6.92705 + 21.3193i −0.267018 + 0.821797i 0.724203 + 0.689586i \(0.242208\pi\)
−0.991222 + 0.132211i \(0.957792\pi\)
\(674\) −13.9894 + 43.0548i −0.538850 + 1.65841i
\(675\) 0 0
\(676\) −5.90983 −0.227301
\(677\) 2.65248 0.101943 0.0509715 0.998700i \(-0.483768\pi\)
0.0509715 + 0.998700i \(0.483768\pi\)
\(678\) 2.42705 + 7.46969i 0.0932103 + 0.286872i
\(679\) 45.4058 32.9892i 1.74251 1.26601i
\(680\) 0 0
\(681\) −21.7426 −0.833180
\(682\) −44.7426 14.9394i −1.71328 0.572059i
\(683\) −27.9443 −1.06926 −0.534629 0.845087i \(-0.679549\pi\)
−0.534629 + 0.845087i \(0.679549\pi\)
\(684\) 5.00000 + 3.63271i 0.191180 + 0.138900i
\(685\) 0 0
\(686\) −7.50000 23.0826i −0.286351 0.881299i
\(687\) −2.76393 −0.105451
\(688\) −11.5623 −0.440809
\(689\) −0.405765 1.24882i −0.0154584 0.0475761i
\(690\) 0 0
\(691\) −15.3992 + 47.3938i −0.585813 + 1.80295i 0.0101694 + 0.999948i \(0.496763\pi\)
−0.595982 + 0.802998i \(0.703237\pi\)
\(692\) 6.04508 + 4.39201i 0.229800 + 0.166959i
\(693\) −9.70820 29.8788i −0.368784 1.13500i
\(694\) 42.0517 + 30.5523i 1.59626 + 1.15975i
\(695\) 0 0
\(696\) −4.40983 + 13.5721i −0.167154 + 0.514448i
\(697\) 8.47214 6.15537i 0.320905 0.233151i
\(698\) −4.30902 + 3.13068i −0.163099 + 0.118498i
\(699\) 1.79180 5.51458i 0.0677720 0.208581i
\(700\) 0 0
\(701\) 0.781153 + 0.567541i 0.0295037 + 0.0214357i 0.602439 0.798165i \(-0.294196\pi\)
−0.572936 + 0.819600i \(0.694196\pi\)
\(702\) 4.63525 + 14.2658i 0.174946 + 0.538430i
\(703\) −17.1353 12.4495i −0.646268 0.469541i
\(704\) −6.85410 + 21.0948i −0.258324 + 0.795039i
\(705\) 0 0
\(706\) −17.3090 53.2717i −0.651433 2.00491i
\(707\) −27.7082 −1.04207
\(708\) 0.326238 0.0122608
\(709\) 3.35410 + 10.3229i 0.125966 + 0.387683i 0.994076 0.108689i \(-0.0346652\pi\)
−0.868110 + 0.496372i \(0.834665\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −19.2705 −0.722193
\(713\) 18.3369 + 6.12261i 0.686722 + 0.229294i
\(714\) 20.5623 0.769525
\(715\) 0 0
\(716\) 2.39919 1.74311i 0.0896618 0.0651431i
\(717\) 4.14590 + 12.7598i 0.154831 + 0.476522i
\(718\) 15.6525 0.584145
\(719\) −43.6180 −1.62668 −0.813339 0.581790i \(-0.802353\pi\)
−0.813339 + 0.581790i \(0.802353\pi\)
\(720\) 0 0
\(721\) −6.35410 + 19.5559i −0.236639 + 0.728300i
\(722\) −3.00000 + 9.23305i −0.111648 + 0.343619i
\(723\) 14.1353 + 10.2699i 0.525696 + 0.381940i
\(724\) 3.24671 + 9.99235i 0.120663 + 0.371363i
\(725\) 0 0
\(726\) 21.4894 15.6129i 0.797545 0.579450i
\(727\) −9.21885 + 28.3727i −0.341908 + 1.05228i 0.621310 + 0.783565i \(0.286601\pi\)
−0.963218 + 0.268720i \(0.913399\pi\)
\(728\) 10.0623 7.31069i 0.372934 0.270952i
\(729\) −10.5172 + 7.64121i −0.389527 + 0.283008i
\(730\) 0 0
\(731\) −8.16312 + 5.93085i −0.301924 + 0.219361i
\(732\) −5.47214 3.97574i −0.202256 0.146948i
\(733\) −3.10739 9.56357i −0.114774 0.353238i 0.877126 0.480261i \(-0.159458\pi\)
−0.991900 + 0.127022i \(0.959458\pi\)
\(734\) 3.57295 + 2.59590i 0.131880 + 0.0958164i
\(735\) 0 0
\(736\) −3.62868 + 11.1679i −0.133755 + 0.411655i
\(737\) 0.381966 + 1.17557i 0.0140699 + 0.0433027i
\(738\) −8.00000 −0.294484
\(739\) 8.29180 0.305019 0.152509 0.988302i \(-0.451265\pi\)
0.152509 + 0.988302i \(0.451265\pi\)
\(740\) 0 0
\(741\) −7.50000 + 5.44907i −0.275519 + 0.200177i
\(742\) 2.78115 + 2.02063i 0.102099 + 0.0741795i
\(743\) 23.5623 0.864417 0.432209 0.901774i \(-0.357734\pi\)
0.432209 + 0.901774i \(0.357734\pi\)
\(744\) 11.8713 3.75123i 0.435224 0.137527i
\(745\) 0 0
\(746\) 41.4336 + 30.1033i 1.51699 + 1.10216i
\(747\) −11.4721 + 8.33499i −0.419744 + 0.304962i
\(748\) −4.23607 13.0373i −0.154886 0.476690i
\(749\) −30.2705 −1.10606
\(750\) 0 0
\(751\) 4.27458 + 13.1558i 0.155981 + 0.480062i 0.998259 0.0589825i \(-0.0187856\pi\)
−0.842278 + 0.539044i \(0.818786\pi\)
\(752\) −8.42705 + 25.9358i −0.307303 + 0.945781i
\(753\) −5.23607 + 16.1150i −0.190813 + 0.587262i
\(754\) −15.4894 11.2537i −0.564089 0.409835i
\(755\) 0 0
\(756\) −7.50000 5.44907i −0.272772 0.198181i
\(757\) 2.32624 1.69011i 0.0845486 0.0614281i −0.544708 0.838626i \(-0.683359\pi\)
0.629257 + 0.777198i \(0.283359\pi\)
\(758\) −4.20820 + 12.9515i −0.152849 + 0.470420i
\(759\) −14.7082 + 10.6861i −0.533874 + 0.387882i
\(760\) 0 0
\(761\) −10.6631 + 32.8177i −0.386538 + 1.18964i 0.548821 + 0.835940i \(0.315077\pi\)
−0.935359 + 0.353701i \(0.884923\pi\)
\(762\) −7.54508 + 5.48183i −0.273330 + 0.198586i
\(763\) 44.6976 + 32.4747i 1.61816 + 1.17566i
\(764\) −0.937694 2.88593i −0.0339246 0.104409i
\(765\) 0 0
\(766\) −5.07295 + 15.6129i −0.183293 + 0.564118i
\(767\) 0.302439 0.930812i 0.0109204 0.0336097i
\(768\) 4.19098 + 12.8985i 0.151229 + 0.465435i
\(769\) −11.2574 −0.405951 −0.202975 0.979184i \(-0.565061\pi\)
−0.202975 + 0.979184i \(0.565061\pi\)
\(770\) 0 0
\(771\) 7.85410 + 24.1724i 0.282859 + 0.870549i
\(772\) −2.30902 + 1.67760i −0.0831033 + 0.0603781i
\(773\) −6.39919 4.64928i −0.230163 0.167223i 0.466727 0.884402i \(-0.345433\pi\)
−0.696889 + 0.717179i \(0.745433\pi\)
\(774\) 7.70820 0.277066
\(775\) 0 0
\(776\) 41.8328 1.50171
\(777\) 10.2812 + 7.46969i 0.368834 + 0.267974i
\(778\) 38.0517 27.6462i 1.36422 0.991163i
\(779\) −3.81966 11.7557i −0.136854 0.421192i
\(780\) 0 0
\(781\) 58.0689 2.07787
\(782\) 7.35410 + 22.6336i 0.262982 + 0.809376i
\(783\) 9.86068 30.3481i 0.352392 1.08455i
\(784\) −3.00000 + 9.23305i −0.107143 + 0.329752i
\(785\) 0 0
\(786\) 5.54508 + 17.0660i 0.197787 + 0.608725i
\(787\) 36.1697 + 26.2788i 1.28931 + 0.936739i 0.999791 0.0204333i \(-0.00650458\pi\)
0.289519 + 0.957172i \(0.406505\pi\)
\(788\) −5.20820 + 3.78398i −0.185535 + 0.134799i
\(789\) −4.26393 + 13.1230i −0.151800 + 0.467192i
\(790\) 0 0
\(791\) −11.7812 + 8.55951i −0.418890 + 0.304341i
\(792\) 7.23607 22.2703i 0.257122 0.791342i
\(793\) −16.4164 + 11.9272i −0.582964 + 0.423548i
\(794\) −38.8885 28.2542i −1.38010 1.00270i
\(795\) 0 0
\(796\) 6.64590 + 4.82853i 0.235558 + 0.171143i
\(797\) −8.32624 + 25.6255i −0.294930 + 0.907703i 0.688314 + 0.725413i \(0.258351\pi\)
−0.983245 + 0.182290i \(0.941649\pi\)
\(798\) 7.50000 23.0826i 0.265497 0.817116i
\(799\) 7.35410 + 22.6336i 0.260169 + 0.800719i
\(800\) 0 0
\(801\) 17.2361 0.609007
\(802\) −11.9164 36.6749i −0.420783 1.29504i
\(803\) −48.9787 + 35.5851i −1.72842 + 1.25577i
\(804\) 0.118034 + 0.0857567i 0.00416274 + 0.00302441i
\(805\) 0 0
\(806\) −0.135255 + 16.7027i −0.00476415 + 0.588329i
\(807\) −3.61803 −0.127361
\(808\) −16.7082 12.1392i −0.587793 0.427056i
\(809\) −24.4336 + 17.7521i −0.859041 + 0.624130i −0.927624 0.373516i \(-0.878152\pi\)
0.0685832 + 0.997645i \(0.478152\pi\)
\(810\) 0 0
\(811\) −28.7771 −1.01050 −0.505250 0.862973i \(-0.668600\pi\)
−0.505250 + 0.862973i \(0.668600\pi\)
\(812\) 11.8328 0.415250
\(813\) −3.26393 10.0453i −0.114471 0.352306i
\(814\) 11.0902 34.1320i 0.388710 1.19633i
\(815\) 0 0
\(816\) 16.6353 + 12.0862i 0.582350 + 0.423102i
\(817\) 3.68034 + 11.3269i 0.128759 + 0.396279i
\(818\) 21.1803 + 15.3884i 0.740553 + 0.538043i
\(819\) −9.00000 + 6.53888i −0.314485 + 0.228487i
\(820\) 0 0
\(821\) 19.0344 13.8293i 0.664307 0.482647i −0.203808 0.979011i \(-0.565332\pi\)
0.868115 + 0.496364i \(0.165332\pi\)
\(822\) −3.23607 + 2.35114i −0.112871 + 0.0820055i
\(823\) −10.5451 + 32.4544i −0.367579 + 1.13129i 0.580772 + 0.814066i \(0.302751\pi\)
−0.948351 + 0.317224i \(0.897249\pi\)
\(824\) −12.3992 + 9.00854i −0.431946 + 0.313827i
\(825\) 0 0
\(826\) 0.791796 + 2.43690i 0.0275501 + 0.0847905i
\(827\) 14.8262 + 10.7719i 0.515559 + 0.374575i 0.814928 0.579562i \(-0.196776\pi\)
−0.299369 + 0.954137i \(0.596776\pi\)
\(828\) 1.32624 4.08174i 0.0460900 0.141850i
\(829\) −2.56231 + 7.88597i −0.0889926 + 0.273891i −0.985642 0.168851i \(-0.945994\pi\)
0.896649 + 0.442742i \(0.145994\pi\)
\(830\) 0 0
\(831\) 2.32624 0.0806963
\(832\) 7.85410 0.272292
\(833\) 2.61803 + 8.05748i 0.0907095 + 0.279175i
\(834\) −1.11803 + 0.812299i −0.0387144 + 0.0281276i
\(835\) 0 0
\(836\) −16.1803 −0.559609
\(837\) −26.5451 + 8.38800i −0.917532 + 0.289932i
\(838\) 7.23607 0.249966
\(839\) 9.04508 + 6.57164i 0.312271 + 0.226878i 0.732870 0.680368i \(-0.238180\pi\)
−0.420599 + 0.907246i \(0.638180\pi\)
\(840\) 0 0
\(841\) 3.62461 + 11.1554i 0.124987 + 0.384669i
\(842\) −31.1246 −1.07262
\(843\) −10.0344 −0.345605
\(844\) −1.52786 4.70228i −0.0525912 0.161859i
\(845\) 0 0
\(846\) 5.61803 17.2905i 0.193152 0.594461i
\(847\) 39.8435 + 28.9480i 1.36904 + 0.994664i
\(848\) 1.06231 + 3.26944i 0.0364797 + 0.112273i
\(849\) −10.9721 7.97172i −0.376563 0.273589i
\(850\) 0 0
\(851\) −4.54508 + 13.9883i −0.155804 + 0.479514i
\(852\) 5.54508 4.02874i 0.189971 0.138022i
\(853\) 3.23607 2.35114i 0.110801 0.0805015i −0.531005 0.847369i \(-0.678185\pi\)
0.641806 + 0.766867i \(0.278185\pi\)
\(854\) 16.4164 50.5245i 0.561758 1.72891i
\(855\) 0 0
\(856\) −18.2533 13.2618i −0.623885 0.453279i
\(857\) −4.38197 13.4863i −0.149685 0.460683i 0.847899 0.530158i \(-0.177868\pi\)
−0.997584 + 0.0694751i \(0.977868\pi\)
\(858\) −12.7082 9.23305i −0.433851 0.315211i
\(859\) 17.5238 53.9327i 0.597904 1.84016i 0.0582010 0.998305i \(-0.481464\pi\)
0.539703 0.841855i \(-0.318536\pi\)
\(860\) 0 0
\(861\) 2.29180 + 7.05342i 0.0781042 + 0.240380i
\(862\) −40.0689 −1.36475
\(863\) −40.5066 −1.37886 −0.689430 0.724352i \(-0.742139\pi\)
−0.689430 + 0.724352i \(0.742139\pi\)
\(864\) −5.22542 16.0822i −0.177773 0.547128i
\(865\) 0 0
\(866\) −35.8885 26.0746i −1.21954 0.886049i
\(867\) 0.944272 0.0320692
\(868\) −6.00000 8.40051i −0.203653 0.285132i
\(869\) 0 0
\(870\) 0 0
\(871\) 0.354102 0.257270i 0.0119983 0.00871727i
\(872\) 12.7254 + 39.1648i 0.430937 + 1.32629i
\(873\) −37.4164 −1.26635
\(874\) 28.0902 0.950164
\(875\) 0 0
\(876\) −2.20820 + 6.79615i −0.0746083 + 0.229621i
\(877\) −9.18034 + 28.2542i −0.309998 + 0.954076i 0.667767 + 0.744371i \(0.267250\pi\)
−0.977765 + 0.209705i \(0.932750\pi\)
\(878\) −15.4894 11.2537i −0.522740 0.379793i
\(879\) 1.16312 + 3.57971i 0.0392310 + 0.120741i
\(880\) 0 0
\(881\) −23.7533 + 17.2578i −0.800269 + 0.581429i −0.910993 0.412422i \(-0.864683\pi\)
0.110724 + 0.993851i \(0.464683\pi\)
\(882\) 2.00000 6.15537i 0.0673435 0.207262i
\(883\) −0.809017 + 0.587785i −0.0272256 + 0.0197805i −0.601315 0.799012i \(-0.705356\pi\)
0.574089 + 0.818793i \(0.305356\pi\)
\(884\) −3.92705 + 2.85317i −0.132081 + 0.0959625i
\(885\) 0 0
\(886\) 1.14590 0.832544i 0.0384972 0.0279699i
\(887\) −38.9164 28.2744i −1.30669 0.949362i −0.306688 0.951810i \(-0.599221\pi\)
−0.999997 + 0.00244778i \(0.999221\pi\)
\(888\) 2.92705 + 9.00854i 0.0982254 + 0.302307i
\(889\) −13.9894 10.1639i −0.469188 0.340885i
\(890\) 0 0
\(891\) −1.61803 + 4.97980i −0.0542062 + 0.166829i
\(892\) 2.42705 + 7.46969i 0.0812637 + 0.250104i
\(893\) 28.0902 0.940002
\(894\) −19.4721 −0.651246
\(895\) 0 0
\(896\) −33.0517 + 24.0134i −1.10418 + 0.802233i
\(897\) 5.20820 + 3.78398i 0.173897 + 0.126343i
\(898\) 55.1246 1.83953
\(899\) 21.1180 28.5770i 0.704326 0.953095i
\(900\) 0 0
\(901\) 2.42705 + 1.76336i 0.0808568 + 0.0587459i
\(902\) 16.9443 12.3107i 0.564183 0.409903i
\(903\) −2.20820 6.79615i −0.0734844 0.226162i
\(904\) −10.8541 −0.361002
\(905\) 0 0
\(906\) −9.25329 28.4787i −0.307420 0.946141i
\(907\) 3.68441 11.3394i 0.122339 0.376520i −0.871068 0.491162i \(-0.836572\pi\)
0.993407 + 0.114642i \(0.0365722\pi\)
\(908\) −4.15248 + 12.7800i −0.137805 + 0.424119i
\(909\) 14.9443 + 10.8576i 0.495670 + 0.360125i
\(910\) 0 0
\(911\) 11.4721 + 8.33499i 0.380089 + 0.276151i 0.761382 0.648303i \(-0.224521\pi\)
−0.381293 + 0.924454i \(0.624521\pi\)
\(912\) 19.6353 14.2658i 0.650188 0.472389i
\(913\) 11.4721 35.3076i 0.379672 1.16851i
\(914\) −35.0066 + 25.4338i −1.15791 + 0.841274i
\(915\) 0 0
\(916\) −0.527864 + 1.62460i −0.0174411 + 0.0536782i
\(917\) −26.9164 + 19.5559i −0.888858 + 0.645793i
\(918\) −27.7254 20.1437i −0.915075 0.664841i
\(919\) 15.4894 + 47.6713i 0.510947 + 1.57253i 0.790538 + 0.612413i \(0.209801\pi\)
−0.279591 + 0.960119i \(0.590199\pi\)
\(920\) 0 0
\(921\) 1.57295 4.84104i 0.0518304 0.159518i
\(922\) 15.8713 48.8469i 0.522694 1.60869i
\(923\) −6.35410 19.5559i −0.209148 0.643691i
\(924\) 9.70820 0.319376
\(925\) 0 0
\(926\) 4.56231 + 14.0413i 0.149927 + 0.461427i
\(927\) 11.0902 8.05748i 0.364249 0.264642i
\(928\) 17.4615 + 12.6865i 0.573202 + 0.416455i
\(929\) −33.5410 −1.10045 −0.550223 0.835018i \(-0.685457\pi\)
−0.550223 + 0.835018i \(0.685457\pi\)
\(930\) 0 0
\(931\) 10.0000 0.327737
\(932\) −2.89919 2.10638i −0.0949660 0.0689969i
\(933\) −6.09017 + 4.42477i −0.199383 + 0.144860i
\(934\) 19.3885 + 59.6718i 0.634413 + 1.95252i
\(935\) 0 0
\(936\) −8.29180 −0.271026
\(937\) 13.7467 + 42.3080i 0.449085 + 1.38214i 0.877941 + 0.478770i \(0.158917\pi\)
−0.428855 + 0.903373i \(0.641083\pi\)
\(938\) −0.354102 + 1.08981i −0.0115618 + 0.0355837i
\(939\) 1.00000 3.07768i 0.0326338 0.100436i
\(940\) 0 0
\(941\) 17.1246 + 52.7041i 0.558246 + 1.71811i 0.687212 + 0.726457i \(0.258834\pi\)
−0.128966 + 0.991649i \(0.541166\pi\)
\(942\) 4.85410 + 3.52671i 0.158155 + 0.114906i
\(943\) −6.94427 + 5.04531i −0.226137 + 0.164298i
\(944\) −0.791796 + 2.43690i −0.0257708 + 0.0793143i
\(945\) 0 0
\(946\) −16.3262 + 11.8617i −0.530812 + 0.385657i
\(947\) 11.1459 34.3035i 0.362193 1.11472i −0.589527 0.807749i \(-0.700686\pi\)
0.951720 0.306967i \(-0.0993141\pi\)
\(948\) 0 0
\(949\) 17.3435 + 12.6008i 0.562992 + 0.409038i
\(950\) 0 0
\(951\) −8.00000 5.81234i −0.259418 0.188478i
\(952\) −8.78115 + 27.0256i −0.284599 + 0.875905i
\(953\) 2.84752 8.76378i 0.0922404 0.283887i −0.894284 0.447499i \(-0.852315\pi\)
0.986525 + 0.163613i \(0.0523147\pi\)
\(954\) −0.708204 2.17963i −0.0229289 0.0705680i
\(955\) 0 0
\(956\) 8.29180 0.268176
\(957\) 10.3262 + 31.7809i 0.333800 + 1.02733i
\(958\) 11.7082 8.50651i 0.378275 0.274833i
\(959\) −6.00000 4.35926i −0.193750 0.140768i
\(960\) 0 0
\(961\) −30.9959 0.502029i −0.999869 0.0161945i
\(962\) −12.7082 −0.409729
\(963\) 16.3262 + 11.8617i 0.526106 + 0.382238i
\(964\) 8.73607 6.34712i 0.281370 0.204427i
\(965\) 0 0
\(966\) −16.8541 −0.542272
\(967\) −12.3475 −0.397070 −0.198535 0.980094i \(-0.563618\pi\)
−0.198535 + 0.980094i \(0.563618\pi\)
\(968\) 11.3435 + 34.9116i 0.364593 + 1.12210i
\(969\) 6.54508 20.1437i 0.210258 0.647109i
\(970\) 0 0
\(971\) 0.354102 + 0.257270i 0.0113637 + 0.00825619i 0.593453 0.804869i \(-0.297764\pi\)
−0.582089 + 0.813125i \(0.697764\pi\)
\(972\) 3.05573 + 9.40456i 0.0980125 + 0.301652i
\(973\) −2.07295 1.50609i −0.0664557 0.0482829i
\(974\) 54.8779 39.8711i 1.75840 1.27755i
\(975\) 0 0
\(976\) 42.9787 31.2259i 1.37572 0.999516i
\(977\) 42.1246 30.6053i 1.34769 0.979151i 0.348562 0.937286i \(-0.386670\pi\)
0.999123 0.0418654i \(-0.0133301\pi\)
\(978\) 0.354102 1.08981i 0.0113229 0.0348484i
\(979\) −36.5066 + 26.5236i −1.16676 + 0.847697i
\(980\) 0 0
\(981\) −11.3820 35.0301i −0.363398 1.11842i
\(982\) 28.2705 + 20.5397i 0.902148 + 0.655449i
\(983\) 2.48278 7.64121i 0.0791884 0.243717i −0.903623 0.428328i \(-0.859103\pi\)
0.982812 + 0.184612i \(0.0591027\pi\)
\(984\) −1.70820 + 5.25731i −0.0544556 + 0.167597i
\(985\) 0 0
\(986\) 43.7426 1.39305
\(987\) −16.8541 −0.536472
\(988\) 1.77051 + 5.44907i 0.0563274 + 0.173358i
\(989\) 6.69098 4.86128i 0.212761 0.154580i
\(990\) 0 0
\(991\) 16.2705 0.516850 0.258425 0.966031i \(-0.416797\pi\)
0.258425 + 0.966031i \(0.416797\pi\)
\(992\) 0.152476 18.8294i 0.00484111 0.597833i
\(993\) −22.2705 −0.706733
\(994\) 43.5517 + 31.6421i 1.38137 + 1.00363i
\(995\) 0 0
\(996\) −1.35410 4.16750i −0.0429064 0.132052i
\(997\) −53.2492 −1.68642 −0.843210 0.537584i \(-0.819337\pi\)
−0.843210 + 0.537584i \(0.819337\pi\)
\(998\) −17.5623 −0.555925
\(999\) −6.54508 20.1437i −0.207077 0.637318i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 775.2.k.c.126.1 4
5.2 odd 4 775.2.bf.a.374.1 8
5.3 odd 4 775.2.bf.a.374.2 8
5.4 even 2 31.2.d.a.2.1 4
15.14 odd 2 279.2.i.a.64.1 4
20.19 odd 2 496.2.n.b.33.1 4
31.16 even 5 inner 775.2.k.c.326.1 4
155.4 even 10 961.2.a.d.1.2 2
155.9 even 30 961.2.g.f.844.1 8
155.14 even 30 961.2.g.f.547.1 8
155.19 even 30 961.2.g.f.846.1 8
155.24 odd 30 961.2.c.d.439.2 4
155.29 odd 10 961.2.d.e.628.1 4
155.34 odd 30 961.2.g.c.235.1 8
155.39 even 10 961.2.d.f.531.1 4
155.44 odd 30 961.2.g.c.338.1 8
155.47 odd 20 775.2.bf.a.574.2 8
155.49 even 30 961.2.g.b.338.1 8
155.54 odd 10 961.2.d.e.531.1 4
155.59 even 30 961.2.g.b.235.1 8
155.64 even 10 961.2.d.f.628.1 4
155.69 even 30 961.2.c.f.439.2 4
155.74 odd 30 961.2.g.g.846.1 8
155.78 odd 20 775.2.bf.a.574.1 8
155.79 odd 30 961.2.g.g.547.1 8
155.84 odd 30 961.2.g.g.844.1 8
155.89 odd 10 961.2.a.e.1.2 2
155.99 odd 6 961.2.g.c.816.1 8
155.104 odd 30 961.2.c.d.521.2 4
155.109 even 10 31.2.d.a.16.1 yes 4
155.114 odd 30 961.2.g.g.448.1 8
155.119 odd 6 961.2.g.c.732.1 8
155.129 even 6 961.2.g.b.732.1 8
155.134 even 30 961.2.g.f.448.1 8
155.139 odd 10 961.2.d.b.388.1 4
155.144 even 30 961.2.c.f.521.2 4
155.149 even 6 961.2.g.b.816.1 8
155.154 odd 2 961.2.d.b.374.1 4
465.89 even 10 8649.2.a.f.1.1 2
465.314 odd 10 8649.2.a.g.1.1 2
465.419 odd 10 279.2.i.a.109.1 4
620.419 odd 10 496.2.n.b.481.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.2.d.a.2.1 4 5.4 even 2
31.2.d.a.16.1 yes 4 155.109 even 10
279.2.i.a.64.1 4 15.14 odd 2
279.2.i.a.109.1 4 465.419 odd 10
496.2.n.b.33.1 4 20.19 odd 2
496.2.n.b.481.1 4 620.419 odd 10
775.2.k.c.126.1 4 1.1 even 1 trivial
775.2.k.c.326.1 4 31.16 even 5 inner
775.2.bf.a.374.1 8 5.2 odd 4
775.2.bf.a.374.2 8 5.3 odd 4
775.2.bf.a.574.1 8 155.78 odd 20
775.2.bf.a.574.2 8 155.47 odd 20
961.2.a.d.1.2 2 155.4 even 10
961.2.a.e.1.2 2 155.89 odd 10
961.2.c.d.439.2 4 155.24 odd 30
961.2.c.d.521.2 4 155.104 odd 30
961.2.c.f.439.2 4 155.69 even 30
961.2.c.f.521.2 4 155.144 even 30
961.2.d.b.374.1 4 155.154 odd 2
961.2.d.b.388.1 4 155.139 odd 10
961.2.d.e.531.1 4 155.54 odd 10
961.2.d.e.628.1 4 155.29 odd 10
961.2.d.f.531.1 4 155.39 even 10
961.2.d.f.628.1 4 155.64 even 10
961.2.g.b.235.1 8 155.59 even 30
961.2.g.b.338.1 8 155.49 even 30
961.2.g.b.732.1 8 155.129 even 6
961.2.g.b.816.1 8 155.149 even 6
961.2.g.c.235.1 8 155.34 odd 30
961.2.g.c.338.1 8 155.44 odd 30
961.2.g.c.732.1 8 155.119 odd 6
961.2.g.c.816.1 8 155.99 odd 6
961.2.g.f.448.1 8 155.134 even 30
961.2.g.f.547.1 8 155.14 even 30
961.2.g.f.844.1 8 155.9 even 30
961.2.g.f.846.1 8 155.19 even 30
961.2.g.g.448.1 8 155.114 odd 30
961.2.g.g.547.1 8 155.79 odd 30
961.2.g.g.844.1 8 155.84 odd 30
961.2.g.g.846.1 8 155.74 odd 30
8649.2.a.f.1.1 2 465.89 even 10
8649.2.a.g.1.1 2 465.314 odd 10