Properties

Label 7600.2.a.ck
Level $7600$
Weight $2$
Character orbit 7600.a
Self dual yes
Analytic conductor $60.686$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 7600 = 2^{4} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7600.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(60.6863055362\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.66064384.1
Defining polynomial: \(x^{6} - 9 x^{4} + 13 x^{2} - 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 95)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{5} q^{3} + ( -\beta_{2} - \beta_{5} ) q^{7} + ( 3 + \beta_{1} - \beta_{3} ) q^{9} +O(q^{10})\) \( q -\beta_{5} q^{3} + ( -\beta_{2} - \beta_{5} ) q^{7} + ( 3 + \beta_{1} - \beta_{3} ) q^{9} + \beta_{1} q^{11} + ( -\beta_{2} + \beta_{4} - \beta_{5} ) q^{13} + ( -2 \beta_{2} + \beta_{4} - \beta_{5} ) q^{17} + q^{19} + ( 4 + \beta_{1} - \beta_{3} ) q^{21} + ( -\beta_{2} + \beta_{4} ) q^{23} + ( -2 \beta_{2} + 2 \beta_{4} - 4 \beta_{5} ) q^{27} + 6 q^{29} + ( \beta_{1} + \beta_{3} ) q^{31} -2 \beta_{4} q^{33} + ( -\beta_{2} - \beta_{4} - \beta_{5} ) q^{37} + ( 2 - 2 \beta_{3} ) q^{39} + ( 2 + \beta_{1} + \beta_{3} ) q^{41} + ( \beta_{2} + \beta_{5} ) q^{43} + ( 3 \beta_{2} - \beta_{5} ) q^{47} + ( -1 - \beta_{1} ) q^{49} -2 \beta_{3} q^{51} + ( -3 \beta_{2} - \beta_{4} - \beta_{5} ) q^{53} -\beta_{5} q^{57} + ( -4 - \beta_{1} + \beta_{3} ) q^{59} + ( -2 + 2 \beta_{1} + \beta_{3} ) q^{61} + ( \beta_{2} + 2 \beta_{4} - 5 \beta_{5} ) q^{63} + ( 2 \beta_{2} + 5 \beta_{5} ) q^{67} + ( -4 - \beta_{1} - \beta_{3} ) q^{69} + ( -8 + \beta_{1} - \beta_{3} ) q^{71} + ( \beta_{4} - 3 \beta_{5} ) q^{73} + ( 4 \beta_{2} - \beta_{4} + \beta_{5} ) q^{77} + ( 4 + \beta_{1} + \beta_{3} ) q^{79} + ( 7 - \beta_{1} - 3 \beta_{3} ) q^{81} + ( -\beta_{2} - 3 \beta_{4} ) q^{83} -6 \beta_{5} q^{87} + ( 2 - 2 \beta_{1} + 4 \beta_{3} ) q^{89} + ( 4 - \beta_{1} - \beta_{3} ) q^{91} + ( 2 \beta_{2} - 6 \beta_{4} + 4 \beta_{5} ) q^{93} + ( -\beta_{2} + \beta_{4} - \beta_{5} ) q^{97} + ( 4 - \beta_{1} + 2 \beta_{3} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q + 14q^{9} + O(q^{10}) \) \( 6q + 14q^{9} - 2q^{11} + 6q^{19} + 20q^{21} + 36q^{29} + 8q^{39} + 12q^{41} - 4q^{49} - 4q^{51} - 20q^{59} - 14q^{61} - 24q^{69} - 52q^{71} + 24q^{79} + 38q^{81} + 24q^{89} + 24q^{91} + 30q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{6} - 9 x^{4} + 13 x^{2} - 1\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( \nu^{4} - 6 \nu^{2} - 1 \)\()/2\)
\(\beta_{2}\)\(=\)\((\)\( \nu^{5} - 8 \nu^{3} + 5 \nu \)\()/2\)
\(\beta_{3}\)\(=\)\((\)\( -\nu^{4} + 10 \nu^{2} - 11 \)\()/2\)
\(\beta_{4}\)\(=\)\((\)\( \nu^{5} - 8 \nu^{3} + 9 \nu \)\()/2\)
\(\beta_{5}\)\(=\)\( -\nu^{5} + 9 \nu^{3} - 12 \nu \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{4} - \beta_{2}\)\()/2\)
\(\nu^{2}\)\(=\)\((\)\(\beta_{3} + \beta_{1} + 6\)\()/2\)
\(\nu^{3}\)\(=\)\((\)\(2 \beta_{5} + 7 \beta_{4} - 3 \beta_{2}\)\()/2\)
\(\nu^{4}\)\(=\)\(3 \beta_{3} + 5 \beta_{1} + 19\)
\(\nu^{5}\)\(=\)\((\)\(16 \beta_{5} + 51 \beta_{4} - 15 \beta_{2}\)\()/2\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.285442
2.68667
1.30397
−1.30397
−2.68667
0.285442
0 −3.21789 0 0 0 −2.59637 0 7.35482 0
1.2 0 −2.31446 0 0 0 −1.45033 0 2.35673 0
1.3 0 −0.537080 0 0 0 3.18676 0 −2.71155 0
1.4 0 0.537080 0 0 0 −3.18676 0 −2.71155 0
1.5 0 2.31446 0 0 0 1.45033 0 2.35673 0
1.6 0 3.21789 0 0 0 2.59637 0 7.35482 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(-1\)
\(19\) \(-1\)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7600.2.a.ck 6
4.b odd 2 1 475.2.a.j 6
5.b even 2 1 inner 7600.2.a.ck 6
5.c odd 4 2 1520.2.d.h 6
12.b even 2 1 4275.2.a.br 6
20.d odd 2 1 475.2.a.j 6
20.e even 4 2 95.2.b.b 6
60.h even 2 1 4275.2.a.br 6
60.l odd 4 2 855.2.c.d 6
76.d even 2 1 9025.2.a.bx 6
380.d even 2 1 9025.2.a.bx 6
380.j odd 4 2 1805.2.b.e 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
95.2.b.b 6 20.e even 4 2
475.2.a.j 6 4.b odd 2 1
475.2.a.j 6 20.d odd 2 1
855.2.c.d 6 60.l odd 4 2
1520.2.d.h 6 5.c odd 4 2
1805.2.b.e 6 380.j odd 4 2
4275.2.a.br 6 12.b even 2 1
4275.2.a.br 6 60.h even 2 1
7600.2.a.ck 6 1.a even 1 1 trivial
7600.2.a.ck 6 5.b even 2 1 inner
9025.2.a.bx 6 76.d even 2 1
9025.2.a.bx 6 380.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7600))\):

\( T_{3}^{6} - 16 T_{3}^{4} + 60 T_{3}^{2} - 16 \)
\( T_{7}^{6} - 19 T_{7}^{4} + 104 T_{7}^{2} - 144 \)
\( T_{11}^{3} + T_{11}^{2} - 16 T_{11} - 12 \)
\( T_{13}^{6} - 28 T_{13}^{4} + 236 T_{13}^{2} - 576 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \)
$3$ \( -16 + 60 T^{2} - 16 T^{4} + T^{6} \)
$5$ \( T^{6} \)
$7$ \( -144 + 104 T^{2} - 19 T^{4} + T^{6} \)
$11$ \( ( -12 - 16 T + T^{2} + T^{3} )^{2} \)
$13$ \( -576 + 236 T^{2} - 28 T^{4} + T^{6} \)
$17$ \( -5184 + 1008 T^{2} - 59 T^{4} + T^{6} \)
$19$ \( ( -1 + T )^{6} \)
$23$ \( -64 + 208 T^{2} - 36 T^{4} + T^{6} \)
$29$ \( ( -6 + T )^{6} \)
$31$ \( ( -128 - 56 T + T^{3} )^{2} \)
$37$ \( -1296 + 764 T^{2} - 56 T^{4} + T^{6} \)
$41$ \( ( -24 - 44 T - 6 T^{2} + T^{3} )^{2} \)
$43$ \( -144 + 104 T^{2} - 19 T^{4} + T^{6} \)
$47$ \( -85264 + 7464 T^{2} - 187 T^{4} + T^{6} \)
$53$ \( -64 + 2476 T^{2} - 156 T^{4} + T^{6} \)
$59$ \( ( -48 + 8 T + 10 T^{2} + T^{3} )^{2} \)
$61$ \( ( -776 - 104 T + 7 T^{2} + T^{3} )^{2} \)
$67$ \( -484416 + 28556 T^{2} - 340 T^{4} + T^{6} \)
$71$ \( ( 432 + 200 T + 26 T^{2} + T^{3} )^{2} \)
$73$ \( -5184 + 1616 T^{2} - 131 T^{4} + T^{6} \)
$79$ \( ( 32 - 8 T - 12 T^{2} + T^{3} )^{2} \)
$83$ \( -141376 + 11728 T^{2} - 228 T^{4} + T^{6} \)
$89$ \( ( 3456 - 284 T - 12 T^{2} + T^{3} )^{2} \)
$97$ \( -576 + 236 T^{2} - 28 T^{4} + T^{6} \)
show more
show less