Properties

Label 7600.2.a.ck.1.2
Level $7600$
Weight $2$
Character 7600.1
Self dual yes
Analytic conductor $60.686$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7600,2,Mod(1,7600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7600.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7600 = 2^{4} \cdot 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7600.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.6863055362\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.66064384.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 9x^{4} + 13x^{2} - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 95)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.68667\) of defining polynomial
Character \(\chi\) \(=\) 7600.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.31446 q^{3} -1.45033 q^{7} +2.35673 q^{9} +3.89655 q^{11} +3.05888 q^{13} +3.92301 q^{17} +1.00000 q^{19} +3.35673 q^{21} +5.37334 q^{23} +1.48883 q^{27} +6.00000 q^{29} +8.43637 q^{31} -9.01841 q^{33} -5.95953 q^{37} -7.07965 q^{39} +10.4364 q^{41} +1.45033 q^{43} -4.90686 q^{47} -4.89655 q^{49} -9.07965 q^{51} -4.23127 q^{53} -2.31446 q^{57} -3.35673 q^{59} +10.3329 q^{61} -3.41802 q^{63} +9.84404 q^{67} -12.4364 q^{69} -8.64327 q^{71} -2.43418 q^{73} -5.65127 q^{77} +12.4364 q^{79} -10.5160 q^{81} -12.6635 q^{83} -13.8868 q^{87} +12.3662 q^{89} -4.43637 q^{91} -19.5256 q^{93} +3.05888 q^{97} +9.18310 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 14 q^{9} - 2 q^{11} + 6 q^{19} + 20 q^{21} + 36 q^{29} + 8 q^{39} + 12 q^{41} - 4 q^{49} - 4 q^{51} - 20 q^{59} - 14 q^{61} - 24 q^{69} - 52 q^{71} + 24 q^{79} + 38 q^{81} + 24 q^{89} + 24 q^{91}+ \cdots + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.31446 −1.33625 −0.668127 0.744047i \(-0.732904\pi\)
−0.668127 + 0.744047i \(0.732904\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −1.45033 −0.548172 −0.274086 0.961705i \(-0.588375\pi\)
−0.274086 + 0.961705i \(0.588375\pi\)
\(8\) 0 0
\(9\) 2.35673 0.785575
\(10\) 0 0
\(11\) 3.89655 1.17485 0.587427 0.809277i \(-0.300141\pi\)
0.587427 + 0.809277i \(0.300141\pi\)
\(12\) 0 0
\(13\) 3.05888 0.848380 0.424190 0.905573i \(-0.360559\pi\)
0.424190 + 0.905573i \(0.360559\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.92301 0.951469 0.475735 0.879589i \(-0.342182\pi\)
0.475735 + 0.879589i \(0.342182\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) 3.35673 0.732498
\(22\) 0 0
\(23\) 5.37334 1.12042 0.560209 0.828351i \(-0.310721\pi\)
0.560209 + 0.828351i \(0.310721\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.48883 0.286526
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) 8.43637 1.51522 0.757609 0.652709i \(-0.226368\pi\)
0.757609 + 0.652709i \(0.226368\pi\)
\(32\) 0 0
\(33\) −9.01841 −1.56990
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −5.95953 −0.979741 −0.489871 0.871795i \(-0.662956\pi\)
−0.489871 + 0.871795i \(0.662956\pi\)
\(38\) 0 0
\(39\) −7.07965 −1.13365
\(40\) 0 0
\(41\) 10.4364 1.62989 0.814944 0.579540i \(-0.196768\pi\)
0.814944 + 0.579540i \(0.196768\pi\)
\(42\) 0 0
\(43\) 1.45033 0.221173 0.110586 0.993867i \(-0.464727\pi\)
0.110586 + 0.993867i \(0.464727\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.90686 −0.715739 −0.357869 0.933772i \(-0.616497\pi\)
−0.357869 + 0.933772i \(0.616497\pi\)
\(48\) 0 0
\(49\) −4.89655 −0.699507
\(50\) 0 0
\(51\) −9.07965 −1.27140
\(52\) 0 0
\(53\) −4.23127 −0.581209 −0.290605 0.956843i \(-0.593856\pi\)
−0.290605 + 0.956843i \(0.593856\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −2.31446 −0.306558
\(58\) 0 0
\(59\) −3.35673 −0.437008 −0.218504 0.975836i \(-0.570118\pi\)
−0.218504 + 0.975836i \(0.570118\pi\)
\(60\) 0 0
\(61\) 10.3329 1.32300 0.661498 0.749947i \(-0.269921\pi\)
0.661498 + 0.749947i \(0.269921\pi\)
\(62\) 0 0
\(63\) −3.41802 −0.430631
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 9.84404 1.20264 0.601320 0.799008i \(-0.294642\pi\)
0.601320 + 0.799008i \(0.294642\pi\)
\(68\) 0 0
\(69\) −12.4364 −1.49716
\(70\) 0 0
\(71\) −8.64327 −1.02577 −0.512884 0.858458i \(-0.671423\pi\)
−0.512884 + 0.858458i \(0.671423\pi\)
\(72\) 0 0
\(73\) −2.43418 −0.284899 −0.142449 0.989802i \(-0.545498\pi\)
−0.142449 + 0.989802i \(0.545498\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −5.65127 −0.644022
\(78\) 0 0
\(79\) 12.4364 1.39920 0.699601 0.714534i \(-0.253361\pi\)
0.699601 + 0.714534i \(0.253361\pi\)
\(80\) 0 0
\(81\) −10.5160 −1.16845
\(82\) 0 0
\(83\) −12.6635 −1.39000 −0.694999 0.719011i \(-0.744595\pi\)
−0.694999 + 0.719011i \(0.744595\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −13.8868 −1.48882
\(88\) 0 0
\(89\) 12.3662 1.31081 0.655407 0.755276i \(-0.272497\pi\)
0.655407 + 0.755276i \(0.272497\pi\)
\(90\) 0 0
\(91\) −4.43637 −0.465058
\(92\) 0 0
\(93\) −19.5256 −2.02472
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 3.05888 0.310582 0.155291 0.987869i \(-0.450369\pi\)
0.155291 + 0.987869i \(0.450369\pi\)
\(98\) 0 0
\(99\) 9.18310 0.922936
\(100\) 0 0
\(101\) 3.35673 0.334007 0.167003 0.985956i \(-0.446591\pi\)
0.167003 + 0.985956i \(0.446591\pi\)
\(102\) 0 0
\(103\) −13.0611 −1.28695 −0.643476 0.765466i \(-0.722508\pi\)
−0.643476 + 0.765466i \(0.722508\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.77099 0.557903 0.278951 0.960305i \(-0.410013\pi\)
0.278951 + 0.960305i \(0.410013\pi\)
\(108\) 0 0
\(109\) 6.64327 0.636310 0.318155 0.948039i \(-0.396937\pi\)
0.318155 + 0.948039i \(0.396937\pi\)
\(110\) 0 0
\(111\) 13.7931 1.30918
\(112\) 0 0
\(113\) −9.41606 −0.885789 −0.442894 0.896574i \(-0.646048\pi\)
−0.442894 + 0.896574i \(0.646048\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 7.20893 0.666466
\(118\) 0 0
\(119\) −5.68965 −0.521569
\(120\) 0 0
\(121\) 4.18310 0.380282
\(122\) 0 0
\(123\) −24.1546 −2.17794
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −11.0934 −0.984383 −0.492192 0.870487i \(-0.663804\pi\)
−0.492192 + 0.870487i \(0.663804\pi\)
\(128\) 0 0
\(129\) −3.35673 −0.295543
\(130\) 0 0
\(131\) −4.61000 −0.402778 −0.201389 0.979511i \(-0.564545\pi\)
−0.201389 + 0.979511i \(0.564545\pi\)
\(132\) 0 0
\(133\) −1.45033 −0.125759
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −13.1808 −1.12612 −0.563058 0.826417i \(-0.690375\pi\)
−0.563058 + 0.826417i \(0.690375\pi\)
\(138\) 0 0
\(139\) −1.18310 −0.100349 −0.0501745 0.998740i \(-0.515978\pi\)
−0.0501745 + 0.998740i \(0.515978\pi\)
\(140\) 0 0
\(141\) 11.3567 0.956409
\(142\) 0 0
\(143\) 11.9191 0.996722
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 11.3329 0.934719
\(148\) 0 0
\(149\) 5.46018 0.447315 0.223658 0.974668i \(-0.428200\pi\)
0.223658 + 0.974668i \(0.428200\pi\)
\(150\) 0 0
\(151\) 5.07965 0.413376 0.206688 0.978407i \(-0.433732\pi\)
0.206688 + 0.978407i \(0.433732\pi\)
\(152\) 0 0
\(153\) 9.24546 0.747451
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 6.11775 0.488250 0.244125 0.969744i \(-0.421499\pi\)
0.244125 + 0.969744i \(0.421499\pi\)
\(158\) 0 0
\(159\) 9.79310 0.776643
\(160\) 0 0
\(161\) −7.79310 −0.614182
\(162\) 0 0
\(163\) 16.4365 1.28740 0.643701 0.765277i \(-0.277398\pi\)
0.643701 + 0.765277i \(0.277398\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.80329 0.294308 0.147154 0.989114i \(-0.452989\pi\)
0.147154 + 0.989114i \(0.452989\pi\)
\(168\) 0 0
\(169\) −3.64327 −0.280252
\(170\) 0 0
\(171\) 2.35673 0.180223
\(172\) 0 0
\(173\) −11.3838 −0.865491 −0.432746 0.901516i \(-0.642455\pi\)
−0.432746 + 0.901516i \(0.642455\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 7.76901 0.583954
\(178\) 0 0
\(179\) −10.0702 −0.752680 −0.376340 0.926482i \(-0.622818\pi\)
−0.376340 + 0.926482i \(0.622818\pi\)
\(180\) 0 0
\(181\) 0.573097 0.0425980 0.0212990 0.999773i \(-0.493220\pi\)
0.0212990 + 0.999773i \(0.493220\pi\)
\(182\) 0 0
\(183\) −23.9151 −1.76786
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 15.2862 1.11784
\(188\) 0 0
\(189\) −2.15930 −0.157066
\(190\) 0 0
\(191\) 3.18310 0.230321 0.115160 0.993347i \(-0.463262\pi\)
0.115160 + 0.993347i \(0.463262\pi\)
\(192\) 0 0
\(193\) 3.05888 0.220183 0.110091 0.993921i \(-0.464886\pi\)
0.110091 + 0.993921i \(0.464886\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 21.4933 1.53134 0.765669 0.643235i \(-0.222408\pi\)
0.765669 + 0.643235i \(0.222408\pi\)
\(198\) 0 0
\(199\) 4.81690 0.341461 0.170731 0.985318i \(-0.445387\pi\)
0.170731 + 0.985318i \(0.445387\pi\)
\(200\) 0 0
\(201\) −22.7836 −1.60703
\(202\) 0 0
\(203\) −8.70197 −0.610758
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 12.6635 0.880173
\(208\) 0 0
\(209\) 3.89655 0.269530
\(210\) 0 0
\(211\) −10.5066 −0.723301 −0.361650 0.932314i \(-0.617787\pi\)
−0.361650 + 0.932314i \(0.617787\pi\)
\(212\) 0 0
\(213\) 20.0045 1.37069
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −12.2355 −0.830600
\(218\) 0 0
\(219\) 5.63380 0.380697
\(220\) 0 0
\(221\) 12.0000 0.807207
\(222\) 0 0
\(223\) 16.8947 1.13136 0.565678 0.824626i \(-0.308615\pi\)
0.565678 + 0.824626i \(0.308615\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −17.1342 −1.13724 −0.568618 0.822602i \(-0.692522\pi\)
−0.568618 + 0.822602i \(0.692522\pi\)
\(228\) 0 0
\(229\) 25.0464 1.65511 0.827555 0.561384i \(-0.189731\pi\)
0.827555 + 0.561384i \(0.189731\pi\)
\(230\) 0 0
\(231\) 13.0796 0.860578
\(232\) 0 0
\(233\) 19.2986 1.26429 0.632147 0.774849i \(-0.282174\pi\)
0.632147 + 0.774849i \(0.282174\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −28.7835 −1.86969
\(238\) 0 0
\(239\) −18.7693 −1.21408 −0.607042 0.794669i \(-0.707644\pi\)
−0.607042 + 0.794669i \(0.707644\pi\)
\(240\) 0 0
\(241\) −14.4364 −0.929929 −0.464964 0.885329i \(-0.653933\pi\)
−0.464964 + 0.885329i \(0.653933\pi\)
\(242\) 0 0
\(243\) 19.8724 1.27482
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 3.05888 0.194632
\(248\) 0 0
\(249\) 29.3091 1.85739
\(250\) 0 0
\(251\) 10.9762 0.692811 0.346406 0.938085i \(-0.387402\pi\)
0.346406 + 0.938085i \(0.387402\pi\)
\(252\) 0 0
\(253\) 20.9375 1.31633
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −17.6392 −1.10030 −0.550150 0.835066i \(-0.685430\pi\)
−0.550150 + 0.835066i \(0.685430\pi\)
\(258\) 0 0
\(259\) 8.64327 0.537067
\(260\) 0 0
\(261\) 14.1404 0.875266
\(262\) 0 0
\(263\) 1.68976 0.104195 0.0520975 0.998642i \(-0.483409\pi\)
0.0520975 + 0.998642i \(0.483409\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −28.6211 −1.75158
\(268\) 0 0
\(269\) −27.1022 −1.65245 −0.826226 0.563339i \(-0.809516\pi\)
−0.826226 + 0.563339i \(0.809516\pi\)
\(270\) 0 0
\(271\) −23.9524 −1.45500 −0.727502 0.686105i \(-0.759319\pi\)
−0.727502 + 0.686105i \(0.759319\pi\)
\(272\) 0 0
\(273\) 10.2678 0.621436
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 8.23549 0.494822 0.247411 0.968911i \(-0.420420\pi\)
0.247411 + 0.968911i \(0.420420\pi\)
\(278\) 0 0
\(279\) 19.8822 1.19032
\(280\) 0 0
\(281\) −10.4364 −0.622582 −0.311291 0.950315i \(-0.600761\pi\)
−0.311291 + 0.950315i \(0.600761\pi\)
\(282\) 0 0
\(283\) 10.4687 0.622302 0.311151 0.950361i \(-0.399286\pi\)
0.311151 + 0.950361i \(0.399286\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −15.1362 −0.893459
\(288\) 0 0
\(289\) −1.61000 −0.0947059
\(290\) 0 0
\(291\) −7.07965 −0.415016
\(292\) 0 0
\(293\) −16.4668 −0.961999 −0.481000 0.876721i \(-0.659726\pi\)
−0.481000 + 0.876721i \(0.659726\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 5.80131 0.336626
\(298\) 0 0
\(299\) 16.4364 0.950540
\(300\) 0 0
\(301\) −2.10345 −0.121241
\(302\) 0 0
\(303\) −7.76901 −0.446318
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −7.87634 −0.449526 −0.224763 0.974413i \(-0.572161\pi\)
−0.224763 + 0.974413i \(0.572161\pi\)
\(308\) 0 0
\(309\) 30.2295 1.71969
\(310\) 0 0
\(311\) −3.89655 −0.220953 −0.110477 0.993879i \(-0.535238\pi\)
−0.110477 + 0.993879i \(0.535238\pi\)
\(312\) 0 0
\(313\) 7.76901 0.439130 0.219565 0.975598i \(-0.429536\pi\)
0.219565 + 0.975598i \(0.429536\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 19.0510 1.07001 0.535005 0.844849i \(-0.320310\pi\)
0.535005 + 0.844849i \(0.320310\pi\)
\(318\) 0 0
\(319\) 23.3793 1.30899
\(320\) 0 0
\(321\) −13.3567 −0.745500
\(322\) 0 0
\(323\) 3.92301 0.218282
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −15.3756 −0.850272
\(328\) 0 0
\(329\) 7.11655 0.392348
\(330\) 0 0
\(331\) −8.00000 −0.439720 −0.219860 0.975531i \(-0.570560\pi\)
−0.219860 + 0.975531i \(0.570560\pi\)
\(332\) 0 0
\(333\) −14.0450 −0.769660
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −6.89249 −0.375458 −0.187729 0.982221i \(-0.560113\pi\)
−0.187729 + 0.982221i \(0.560113\pi\)
\(338\) 0 0
\(339\) 21.7931 1.18364
\(340\) 0 0
\(341\) 32.8727 1.78016
\(342\) 0 0
\(343\) 17.2539 0.931623
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 30.5503 1.64002 0.820012 0.572346i \(-0.193967\pi\)
0.820012 + 0.572346i \(0.193967\pi\)
\(348\) 0 0
\(349\) 16.7693 0.897640 0.448820 0.893622i \(-0.351844\pi\)
0.448820 + 0.893622i \(0.351844\pi\)
\(350\) 0 0
\(351\) 4.55416 0.243083
\(352\) 0 0
\(353\) 29.0999 1.54883 0.774417 0.632676i \(-0.218044\pi\)
0.774417 + 0.632676i \(0.218044\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 13.1685 0.696949
\(358\) 0 0
\(359\) 11.6896 0.616956 0.308478 0.951231i \(-0.400180\pi\)
0.308478 + 0.951231i \(0.400180\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) −9.68161 −0.508153
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 4.20095 0.219288 0.109644 0.993971i \(-0.465029\pi\)
0.109644 + 0.993971i \(0.465029\pi\)
\(368\) 0 0
\(369\) 24.5957 1.28040
\(370\) 0 0
\(371\) 6.13672 0.318603
\(372\) 0 0
\(373\) −16.9456 −0.877412 −0.438706 0.898631i \(-0.644563\pi\)
−0.438706 + 0.898631i \(0.644563\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 18.3533 0.945241
\(378\) 0 0
\(379\) −10.3662 −0.532476 −0.266238 0.963907i \(-0.585781\pi\)
−0.266238 + 0.963907i \(0.585781\pi\)
\(380\) 0 0
\(381\) 25.6753 1.31539
\(382\) 0 0
\(383\) −20.5907 −1.05214 −0.526068 0.850442i \(-0.676334\pi\)
−0.526068 + 0.850442i \(0.676334\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 3.41802 0.173748
\(388\) 0 0
\(389\) 8.10345 0.410861 0.205431 0.978672i \(-0.434141\pi\)
0.205431 + 0.978672i \(0.434141\pi\)
\(390\) 0 0
\(391\) 21.0796 1.06604
\(392\) 0 0
\(393\) 10.6697 0.538213
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 3.46891 0.174100 0.0870499 0.996204i \(-0.472256\pi\)
0.0870499 + 0.996204i \(0.472256\pi\)
\(398\) 0 0
\(399\) 3.35673 0.168046
\(400\) 0 0
\(401\) −15.9524 −0.796625 −0.398312 0.917250i \(-0.630404\pi\)
−0.398312 + 0.917250i \(0.630404\pi\)
\(402\) 0 0
\(403\) 25.8058 1.28548
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −23.2216 −1.15105
\(408\) 0 0
\(409\) −3.92982 −0.194317 −0.0971586 0.995269i \(-0.530975\pi\)
−0.0971586 + 0.995269i \(0.530975\pi\)
\(410\) 0 0
\(411\) 30.5066 1.50478
\(412\) 0 0
\(413\) 4.86835 0.239556
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 2.73823 0.134092
\(418\) 0 0
\(419\) 34.2996 1.67565 0.837824 0.545941i \(-0.183828\pi\)
0.837824 + 0.545941i \(0.183828\pi\)
\(420\) 0 0
\(421\) −26.0891 −1.27151 −0.635753 0.771893i \(-0.719310\pi\)
−0.635753 + 0.771893i \(0.719310\pi\)
\(422\) 0 0
\(423\) −11.5641 −0.562267
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −14.9861 −0.725229
\(428\) 0 0
\(429\) −27.5862 −1.33187
\(430\) 0 0
\(431\) −10.2996 −0.496117 −0.248058 0.968745i \(-0.579792\pi\)
−0.248058 + 0.968745i \(0.579792\pi\)
\(432\) 0 0
\(433\) −36.2319 −1.74119 −0.870596 0.491999i \(-0.836266\pi\)
−0.870596 + 0.491999i \(0.836266\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.37334 0.257042
\(438\) 0 0
\(439\) 24.0891 1.14971 0.574855 0.818255i \(-0.305058\pi\)
0.574855 + 0.818255i \(0.305058\pi\)
\(440\) 0 0
\(441\) −11.5398 −0.549515
\(442\) 0 0
\(443\) 5.52337 0.262423 0.131212 0.991354i \(-0.458113\pi\)
0.131212 + 0.991354i \(0.458113\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −12.6374 −0.597727
\(448\) 0 0
\(449\) 7.92982 0.374231 0.187116 0.982338i \(-0.440086\pi\)
0.187116 + 0.982338i \(0.440086\pi\)
\(450\) 0 0
\(451\) 40.6658 1.91488
\(452\) 0 0
\(453\) −11.7566 −0.552375
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −22.6534 −1.05968 −0.529840 0.848098i \(-0.677748\pi\)
−0.529840 + 0.848098i \(0.677748\pi\)
\(458\) 0 0
\(459\) 5.84070 0.272621
\(460\) 0 0
\(461\) 13.3900 0.623634 0.311817 0.950142i \(-0.399062\pi\)
0.311817 + 0.950142i \(0.399062\pi\)
\(462\) 0 0
\(463\) 16.9029 0.785546 0.392773 0.919635i \(-0.371516\pi\)
0.392773 + 0.919635i \(0.371516\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 22.2501 1.02961 0.514807 0.857306i \(-0.327864\pi\)
0.514807 + 0.857306i \(0.327864\pi\)
\(468\) 0 0
\(469\) −14.2771 −0.659254
\(470\) 0 0
\(471\) −14.1593 −0.652426
\(472\) 0 0
\(473\) 5.65127 0.259846
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −9.97194 −0.456584
\(478\) 0 0
\(479\) −0.366196 −0.0167319 −0.00836597 0.999965i \(-0.502663\pi\)
−0.00836597 + 0.999965i \(0.502663\pi\)
\(480\) 0 0
\(481\) −18.2295 −0.831192
\(482\) 0 0
\(483\) 18.0368 0.820704
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 26.8461 1.21651 0.608257 0.793740i \(-0.291869\pi\)
0.608257 + 0.793740i \(0.291869\pi\)
\(488\) 0 0
\(489\) −38.0415 −1.72030
\(490\) 0 0
\(491\) 23.7266 1.07076 0.535382 0.844610i \(-0.320168\pi\)
0.535382 + 0.844610i \(0.320168\pi\)
\(492\) 0 0
\(493\) 23.5381 1.06010
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 12.5356 0.562298
\(498\) 0 0
\(499\) −6.81690 −0.305166 −0.152583 0.988291i \(-0.548759\pi\)
−0.152583 + 0.988291i \(0.548759\pi\)
\(500\) 0 0
\(501\) −8.80257 −0.393270
\(502\) 0 0
\(503\) 23.4102 1.04381 0.521904 0.853004i \(-0.325222\pi\)
0.521904 + 0.853004i \(0.325222\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 8.43221 0.374488
\(508\) 0 0
\(509\) 16.9204 0.749981 0.374991 0.927029i \(-0.377646\pi\)
0.374991 + 0.927029i \(0.377646\pi\)
\(510\) 0 0
\(511\) 3.53035 0.156174
\(512\) 0 0
\(513\) 1.48883 0.0657336
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −19.1198 −0.840888
\(518\) 0 0
\(519\) 26.3473 1.15652
\(520\) 0 0
\(521\) −3.49345 −0.153051 −0.0765254 0.997068i \(-0.524383\pi\)
−0.0765254 + 0.997068i \(0.524383\pi\)
\(522\) 0 0
\(523\) 14.9271 0.652714 0.326357 0.945247i \(-0.394179\pi\)
0.326357 + 0.945247i \(0.394179\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 33.0960 1.44168
\(528\) 0 0
\(529\) 5.87275 0.255337
\(530\) 0 0
\(531\) −7.91088 −0.343303
\(532\) 0 0
\(533\) 31.9236 1.38276
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 23.3070 1.00577
\(538\) 0 0
\(539\) −19.0796 −0.821819
\(540\) 0 0
\(541\) −12.6991 −0.545978 −0.272989 0.962017i \(-0.588012\pi\)
−0.272989 + 0.962017i \(0.588012\pi\)
\(542\) 0 0
\(543\) −1.32641 −0.0569217
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 31.8162 1.36036 0.680182 0.733043i \(-0.261901\pi\)
0.680182 + 0.733043i \(0.261901\pi\)
\(548\) 0 0
\(549\) 24.3519 1.03931
\(550\) 0 0
\(551\) 6.00000 0.255609
\(552\) 0 0
\(553\) −18.0368 −0.767003
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −9.64731 −0.408770 −0.204385 0.978891i \(-0.565519\pi\)
−0.204385 + 0.978891i \(0.565519\pi\)
\(558\) 0 0
\(559\) 4.43637 0.187639
\(560\) 0 0
\(561\) −35.3793 −1.49372
\(562\) 0 0
\(563\) 4.28216 0.180471 0.0902357 0.995920i \(-0.471238\pi\)
0.0902357 + 0.995920i \(0.471238\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 15.2517 0.640510
\(568\) 0 0
\(569\) 42.2295 1.77035 0.885176 0.465257i \(-0.154038\pi\)
0.885176 + 0.465257i \(0.154038\pi\)
\(570\) 0 0
\(571\) 19.2200 0.804332 0.402166 0.915567i \(-0.368257\pi\)
0.402166 + 0.915567i \(0.368257\pi\)
\(572\) 0 0
\(573\) −7.36715 −0.307767
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −40.7919 −1.69819 −0.849096 0.528239i \(-0.822852\pi\)
−0.849096 + 0.528239i \(0.822852\pi\)
\(578\) 0 0
\(579\) −7.07965 −0.294220
\(580\) 0 0
\(581\) 18.3662 0.761958
\(582\) 0 0
\(583\) −16.4873 −0.682836
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 31.8851 1.31604 0.658019 0.753001i \(-0.271395\pi\)
0.658019 + 0.753001i \(0.271395\pi\)
\(588\) 0 0
\(589\) 8.43637 0.347615
\(590\) 0 0
\(591\) −49.7455 −2.04626
\(592\) 0 0
\(593\) −38.8973 −1.59732 −0.798660 0.601783i \(-0.794457\pi\)
−0.798660 + 0.601783i \(0.794457\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −11.1485 −0.456279
\(598\) 0 0
\(599\) −28.1629 −1.15071 −0.575353 0.817905i \(-0.695135\pi\)
−0.575353 + 0.817905i \(0.695135\pi\)
\(600\) 0 0
\(601\) −5.56363 −0.226945 −0.113473 0.993541i \(-0.536197\pi\)
−0.113473 + 0.993541i \(0.536197\pi\)
\(602\) 0 0
\(603\) 23.1997 0.944764
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −33.9986 −1.37996 −0.689980 0.723828i \(-0.742381\pi\)
−0.689980 + 0.723828i \(0.742381\pi\)
\(608\) 0 0
\(609\) 20.1404 0.816128
\(610\) 0 0
\(611\) −15.0095 −0.607218
\(612\) 0 0
\(613\) 17.5703 0.709659 0.354830 0.934931i \(-0.384539\pi\)
0.354830 + 0.934931i \(0.384539\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −13.0791 −0.526544 −0.263272 0.964722i \(-0.584802\pi\)
−0.263272 + 0.964722i \(0.584802\pi\)
\(618\) 0 0
\(619\) 18.9393 0.761234 0.380617 0.924733i \(-0.375712\pi\)
0.380617 + 0.924733i \(0.375712\pi\)
\(620\) 0 0
\(621\) 8.00000 0.321029
\(622\) 0 0
\(623\) −17.9350 −0.718552
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −9.01841 −0.360161
\(628\) 0 0
\(629\) −23.3793 −0.932194
\(630\) 0 0
\(631\) −31.6896 −1.26154 −0.630772 0.775968i \(-0.717262\pi\)
−0.630772 + 0.775968i \(0.717262\pi\)
\(632\) 0 0
\(633\) 24.3170 0.966514
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −14.9779 −0.593448
\(638\) 0 0
\(639\) −20.3698 −0.805818
\(640\) 0 0
\(641\) 47.9750 1.89490 0.947449 0.319908i \(-0.103652\pi\)
0.947449 + 0.319908i \(0.103652\pi\)
\(642\) 0 0
\(643\) 0.200927 0.00792378 0.00396189 0.999992i \(-0.498739\pi\)
0.00396189 + 0.999992i \(0.498739\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.58798 −0.0624299 −0.0312150 0.999513i \(-0.509938\pi\)
−0.0312150 + 0.999513i \(0.509938\pi\)
\(648\) 0 0
\(649\) −13.0796 −0.513421
\(650\) 0 0
\(651\) 28.3186 1.10989
\(652\) 0 0
\(653\) −33.5624 −1.31340 −0.656700 0.754152i \(-0.728048\pi\)
−0.656700 + 0.754152i \(0.728048\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −5.73669 −0.223809
\(658\) 0 0
\(659\) −15.3567 −0.598213 −0.299107 0.954220i \(-0.596689\pi\)
−0.299107 + 0.954220i \(0.596689\pi\)
\(660\) 0 0
\(661\) 12.8026 0.497962 0.248981 0.968508i \(-0.419904\pi\)
0.248981 + 0.968508i \(0.419904\pi\)
\(662\) 0 0
\(663\) −27.7735 −1.07863
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 32.2400 1.24834
\(668\) 0 0
\(669\) −39.1022 −1.51178
\(670\) 0 0
\(671\) 40.2627 1.55433
\(672\) 0 0
\(673\) 7.82545 0.301649 0.150824 0.988561i \(-0.451807\pi\)
0.150824 + 0.988561i \(0.451807\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 21.6516 0.832137 0.416069 0.909333i \(-0.363408\pi\)
0.416069 + 0.909333i \(0.363408\pi\)
\(678\) 0 0
\(679\) −4.43637 −0.170252
\(680\) 0 0
\(681\) 39.6564 1.51964
\(682\) 0 0
\(683\) −6.38751 −0.244411 −0.122206 0.992505i \(-0.538997\pi\)
−0.122206 + 0.992505i \(0.538997\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −57.9688 −2.21165
\(688\) 0 0
\(689\) −12.9429 −0.493086
\(690\) 0 0
\(691\) −44.4958 −1.69270 −0.846351 0.532626i \(-0.821205\pi\)
−0.846351 + 0.532626i \(0.821205\pi\)
\(692\) 0 0
\(693\) −13.3185 −0.505928
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 40.9420 1.55079
\(698\) 0 0
\(699\) −44.6658 −1.68942
\(700\) 0 0
\(701\) 17.5160 0.661571 0.330785 0.943706i \(-0.392686\pi\)
0.330785 + 0.943706i \(0.392686\pi\)
\(702\) 0 0
\(703\) −5.95953 −0.224768
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −4.86835 −0.183093
\(708\) 0 0
\(709\) 11.4269 0.429146 0.214573 0.976708i \(-0.431164\pi\)
0.214573 + 0.976708i \(0.431164\pi\)
\(710\) 0 0
\(711\) 29.3091 1.09918
\(712\) 0 0
\(713\) 45.3315 1.69768
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 43.4408 1.62233
\(718\) 0 0
\(719\) −15.8965 −0.592841 −0.296421 0.955057i \(-0.595793\pi\)
−0.296421 + 0.955057i \(0.595793\pi\)
\(720\) 0 0
\(721\) 18.9429 0.705471
\(722\) 0 0
\(723\) 33.4124 1.24262
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −41.9905 −1.55734 −0.778670 0.627434i \(-0.784105\pi\)
−0.778670 + 0.627434i \(0.784105\pi\)
\(728\) 0 0
\(729\) −14.4458 −0.535031
\(730\) 0 0
\(731\) 5.68965 0.210439
\(732\) 0 0
\(733\) −0.632884 −0.0233761 −0.0116881 0.999932i \(-0.503721\pi\)
−0.0116881 + 0.999932i \(0.503721\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 38.3578 1.41293
\(738\) 0 0
\(739\) 29.5493 1.08699 0.543494 0.839413i \(-0.317101\pi\)
0.543494 + 0.839413i \(0.317101\pi\)
\(740\) 0 0
\(741\) −7.07965 −0.260077
\(742\) 0 0
\(743\) 31.3374 1.14966 0.574829 0.818274i \(-0.305069\pi\)
0.574829 + 0.818274i \(0.305069\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −29.8443 −1.09195
\(748\) 0 0
\(749\) −8.36983 −0.305827
\(750\) 0 0
\(751\) −25.0131 −0.912741 −0.456371 0.889790i \(-0.650851\pi\)
−0.456371 + 0.889790i \(0.650851\pi\)
\(752\) 0 0
\(753\) −25.4040 −0.925772
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −32.0900 −1.16633 −0.583165 0.812354i \(-0.698186\pi\)
−0.583165 + 0.812354i \(0.698186\pi\)
\(758\) 0 0
\(759\) −48.4589 −1.75895
\(760\) 0 0
\(761\) −40.4922 −1.46784 −0.733921 0.679235i \(-0.762312\pi\)
−0.733921 + 0.679235i \(0.762312\pi\)
\(762\) 0 0
\(763\) −9.63492 −0.348808
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −10.2678 −0.370749
\(768\) 0 0
\(769\) 3.09398 0.111572 0.0557859 0.998443i \(-0.482234\pi\)
0.0557859 + 0.998443i \(0.482234\pi\)
\(770\) 0 0
\(771\) 40.8251 1.47028
\(772\) 0 0
\(773\) −1.96350 −0.0706220 −0.0353110 0.999376i \(-0.511242\pi\)
−0.0353110 + 0.999376i \(0.511242\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −20.0045 −0.717658
\(778\) 0 0
\(779\) 10.4364 0.373922
\(780\) 0 0
\(781\) −33.6789 −1.20513
\(782\) 0 0
\(783\) 8.93300 0.319239
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0.107331 0.00382595 0.00191297 0.999998i \(-0.499391\pi\)
0.00191297 + 0.999998i \(0.499391\pi\)
\(788\) 0 0
\(789\) −3.91088 −0.139231
\(790\) 0 0
\(791\) 13.6564 0.485565
\(792\) 0 0
\(793\) 31.6071 1.12240
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −8.32068 −0.294734 −0.147367 0.989082i \(-0.547080\pi\)
−0.147367 + 0.989082i \(0.547080\pi\)
\(798\) 0 0
\(799\) −19.2496 −0.681003
\(800\) 0 0
\(801\) 29.1437 1.02974
\(802\) 0 0
\(803\) −9.48489 −0.334714
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 62.7270 2.20810
\(808\) 0 0
\(809\) −27.6231 −0.971177 −0.485588 0.874188i \(-0.661395\pi\)
−0.485588 + 0.874188i \(0.661395\pi\)
\(810\) 0 0
\(811\) −23.0095 −0.807972 −0.403986 0.914765i \(-0.632376\pi\)
−0.403986 + 0.914765i \(0.632376\pi\)
\(812\) 0 0
\(813\) 55.4369 1.94426
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 1.45033 0.0507405
\(818\) 0 0
\(819\) −10.4553 −0.365338
\(820\) 0 0
\(821\) 31.1355 1.08664 0.543318 0.839527i \(-0.317168\pi\)
0.543318 + 0.839527i \(0.317168\pi\)
\(822\) 0 0
\(823\) −20.4201 −0.711800 −0.355900 0.934524i \(-0.615826\pi\)
−0.355900 + 0.934524i \(0.615826\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0.902638 0.0313878 0.0156939 0.999877i \(-0.495004\pi\)
0.0156939 + 0.999877i \(0.495004\pi\)
\(828\) 0 0
\(829\) −13.4971 −0.468773 −0.234386 0.972143i \(-0.575308\pi\)
−0.234386 + 0.972143i \(0.575308\pi\)
\(830\) 0 0
\(831\) −19.0607 −0.661209
\(832\) 0 0
\(833\) −19.2092 −0.665560
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 12.5603 0.434149
\(838\) 0 0
\(839\) −33.1022 −1.14282 −0.571408 0.820666i \(-0.693603\pi\)
−0.571408 + 0.820666i \(0.693603\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 24.1546 0.831928
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −6.06686 −0.208460
\(848\) 0 0
\(849\) −24.2295 −0.831553
\(850\) 0 0
\(851\) −32.0226 −1.09772
\(852\) 0 0
\(853\) 50.9097 1.74312 0.871558 0.490293i \(-0.163110\pi\)
0.871558 + 0.490293i \(0.163110\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 21.2333 0.725317 0.362659 0.931922i \(-0.381869\pi\)
0.362659 + 0.931922i \(0.381869\pi\)
\(858\) 0 0
\(859\) −29.4827 −1.00594 −0.502969 0.864304i \(-0.667759\pi\)
−0.502969 + 0.864304i \(0.667759\pi\)
\(860\) 0 0
\(861\) 35.0320 1.19389
\(862\) 0 0
\(863\) −25.7755 −0.877408 −0.438704 0.898632i \(-0.644562\pi\)
−0.438704 + 0.898632i \(0.644562\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 3.72628 0.126551
\(868\) 0 0
\(869\) 48.4589 1.64386
\(870\) 0 0
\(871\) 30.1117 1.02030
\(872\) 0 0
\(873\) 7.20893 0.243985
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 54.2687 1.83252 0.916261 0.400581i \(-0.131192\pi\)
0.916261 + 0.400581i \(0.131192\pi\)
\(878\) 0 0
\(879\) 38.1117 1.28548
\(880\) 0 0
\(881\) −28.4922 −0.959927 −0.479964 0.877288i \(-0.659350\pi\)
−0.479964 + 0.877288i \(0.659350\pi\)
\(882\) 0 0
\(883\) −40.5264 −1.36382 −0.681911 0.731435i \(-0.738851\pi\)
−0.681911 + 0.731435i \(0.738851\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 11.4705 0.385142 0.192571 0.981283i \(-0.438317\pi\)
0.192571 + 0.981283i \(0.438317\pi\)
\(888\) 0 0
\(889\) 16.0891 0.539612
\(890\) 0 0
\(891\) −40.9762 −1.37275
\(892\) 0 0
\(893\) −4.90686 −0.164202
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −38.0413 −1.27016
\(898\) 0 0
\(899\) 50.6182 1.68821
\(900\) 0 0
\(901\) −16.5993 −0.553003
\(902\) 0 0
\(903\) 4.86835 0.162009
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 48.1000 1.59714 0.798568 0.601905i \(-0.205591\pi\)
0.798568 + 0.601905i \(0.205591\pi\)
\(908\) 0 0
\(909\) 7.91088 0.262387
\(910\) 0 0
\(911\) 12.8062 0.424288 0.212144 0.977238i \(-0.431955\pi\)
0.212144 + 0.977238i \(0.431955\pi\)
\(912\) 0 0
\(913\) −49.3439 −1.63304
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 6.68601 0.220792
\(918\) 0 0
\(919\) 38.7135 1.27704 0.638519 0.769606i \(-0.279547\pi\)
0.638519 + 0.769606i \(0.279547\pi\)
\(920\) 0 0
\(921\) 18.2295 0.600682
\(922\) 0 0
\(923\) −26.4387 −0.870241
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −30.7815 −1.01100
\(928\) 0 0
\(929\) −36.0189 −1.18174 −0.590872 0.806766i \(-0.701216\pi\)
−0.590872 + 0.806766i \(0.701216\pi\)
\(930\) 0 0
\(931\) −4.89655 −0.160478
\(932\) 0 0
\(933\) 9.01841 0.295249
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 45.2421 1.47799 0.738997 0.673709i \(-0.235300\pi\)
0.738997 + 0.673709i \(0.235300\pi\)
\(938\) 0 0
\(939\) −17.9811 −0.586790
\(940\) 0 0
\(941\) −11.7455 −0.382892 −0.191446 0.981503i \(-0.561318\pi\)
−0.191446 + 0.981503i \(0.561318\pi\)
\(942\) 0 0
\(943\) 56.0781 1.82616
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −13.7752 −0.447635 −0.223817 0.974631i \(-0.571852\pi\)
−0.223817 + 0.974631i \(0.571852\pi\)
\(948\) 0 0
\(949\) −7.44584 −0.241702
\(950\) 0 0
\(951\) −44.0927 −1.42981
\(952\) 0 0
\(953\) −9.01421 −0.291999 −0.145999 0.989285i \(-0.546640\pi\)
−0.145999 + 0.989285i \(0.546640\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −54.1105 −1.74914
\(958\) 0 0
\(959\) 19.1166 0.617306
\(960\) 0 0
\(961\) 40.1724 1.29588
\(962\) 0 0
\(963\) 13.6006 0.438274
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 30.3232 0.975129 0.487564 0.873087i \(-0.337885\pi\)
0.487564 + 0.873087i \(0.337885\pi\)
\(968\) 0 0
\(969\) −9.07965 −0.291680
\(970\) 0 0
\(971\) 31.5636 1.01292 0.506462 0.862262i \(-0.330953\pi\)
0.506462 + 0.862262i \(0.330953\pi\)
\(972\) 0 0
\(973\) 1.71588 0.0550086
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −43.1285 −1.37980 −0.689902 0.723903i \(-0.742346\pi\)
−0.689902 + 0.723903i \(0.742346\pi\)
\(978\) 0 0
\(979\) 48.1855 1.54002
\(980\) 0 0
\(981\) 15.6564 0.499870
\(982\) 0 0
\(983\) 7.81570 0.249282 0.124641 0.992202i \(-0.460222\pi\)
0.124641 + 0.992202i \(0.460222\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −16.4710 −0.524277
\(988\) 0 0
\(989\) 7.79310 0.247806
\(990\) 0 0
\(991\) 23.5197 0.747126 0.373563 0.927605i \(-0.378136\pi\)
0.373563 + 0.927605i \(0.378136\pi\)
\(992\) 0 0
\(993\) 18.5157 0.587577
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 33.6395 1.06537 0.532686 0.846313i \(-0.321183\pi\)
0.532686 + 0.846313i \(0.321183\pi\)
\(998\) 0 0
\(999\) −8.87275 −0.280721
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7600.2.a.ck.1.2 6
4.3 odd 2 475.2.a.j.1.5 6
5.2 odd 4 1520.2.d.h.609.5 6
5.3 odd 4 1520.2.d.h.609.2 6
5.4 even 2 inner 7600.2.a.ck.1.5 6
12.11 even 2 4275.2.a.br.1.2 6
20.3 even 4 95.2.b.b.39.2 6
20.7 even 4 95.2.b.b.39.5 yes 6
20.19 odd 2 475.2.a.j.1.2 6
60.23 odd 4 855.2.c.d.514.5 6
60.47 odd 4 855.2.c.d.514.2 6
60.59 even 2 4275.2.a.br.1.5 6
76.75 even 2 9025.2.a.bx.1.2 6
380.227 odd 4 1805.2.b.e.1084.2 6
380.303 odd 4 1805.2.b.e.1084.5 6
380.379 even 2 9025.2.a.bx.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.b.b.39.2 6 20.3 even 4
95.2.b.b.39.5 yes 6 20.7 even 4
475.2.a.j.1.2 6 20.19 odd 2
475.2.a.j.1.5 6 4.3 odd 2
855.2.c.d.514.2 6 60.47 odd 4
855.2.c.d.514.5 6 60.23 odd 4
1520.2.d.h.609.2 6 5.3 odd 4
1520.2.d.h.609.5 6 5.2 odd 4
1805.2.b.e.1084.2 6 380.227 odd 4
1805.2.b.e.1084.5 6 380.303 odd 4
4275.2.a.br.1.2 6 12.11 even 2
4275.2.a.br.1.5 6 60.59 even 2
7600.2.a.ck.1.2 6 1.1 even 1 trivial
7600.2.a.ck.1.5 6 5.4 even 2 inner
9025.2.a.bx.1.2 6 76.75 even 2
9025.2.a.bx.1.5 6 380.379 even 2