# Properties

 Label 7600.2.a.ck Level $7600$ Weight $2$ Character orbit 7600.a Self dual yes Analytic conductor $60.686$ Analytic rank $0$ Dimension $6$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$7600 = 2^{4} \cdot 5^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 7600.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$60.6863055362$$ Analytic rank: $$0$$ Dimension: $$6$$ Coefficient field: 6.6.66064384.1 Defining polynomial: $$x^{6} - 9 x^{4} + 13 x^{2} - 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$2^{2}$$ Twist minimal: no (minimal twist has level 95) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\ldots,\beta_{5}$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -\beta_{5} q^{3} + ( -\beta_{2} - \beta_{5} ) q^{7} + ( 3 + \beta_{1} - \beta_{3} ) q^{9} +O(q^{10})$$ $$q -\beta_{5} q^{3} + ( -\beta_{2} - \beta_{5} ) q^{7} + ( 3 + \beta_{1} - \beta_{3} ) q^{9} + \beta_{1} q^{11} + ( -\beta_{2} + \beta_{4} - \beta_{5} ) q^{13} + ( -2 \beta_{2} + \beta_{4} - \beta_{5} ) q^{17} + q^{19} + ( 4 + \beta_{1} - \beta_{3} ) q^{21} + ( -\beta_{2} + \beta_{4} ) q^{23} + ( -2 \beta_{2} + 2 \beta_{4} - 4 \beta_{5} ) q^{27} + 6 q^{29} + ( \beta_{1} + \beta_{3} ) q^{31} -2 \beta_{4} q^{33} + ( -\beta_{2} - \beta_{4} - \beta_{5} ) q^{37} + ( 2 - 2 \beta_{3} ) q^{39} + ( 2 + \beta_{1} + \beta_{3} ) q^{41} + ( \beta_{2} + \beta_{5} ) q^{43} + ( 3 \beta_{2} - \beta_{5} ) q^{47} + ( -1 - \beta_{1} ) q^{49} -2 \beta_{3} q^{51} + ( -3 \beta_{2} - \beta_{4} - \beta_{5} ) q^{53} -\beta_{5} q^{57} + ( -4 - \beta_{1} + \beta_{3} ) q^{59} + ( -2 + 2 \beta_{1} + \beta_{3} ) q^{61} + ( \beta_{2} + 2 \beta_{4} - 5 \beta_{5} ) q^{63} + ( 2 \beta_{2} + 5 \beta_{5} ) q^{67} + ( -4 - \beta_{1} - \beta_{3} ) q^{69} + ( -8 + \beta_{1} - \beta_{3} ) q^{71} + ( \beta_{4} - 3 \beta_{5} ) q^{73} + ( 4 \beta_{2} - \beta_{4} + \beta_{5} ) q^{77} + ( 4 + \beta_{1} + \beta_{3} ) q^{79} + ( 7 - \beta_{1} - 3 \beta_{3} ) q^{81} + ( -\beta_{2} - 3 \beta_{4} ) q^{83} -6 \beta_{5} q^{87} + ( 2 - 2 \beta_{1} + 4 \beta_{3} ) q^{89} + ( 4 - \beta_{1} - \beta_{3} ) q^{91} + ( 2 \beta_{2} - 6 \beta_{4} + 4 \beta_{5} ) q^{93} + ( -\beta_{2} + \beta_{4} - \beta_{5} ) q^{97} + ( 4 - \beta_{1} + 2 \beta_{3} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$6q + 14q^{9} + O(q^{10})$$ $$6q + 14q^{9} - 2q^{11} + 6q^{19} + 20q^{21} + 36q^{29} + 8q^{39} + 12q^{41} - 4q^{49} - 4q^{51} - 20q^{59} - 14q^{61} - 24q^{69} - 52q^{71} + 24q^{79} + 38q^{81} + 24q^{89} + 24q^{91} + 30q^{99} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{6} - 9 x^{4} + 13 x^{2} - 1$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$($$$$\nu^{4} - 6 \nu^{2} - 1$$$$)/2$$ $$\beta_{2}$$ $$=$$ $$($$$$\nu^{5} - 8 \nu^{3} + 5 \nu$$$$)/2$$ $$\beta_{3}$$ $$=$$ $$($$$$-\nu^{4} + 10 \nu^{2} - 11$$$$)/2$$ $$\beta_{4}$$ $$=$$ $$($$$$\nu^{5} - 8 \nu^{3} + 9 \nu$$$$)/2$$ $$\beta_{5}$$ $$=$$ $$-\nu^{5} + 9 \nu^{3} - 12 \nu$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$($$$$\beta_{4} - \beta_{2}$$$$)/2$$ $$\nu^{2}$$ $$=$$ $$($$$$\beta_{3} + \beta_{1} + 6$$$$)/2$$ $$\nu^{3}$$ $$=$$ $$($$$$2 \beta_{5} + 7 \beta_{4} - 3 \beta_{2}$$$$)/2$$ $$\nu^{4}$$ $$=$$ $$3 \beta_{3} + 5 \beta_{1} + 19$$ $$\nu^{5}$$ $$=$$ $$($$$$16 \beta_{5} + 51 \beta_{4} - 15 \beta_{2}$$$$)/2$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −0.285442 2.68667 1.30397 −1.30397 −2.68667 0.285442
0 −3.21789 0 0 0 −2.59637 0 7.35482 0
1.2 0 −2.31446 0 0 0 −1.45033 0 2.35673 0
1.3 0 −0.537080 0 0 0 3.18676 0 −2.71155 0
1.4 0 0.537080 0 0 0 −3.18676 0 −2.71155 0
1.5 0 2.31446 0 0 0 1.45033 0 2.35673 0
1.6 0 3.21789 0 0 0 2.59637 0 7.35482 0
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 1.6 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$5$$ $$-1$$
$$19$$ $$-1$$

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7600.2.a.ck 6
4.b odd 2 1 475.2.a.j 6
5.b even 2 1 inner 7600.2.a.ck 6
5.c odd 4 2 1520.2.d.h 6
12.b even 2 1 4275.2.a.br 6
20.d odd 2 1 475.2.a.j 6
20.e even 4 2 95.2.b.b 6
60.h even 2 1 4275.2.a.br 6
60.l odd 4 2 855.2.c.d 6
76.d even 2 1 9025.2.a.bx 6
380.d even 2 1 9025.2.a.bx 6
380.j odd 4 2 1805.2.b.e 6

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
95.2.b.b 6 20.e even 4 2
475.2.a.j 6 4.b odd 2 1
475.2.a.j 6 20.d odd 2 1
855.2.c.d 6 60.l odd 4 2
1520.2.d.h 6 5.c odd 4 2
1805.2.b.e 6 380.j odd 4 2
4275.2.a.br 6 12.b even 2 1
4275.2.a.br 6 60.h even 2 1
7600.2.a.ck 6 1.a even 1 1 trivial
7600.2.a.ck 6 5.b even 2 1 inner
9025.2.a.bx 6 76.d even 2 1
9025.2.a.bx 6 380.d even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(7600))$$:

 $$T_{3}^{6} - 16 T_{3}^{4} + 60 T_{3}^{2} - 16$$ $$T_{7}^{6} - 19 T_{7}^{4} + 104 T_{7}^{2} - 144$$ $$T_{11}^{3} + T_{11}^{2} - 16 T_{11} - 12$$ $$T_{13}^{6} - 28 T_{13}^{4} + 236 T_{13}^{2} - 576$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{6}$$
$3$ $$-16 + 60 T^{2} - 16 T^{4} + T^{6}$$
$5$ $$T^{6}$$
$7$ $$-144 + 104 T^{2} - 19 T^{4} + T^{6}$$
$11$ $$( -12 - 16 T + T^{2} + T^{3} )^{2}$$
$13$ $$-576 + 236 T^{2} - 28 T^{4} + T^{6}$$
$17$ $$-5184 + 1008 T^{2} - 59 T^{4} + T^{6}$$
$19$ $$( -1 + T )^{6}$$
$23$ $$-64 + 208 T^{2} - 36 T^{4} + T^{6}$$
$29$ $$( -6 + T )^{6}$$
$31$ $$( -128 - 56 T + T^{3} )^{2}$$
$37$ $$-1296 + 764 T^{2} - 56 T^{4} + T^{6}$$
$41$ $$( -24 - 44 T - 6 T^{2} + T^{3} )^{2}$$
$43$ $$-144 + 104 T^{2} - 19 T^{4} + T^{6}$$
$47$ $$-85264 + 7464 T^{2} - 187 T^{4} + T^{6}$$
$53$ $$-64 + 2476 T^{2} - 156 T^{4} + T^{6}$$
$59$ $$( -48 + 8 T + 10 T^{2} + T^{3} )^{2}$$
$61$ $$( -776 - 104 T + 7 T^{2} + T^{3} )^{2}$$
$67$ $$-484416 + 28556 T^{2} - 340 T^{4} + T^{6}$$
$71$ $$( 432 + 200 T + 26 T^{2} + T^{3} )^{2}$$
$73$ $$-5184 + 1616 T^{2} - 131 T^{4} + T^{6}$$
$79$ $$( 32 - 8 T - 12 T^{2} + T^{3} )^{2}$$
$83$ $$-141376 + 11728 T^{2} - 228 T^{4} + T^{6}$$
$89$ $$( 3456 - 284 T - 12 T^{2} + T^{3} )^{2}$$
$97$ $$-576 + 236 T^{2} - 28 T^{4} + T^{6}$$