Newspace parameters
Level: | \( N \) | \(=\) | \( 95 = 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 95.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.758578819202\) |
Analytic rank: | \(0\) |
Dimension: | \(6\) |
Coefficient field: | 6.0.16516096.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{6} + 9x^{4} + 13x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{6} + 9x^{4} + 13x^{2} + 1 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{4} + 8\nu^{2} + 5 ) / 2 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{5} + \nu^{4} + 10\nu^{3} + 6\nu^{2} + 19\nu - 1 ) / 4 \)
|
\(\beta_{4}\) | \(=\) |
\( ( \nu^{5} - \nu^{4} + 10\nu^{3} - 6\nu^{2} + 19\nu + 1 ) / 4 \)
|
\(\beta_{5}\) | \(=\) |
\( ( -\nu^{5} - 8\nu^{3} - 7\nu ) / 2 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{4} - \beta_{3} + \beta_{2} - 3 \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{5} + \beta_{4} + \beta_{3} - 6\beta_1 \)
|
\(\nu^{4}\) | \(=\) |
\( -8\beta_{4} + 8\beta_{3} - 6\beta_{2} + 19 \)
|
\(\nu^{5}\) | \(=\) |
\( -10\beta_{5} - 8\beta_{4} - 8\beta_{3} + 41\beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/95\mathbb{Z}\right)^\times\).
\(n\) | \(21\) | \(77\) |
\(\chi(n)\) | \(1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
39.1 |
|
− | 2.41987i | − | 0.537080i | −3.85577 | −2.07772 | + | 0.826491i | −1.29966 | − | 3.18676i | 4.49073i | 2.71155 | 2.00000 | + | 5.02781i | |||||||||||||||||||||||||||||
39.2 | − | 1.82254i | 2.31446i | −1.32164 | 1.94827 | + | 1.09737i | 4.21819 | − | 1.45033i | − | 1.23634i | −2.35673 | 2.00000 | − | 3.55080i | ||||||||||||||||||||||||||||||
39.3 | − | 0.906968i | − | 3.21789i | 1.17741 | −0.370556 | + | 2.20515i | −2.91852 | 2.59637i | − | 2.88181i | −7.35482 | 2.00000 | + | 0.336083i | ||||||||||||||||||||||||||||||
39.4 | 0.906968i | 3.21789i | 1.17741 | −0.370556 | − | 2.20515i | −2.91852 | − | 2.59637i | 2.88181i | −7.35482 | 2.00000 | − | 0.336083i | ||||||||||||||||||||||||||||||||
39.5 | 1.82254i | − | 2.31446i | −1.32164 | 1.94827 | − | 1.09737i | 4.21819 | 1.45033i | 1.23634i | −2.35673 | 2.00000 | + | 3.55080i | ||||||||||||||||||||||||||||||||
39.6 | 2.41987i | 0.537080i | −3.85577 | −2.07772 | − | 0.826491i | −1.29966 | 3.18676i | − | 4.49073i | 2.71155 | 2.00000 | − | 5.02781i | ||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 95.2.b.b | ✓ | 6 |
3.b | odd | 2 | 1 | 855.2.c.d | 6 | ||
4.b | odd | 2 | 1 | 1520.2.d.h | 6 | ||
5.b | even | 2 | 1 | inner | 95.2.b.b | ✓ | 6 |
5.c | odd | 4 | 2 | 475.2.a.j | 6 | ||
15.d | odd | 2 | 1 | 855.2.c.d | 6 | ||
15.e | even | 4 | 2 | 4275.2.a.br | 6 | ||
19.b | odd | 2 | 1 | 1805.2.b.e | 6 | ||
20.d | odd | 2 | 1 | 1520.2.d.h | 6 | ||
20.e | even | 4 | 2 | 7600.2.a.ck | 6 | ||
95.d | odd | 2 | 1 | 1805.2.b.e | 6 | ||
95.g | even | 4 | 2 | 9025.2.a.bx | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
95.2.b.b | ✓ | 6 | 1.a | even | 1 | 1 | trivial |
95.2.b.b | ✓ | 6 | 5.b | even | 2 | 1 | inner |
475.2.a.j | 6 | 5.c | odd | 4 | 2 | ||
855.2.c.d | 6 | 3.b | odd | 2 | 1 | ||
855.2.c.d | 6 | 15.d | odd | 2 | 1 | ||
1520.2.d.h | 6 | 4.b | odd | 2 | 1 | ||
1520.2.d.h | 6 | 20.d | odd | 2 | 1 | ||
1805.2.b.e | 6 | 19.b | odd | 2 | 1 | ||
1805.2.b.e | 6 | 95.d | odd | 2 | 1 | ||
4275.2.a.br | 6 | 15.e | even | 4 | 2 | ||
7600.2.a.ck | 6 | 20.e | even | 4 | 2 | ||
9025.2.a.bx | 6 | 95.g | even | 4 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{6} + 10T_{2}^{4} + 27T_{2}^{2} + 16 \)
acting on \(S_{2}^{\mathrm{new}}(95, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{6} + 10 T^{4} + 27 T^{2} + 16 \)
$3$
\( T^{6} + 16 T^{4} + 60 T^{2} + 16 \)
$5$
\( T^{6} + T^{5} - T^{4} - 2 T^{3} - 5 T^{2} + \cdots + 125 \)
$7$
\( T^{6} + 19 T^{4} + 104 T^{2} + \cdots + 144 \)
$11$
\( (T^{3} - T^{2} - 16 T + 12)^{2} \)
$13$
\( T^{6} + 28 T^{4} + 236 T^{2} + \cdots + 576 \)
$17$
\( T^{6} + 59 T^{4} + 1008 T^{2} + \cdots + 5184 \)
$19$
\( (T - 1)^{6} \)
$23$
\( T^{6} + 36 T^{4} + 208 T^{2} + \cdots + 64 \)
$29$
\( (T + 6)^{6} \)
$31$
\( (T^{3} - 56 T + 128)^{2} \)
$37$
\( T^{6} + 56 T^{4} + 764 T^{2} + \cdots + 1296 \)
$41$
\( (T^{3} - 6 T^{2} - 44 T - 24)^{2} \)
$43$
\( T^{6} + 19 T^{4} + 104 T^{2} + \cdots + 144 \)
$47$
\( T^{6} + 187 T^{4} + 7464 T^{2} + \cdots + 85264 \)
$53$
\( T^{6} + 156 T^{4} + 2476 T^{2} + \cdots + 64 \)
$59$
\( (T^{3} + 10 T^{2} + 8 T - 48)^{2} \)
$61$
\( (T^{3} + 7 T^{2} - 104 T - 776)^{2} \)
$67$
\( T^{6} + 340 T^{4} + 28556 T^{2} + \cdots + 484416 \)
$71$
\( (T^{3} - 26 T^{2} + 200 T - 432)^{2} \)
$73$
\( T^{6} + 131 T^{4} + 1616 T^{2} + \cdots + 5184 \)
$79$
\( (T^{3} - 12 T^{2} - 8 T + 32)^{2} \)
$83$
\( T^{6} + 228 T^{4} + 11728 T^{2} + \cdots + 141376 \)
$89$
\( (T^{3} + 12 T^{2} - 284 T - 3456)^{2} \)
$97$
\( T^{6} + 28 T^{4} + 236 T^{2} + \cdots + 576 \)
show more
show less