Properties

Label 7581.2.a.x.1.2
Level $7581$
Weight $2$
Character 7581.1
Self dual yes
Analytic conductor $60.535$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7581,2,Mod(1,7581)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7581.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7581, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7581 = 3 \cdot 7 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7581.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-1,-5,7,-2,1,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.5345897723\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.1240016.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 8x^{3} + 2x^{2} + 16x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 399)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.77304\) of defining polynomial
Character \(\chi\) \(=\) 7581.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.91670 q^{2} -1.00000 q^{3} +1.67374 q^{4} +2.54204 q^{5} +1.91670 q^{6} +1.00000 q^{7} +0.625344 q^{8} +1.00000 q^{9} -4.87234 q^{10} -5.54608 q^{11} -1.67374 q^{12} +1.83340 q^{13} -1.91670 q^{14} -2.54204 q^{15} -4.54608 q^{16} -3.88952 q^{17} -1.91670 q^{18} +4.25472 q^{20} -1.00000 q^{21} +10.6302 q^{22} +5.54608 q^{23} -0.625344 q^{24} +1.46199 q^{25} -3.51408 q^{26} -1.00000 q^{27} +1.67374 q^{28} -8.08812 q^{29} +4.87234 q^{30} +3.54608 q^{31} +7.46278 q^{32} +5.54608 q^{33} +7.45505 q^{34} +2.54204 q^{35} +1.67374 q^{36} -5.73661 q^{37} -1.83340 q^{39} +1.58965 q^{40} +2.48592 q^{41} +1.91670 q^{42} +3.80947 q^{43} -9.28268 q^{44} +2.54204 q^{45} -10.6302 q^{46} -2.99597 q^{47} +4.54608 q^{48} +1.00000 q^{49} -2.80219 q^{50} +3.88952 q^{51} +3.06863 q^{52} +3.31529 q^{53} +1.91670 q^{54} -14.0984 q^{55} +0.625344 q^{56} +15.5025 q^{58} +11.0922 q^{59} -4.25472 q^{60} +8.43157 q^{61} -6.79676 q^{62} +1.00000 q^{63} -5.21175 q^{64} +4.66058 q^{65} -10.6302 q^{66} +6.14424 q^{67} -6.51005 q^{68} -5.54608 q^{69} -4.87234 q^{70} -8.18491 q^{71} +0.625344 q^{72} +8.31932 q^{73} +10.9954 q^{74} -1.46199 q^{75} -5.54608 q^{77} +3.51408 q^{78} +4.79676 q^{79} -11.5563 q^{80} +1.00000 q^{81} -4.76477 q^{82} -15.3234 q^{83} -1.67374 q^{84} -9.88734 q^{85} -7.30160 q^{86} +8.08812 q^{87} -3.46820 q^{88} +12.6541 q^{89} -4.87234 q^{90} +1.83340 q^{91} +9.28268 q^{92} -3.54608 q^{93} +5.74237 q^{94} -7.46278 q^{96} -15.1241 q^{97} -1.91670 q^{98} -5.54608 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{2} - 5 q^{3} + 7 q^{4} - 2 q^{5} + q^{6} + 5 q^{7} - 3 q^{8} + 5 q^{9} - 2 q^{11} - 7 q^{12} - 8 q^{13} - q^{14} + 2 q^{15} + 3 q^{16} - 2 q^{17} - q^{18} - 2 q^{20} - 5 q^{21} - 2 q^{22} + 2 q^{23}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.91670 −1.35531 −0.677656 0.735379i \(-0.737004\pi\)
−0.677656 + 0.735379i \(0.737004\pi\)
\(3\) −1.00000 −0.577350
\(4\) 1.67374 0.836870
\(5\) 2.54204 1.13684 0.568418 0.822740i \(-0.307556\pi\)
0.568418 + 0.822740i \(0.307556\pi\)
\(6\) 1.91670 0.782490
\(7\) 1.00000 0.377964
\(8\) 0.625344 0.221092
\(9\) 1.00000 0.333333
\(10\) −4.87234 −1.54077
\(11\) −5.54608 −1.67220 −0.836102 0.548574i \(-0.815171\pi\)
−0.836102 + 0.548574i \(0.815171\pi\)
\(12\) −1.67374 −0.483167
\(13\) 1.83340 0.508494 0.254247 0.967139i \(-0.418172\pi\)
0.254247 + 0.967139i \(0.418172\pi\)
\(14\) −1.91670 −0.512260
\(15\) −2.54204 −0.656353
\(16\) −4.54608 −1.13652
\(17\) −3.88952 −0.943348 −0.471674 0.881773i \(-0.656350\pi\)
−0.471674 + 0.881773i \(0.656350\pi\)
\(18\) −1.91670 −0.451771
\(19\) 0 0
\(20\) 4.25472 0.951384
\(21\) −1.00000 −0.218218
\(22\) 10.6302 2.26636
\(23\) 5.54608 1.15644 0.578218 0.815882i \(-0.303748\pi\)
0.578218 + 0.815882i \(0.303748\pi\)
\(24\) −0.625344 −0.127648
\(25\) 1.46199 0.292397
\(26\) −3.51408 −0.689167
\(27\) −1.00000 −0.192450
\(28\) 1.67374 0.316307
\(29\) −8.08812 −1.50193 −0.750963 0.660344i \(-0.770410\pi\)
−0.750963 + 0.660344i \(0.770410\pi\)
\(30\) 4.87234 0.889563
\(31\) 3.54608 0.636894 0.318447 0.947941i \(-0.396839\pi\)
0.318447 + 0.947941i \(0.396839\pi\)
\(32\) 7.46278 1.31924
\(33\) 5.54608 0.965448
\(34\) 7.45505 1.27853
\(35\) 2.54204 0.429684
\(36\) 1.67374 0.278957
\(37\) −5.73661 −0.943093 −0.471546 0.881841i \(-0.656304\pi\)
−0.471546 + 0.881841i \(0.656304\pi\)
\(38\) 0 0
\(39\) −1.83340 −0.293579
\(40\) 1.58965 0.251346
\(41\) 2.48592 0.388236 0.194118 0.980978i \(-0.437816\pi\)
0.194118 + 0.980978i \(0.437816\pi\)
\(42\) 1.91670 0.295753
\(43\) 3.80947 0.580938 0.290469 0.956884i \(-0.406189\pi\)
0.290469 + 0.956884i \(0.406189\pi\)
\(44\) −9.28268 −1.39942
\(45\) 2.54204 0.378946
\(46\) −10.6302 −1.56733
\(47\) −2.99597 −0.437007 −0.218503 0.975836i \(-0.570117\pi\)
−0.218503 + 0.975836i \(0.570117\pi\)
\(48\) 4.54608 0.656169
\(49\) 1.00000 0.142857
\(50\) −2.80219 −0.396290
\(51\) 3.88952 0.544642
\(52\) 3.06863 0.425543
\(53\) 3.31529 0.455390 0.227695 0.973732i \(-0.426881\pi\)
0.227695 + 0.973732i \(0.426881\pi\)
\(54\) 1.91670 0.260830
\(55\) −14.0984 −1.90102
\(56\) 0.625344 0.0835651
\(57\) 0 0
\(58\) 15.5025 2.03558
\(59\) 11.0922 1.44408 0.722038 0.691854i \(-0.243206\pi\)
0.722038 + 0.691854i \(0.243206\pi\)
\(60\) −4.25472 −0.549282
\(61\) 8.43157 1.07955 0.539776 0.841809i \(-0.318509\pi\)
0.539776 + 0.841809i \(0.318509\pi\)
\(62\) −6.79676 −0.863190
\(63\) 1.00000 0.125988
\(64\) −5.21175 −0.651469
\(65\) 4.66058 0.578074
\(66\) −10.6302 −1.30848
\(67\) 6.14424 0.750639 0.375319 0.926896i \(-0.377533\pi\)
0.375319 + 0.926896i \(0.377533\pi\)
\(68\) −6.51005 −0.789459
\(69\) −5.54608 −0.667669
\(70\) −4.87234 −0.582356
\(71\) −8.18491 −0.971370 −0.485685 0.874134i \(-0.661430\pi\)
−0.485685 + 0.874134i \(0.661430\pi\)
\(72\) 0.625344 0.0736975
\(73\) 8.31932 0.973703 0.486851 0.873485i \(-0.338145\pi\)
0.486851 + 0.873485i \(0.338145\pi\)
\(74\) 10.9954 1.27818
\(75\) −1.46199 −0.168816
\(76\) 0 0
\(77\) −5.54608 −0.632034
\(78\) 3.51408 0.397891
\(79\) 4.79676 0.539678 0.269839 0.962905i \(-0.413030\pi\)
0.269839 + 0.962905i \(0.413030\pi\)
\(80\) −11.5563 −1.29204
\(81\) 1.00000 0.111111
\(82\) −4.76477 −0.526180
\(83\) −15.3234 −1.68196 −0.840978 0.541069i \(-0.818020\pi\)
−0.840978 + 0.541069i \(0.818020\pi\)
\(84\) −1.67374 −0.182620
\(85\) −9.88734 −1.07243
\(86\) −7.30160 −0.787352
\(87\) 8.08812 0.867137
\(88\) −3.46820 −0.369712
\(89\) 12.6541 1.34133 0.670666 0.741760i \(-0.266008\pi\)
0.670666 + 0.741760i \(0.266008\pi\)
\(90\) −4.87234 −0.513589
\(91\) 1.83340 0.192193
\(92\) 9.28268 0.967787
\(93\) −3.54608 −0.367711
\(94\) 5.74237 0.592281
\(95\) 0 0
\(96\) −7.46278 −0.761666
\(97\) −15.1241 −1.53562 −0.767812 0.640675i \(-0.778655\pi\)
−0.767812 + 0.640675i \(0.778655\pi\)
\(98\) −1.91670 −0.193616
\(99\) −5.54608 −0.557402
\(100\) 2.44699 0.244699
\(101\) 14.9817 1.49073 0.745366 0.666655i \(-0.232275\pi\)
0.745366 + 0.666655i \(0.232275\pi\)
\(102\) −7.45505 −0.738160
\(103\) −6.36176 −0.626843 −0.313421 0.949614i \(-0.601475\pi\)
−0.313421 + 0.949614i \(0.601475\pi\)
\(104\) 1.14651 0.112424
\(105\) −2.54204 −0.248078
\(106\) −6.35442 −0.617196
\(107\) −17.9296 −1.73332 −0.866659 0.498901i \(-0.833737\pi\)
−0.866659 + 0.498901i \(0.833737\pi\)
\(108\) −1.67374 −0.161056
\(109\) 4.00806 0.383903 0.191951 0.981404i \(-0.438518\pi\)
0.191951 + 0.981404i \(0.438518\pi\)
\(110\) 27.0223 2.57648
\(111\) 5.73661 0.544495
\(112\) −4.54608 −0.429564
\(113\) −1.96781 −0.185116 −0.0925581 0.995707i \(-0.529504\pi\)
−0.0925581 + 0.995707i \(0.529504\pi\)
\(114\) 0 0
\(115\) 14.0984 1.31468
\(116\) −13.5374 −1.25692
\(117\) 1.83340 0.169498
\(118\) −21.2603 −1.95717
\(119\) −3.88952 −0.356552
\(120\) −1.58965 −0.145115
\(121\) 19.7590 1.79627
\(122\) −16.1608 −1.46313
\(123\) −2.48592 −0.224148
\(124\) 5.93521 0.532997
\(125\) −8.99378 −0.804428
\(126\) −1.91670 −0.170753
\(127\) −7.44928 −0.661017 −0.330509 0.943803i \(-0.607220\pi\)
−0.330509 + 0.943803i \(0.607220\pi\)
\(128\) −4.93619 −0.436301
\(129\) −3.80947 −0.335405
\(130\) −8.93294 −0.783471
\(131\) −15.4356 −1.34861 −0.674307 0.738451i \(-0.735558\pi\)
−0.674307 + 0.738451i \(0.735558\pi\)
\(132\) 9.28268 0.807954
\(133\) 0 0
\(134\) −11.7767 −1.01735
\(135\) −2.54204 −0.218784
\(136\) −2.43229 −0.208567
\(137\) −15.4539 −1.32032 −0.660158 0.751127i \(-0.729511\pi\)
−0.660158 + 0.751127i \(0.729511\pi\)
\(138\) 10.6302 0.904900
\(139\) −10.3193 −0.875273 −0.437637 0.899152i \(-0.644184\pi\)
−0.437637 + 0.899152i \(0.644184\pi\)
\(140\) 4.25472 0.359589
\(141\) 2.99597 0.252306
\(142\) 15.6880 1.31651
\(143\) −10.1682 −0.850306
\(144\) −4.54608 −0.378840
\(145\) −20.5604 −1.70744
\(146\) −15.9456 −1.31967
\(147\) −1.00000 −0.0824786
\(148\) −9.60159 −0.789246
\(149\) 12.0081 0.983739 0.491869 0.870669i \(-0.336314\pi\)
0.491869 + 0.870669i \(0.336314\pi\)
\(150\) 2.80219 0.228798
\(151\) −19.0463 −1.54996 −0.774982 0.631983i \(-0.782241\pi\)
−0.774982 + 0.631983i \(0.782241\pi\)
\(152\) 0 0
\(153\) −3.88952 −0.314449
\(154\) 10.6302 0.856603
\(155\) 9.01428 0.724044
\(156\) −3.06863 −0.245687
\(157\) 5.93019 0.473281 0.236640 0.971597i \(-0.423954\pi\)
0.236640 + 0.971597i \(0.423954\pi\)
\(158\) −9.19396 −0.731432
\(159\) −3.31529 −0.262920
\(160\) 18.9707 1.49977
\(161\) 5.54608 0.437092
\(162\) −1.91670 −0.150590
\(163\) −2.31084 −0.180999 −0.0904995 0.995896i \(-0.528846\pi\)
−0.0904995 + 0.995896i \(0.528846\pi\)
\(164\) 4.16078 0.324903
\(165\) 14.0984 1.09756
\(166\) 29.3703 2.27958
\(167\) 9.41729 0.728732 0.364366 0.931256i \(-0.381286\pi\)
0.364366 + 0.931256i \(0.381286\pi\)
\(168\) −0.625344 −0.0482463
\(169\) −9.63864 −0.741434
\(170\) 18.9511 1.45348
\(171\) 0 0
\(172\) 6.37605 0.486170
\(173\) 13.5781 1.03232 0.516161 0.856492i \(-0.327361\pi\)
0.516161 + 0.856492i \(0.327361\pi\)
\(174\) −15.5025 −1.17524
\(175\) 1.46199 0.110516
\(176\) 25.2129 1.90049
\(177\) −11.0922 −0.833737
\(178\) −24.2541 −1.81792
\(179\) −1.55976 −0.116582 −0.0582910 0.998300i \(-0.518565\pi\)
−0.0582910 + 0.998300i \(0.518565\pi\)
\(180\) 4.25472 0.317128
\(181\) −18.5334 −1.37757 −0.688787 0.724963i \(-0.741857\pi\)
−0.688787 + 0.724963i \(0.741857\pi\)
\(182\) −3.51408 −0.260481
\(183\) −8.43157 −0.623279
\(184\) 3.46820 0.255679
\(185\) −14.5827 −1.07214
\(186\) 6.79676 0.498363
\(187\) 21.5716 1.57747
\(188\) −5.01447 −0.365718
\(189\) −1.00000 −0.0727393
\(190\) 0 0
\(191\) −23.3811 −1.69179 −0.845897 0.533347i \(-0.820934\pi\)
−0.845897 + 0.533347i \(0.820934\pi\)
\(192\) 5.21175 0.376126
\(193\) −16.8288 −1.21136 −0.605680 0.795708i \(-0.707099\pi\)
−0.605680 + 0.795708i \(0.707099\pi\)
\(194\) 28.9885 2.08125
\(195\) −4.66058 −0.333751
\(196\) 1.67374 0.119553
\(197\) −23.1207 −1.64728 −0.823641 0.567111i \(-0.808061\pi\)
−0.823641 + 0.567111i \(0.808061\pi\)
\(198\) 10.6302 0.755453
\(199\) 12.1762 0.863151 0.431575 0.902077i \(-0.357958\pi\)
0.431575 + 0.902077i \(0.357958\pi\)
\(200\) 0.914245 0.0646469
\(201\) −6.14424 −0.433381
\(202\) −28.7154 −2.02041
\(203\) −8.08812 −0.567675
\(204\) 6.51005 0.455794
\(205\) 6.31932 0.441361
\(206\) 12.1936 0.849567
\(207\) 5.54608 0.385479
\(208\) −8.33478 −0.577913
\(209\) 0 0
\(210\) 4.87234 0.336223
\(211\) 6.95597 0.478869 0.239434 0.970913i \(-0.423038\pi\)
0.239434 + 0.970913i \(0.423038\pi\)
\(212\) 5.54893 0.381102
\(213\) 8.18491 0.560821
\(214\) 34.3656 2.34919
\(215\) 9.68383 0.660432
\(216\) −0.625344 −0.0425493
\(217\) 3.54608 0.240723
\(218\) −7.68225 −0.520308
\(219\) −8.31932 −0.562168
\(220\) −23.5970 −1.59091
\(221\) −7.13105 −0.479686
\(222\) −10.9954 −0.737960
\(223\) 28.4092 1.90242 0.951211 0.308542i \(-0.0998411\pi\)
0.951211 + 0.308542i \(0.0998411\pi\)
\(224\) 7.46278 0.498628
\(225\) 1.46199 0.0974658
\(226\) 3.77170 0.250890
\(227\) −3.31311 −0.219899 −0.109949 0.993937i \(-0.535069\pi\)
−0.109949 + 0.993937i \(0.535069\pi\)
\(228\) 0 0
\(229\) 1.88776 0.124746 0.0623732 0.998053i \(-0.480133\pi\)
0.0623732 + 0.998053i \(0.480133\pi\)
\(230\) −27.0223 −1.78180
\(231\) 5.54608 0.364905
\(232\) −5.05786 −0.332064
\(233\) 23.7227 1.55413 0.777064 0.629422i \(-0.216708\pi\)
0.777064 + 0.629422i \(0.216708\pi\)
\(234\) −3.51408 −0.229722
\(235\) −7.61588 −0.496805
\(236\) 18.5654 1.20850
\(237\) −4.79676 −0.311583
\(238\) 7.45505 0.483239
\(239\) 21.9159 1.41762 0.708811 0.705399i \(-0.249232\pi\)
0.708811 + 0.705399i \(0.249232\pi\)
\(240\) 11.5563 0.745957
\(241\) 17.2445 1.11081 0.555406 0.831579i \(-0.312563\pi\)
0.555406 + 0.831579i \(0.312563\pi\)
\(242\) −37.8720 −2.43450
\(243\) −1.00000 −0.0641500
\(244\) 14.1122 0.903444
\(245\) 2.54204 0.162405
\(246\) 4.76477 0.303790
\(247\) 0 0
\(248\) 2.21752 0.140812
\(249\) 15.3234 0.971078
\(250\) 17.2384 1.09025
\(251\) −3.72636 −0.235206 −0.117603 0.993061i \(-0.537521\pi\)
−0.117603 + 0.993061i \(0.537521\pi\)
\(252\) 1.67374 0.105436
\(253\) −30.7590 −1.93380
\(254\) 14.2780 0.895884
\(255\) 9.88734 0.619169
\(256\) 19.8847 1.24279
\(257\) −4.42999 −0.276335 −0.138168 0.990409i \(-0.544121\pi\)
−0.138168 + 0.990409i \(0.544121\pi\)
\(258\) 7.30160 0.454578
\(259\) −5.73661 −0.356456
\(260\) 7.80060 0.483773
\(261\) −8.08812 −0.500642
\(262\) 29.5854 1.82779
\(263\) 2.23297 0.137691 0.0688454 0.997627i \(-0.478068\pi\)
0.0688454 + 0.997627i \(0.478068\pi\)
\(264\) 3.46820 0.213453
\(265\) 8.42761 0.517704
\(266\) 0 0
\(267\) −12.6541 −0.774418
\(268\) 10.2839 0.628187
\(269\) −4.87505 −0.297237 −0.148619 0.988895i \(-0.547483\pi\)
−0.148619 + 0.988895i \(0.547483\pi\)
\(270\) 4.87234 0.296521
\(271\) −16.5519 −1.00545 −0.502727 0.864445i \(-0.667670\pi\)
−0.502727 + 0.864445i \(0.667670\pi\)
\(272\) 17.6821 1.07213
\(273\) −1.83340 −0.110962
\(274\) 29.6205 1.78944
\(275\) −8.10829 −0.488948
\(276\) −9.28268 −0.558752
\(277\) 28.0841 1.68741 0.843704 0.536808i \(-0.180370\pi\)
0.843704 + 0.536808i \(0.180370\pi\)
\(278\) 19.7790 1.18627
\(279\) 3.54608 0.212298
\(280\) 1.58965 0.0949998
\(281\) −11.2674 −0.672158 −0.336079 0.941834i \(-0.609101\pi\)
−0.336079 + 0.941834i \(0.609101\pi\)
\(282\) −5.74237 −0.341953
\(283\) 15.7952 0.938925 0.469463 0.882952i \(-0.344448\pi\)
0.469463 + 0.882952i \(0.344448\pi\)
\(284\) −13.6994 −0.812910
\(285\) 0 0
\(286\) 19.4893 1.15243
\(287\) 2.48592 0.146739
\(288\) 7.46278 0.439748
\(289\) −1.87161 −0.110095
\(290\) 39.4080 2.31412
\(291\) 15.1241 0.886593
\(292\) 13.9244 0.814862
\(293\) −26.4573 −1.54565 −0.772827 0.634617i \(-0.781158\pi\)
−0.772827 + 0.634617i \(0.781158\pi\)
\(294\) 1.91670 0.111784
\(295\) 28.1967 1.64168
\(296\) −3.58735 −0.208511
\(297\) 5.54608 0.321816
\(298\) −23.0159 −1.33327
\(299\) 10.1682 0.588041
\(300\) −2.44699 −0.141277
\(301\) 3.80947 0.219574
\(302\) 36.5060 2.10068
\(303\) −14.9817 −0.860675
\(304\) 0 0
\(305\) 21.4334 1.22727
\(306\) 7.45505 0.426177
\(307\) −11.7875 −0.672750 −0.336375 0.941728i \(-0.609201\pi\)
−0.336375 + 0.941728i \(0.609201\pi\)
\(308\) −9.28268 −0.528930
\(309\) 6.36176 0.361908
\(310\) −17.2777 −0.981306
\(311\) 2.39938 0.136056 0.0680281 0.997683i \(-0.478329\pi\)
0.0680281 + 0.997683i \(0.478329\pi\)
\(312\) −1.14651 −0.0649081
\(313\) 6.66058 0.376478 0.188239 0.982123i \(-0.439722\pi\)
0.188239 + 0.982123i \(0.439722\pi\)
\(314\) −11.3664 −0.641443
\(315\) 2.54204 0.143228
\(316\) 8.02853 0.451640
\(317\) 18.3376 1.02994 0.514972 0.857207i \(-0.327802\pi\)
0.514972 + 0.857207i \(0.327802\pi\)
\(318\) 6.35442 0.356338
\(319\) 44.8573 2.51153
\(320\) −13.2485 −0.740614
\(321\) 17.9296 1.00073
\(322\) −10.6302 −0.592396
\(323\) 0 0
\(324\) 1.67374 0.0929855
\(325\) 2.68041 0.148682
\(326\) 4.42919 0.245310
\(327\) −4.00806 −0.221646
\(328\) 1.55456 0.0858360
\(329\) −2.99597 −0.165173
\(330\) −27.0223 −1.48753
\(331\) 3.09099 0.169896 0.0849482 0.996385i \(-0.472928\pi\)
0.0849482 + 0.996385i \(0.472928\pi\)
\(332\) −25.6473 −1.40758
\(333\) −5.73661 −0.314364
\(334\) −18.0501 −0.987658
\(335\) 15.6189 0.853353
\(336\) 4.54608 0.248009
\(337\) −16.8233 −0.916425 −0.458213 0.888843i \(-0.651510\pi\)
−0.458213 + 0.888843i \(0.651510\pi\)
\(338\) 18.4744 1.00487
\(339\) 1.96781 0.106877
\(340\) −16.5488 −0.897486
\(341\) −19.6668 −1.06502
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 2.38223 0.128441
\(345\) −14.0984 −0.759031
\(346\) −26.0251 −1.39912
\(347\) −26.8877 −1.44341 −0.721705 0.692201i \(-0.756641\pi\)
−0.721705 + 0.692201i \(0.756641\pi\)
\(348\) 13.5374 0.725681
\(349\) −4.80367 −0.257134 −0.128567 0.991701i \(-0.541038\pi\)
−0.128567 + 0.991701i \(0.541038\pi\)
\(350\) −2.80219 −0.149783
\(351\) −1.83340 −0.0978597
\(352\) −41.3891 −2.20605
\(353\) −12.5775 −0.669432 −0.334716 0.942319i \(-0.608640\pi\)
−0.334716 + 0.942319i \(0.608640\pi\)
\(354\) 21.2603 1.12997
\(355\) −20.8064 −1.10429
\(356\) 21.1797 1.12252
\(357\) 3.88952 0.205855
\(358\) 2.98960 0.158005
\(359\) −31.3332 −1.65370 −0.826851 0.562421i \(-0.809870\pi\)
−0.826851 + 0.562421i \(0.809870\pi\)
\(360\) 1.58965 0.0837820
\(361\) 0 0
\(362\) 35.5229 1.86704
\(363\) −19.7590 −1.03708
\(364\) 3.06863 0.160840
\(365\) 21.1481 1.10694
\(366\) 16.1608 0.844738
\(367\) −21.0841 −1.10058 −0.550290 0.834973i \(-0.685483\pi\)
−0.550290 + 0.834973i \(0.685483\pi\)
\(368\) −25.2129 −1.31431
\(369\) 2.48592 0.129412
\(370\) 27.9507 1.45309
\(371\) 3.31529 0.172121
\(372\) −5.93521 −0.307726
\(373\) 23.6097 1.22246 0.611231 0.791452i \(-0.290675\pi\)
0.611231 + 0.791452i \(0.290675\pi\)
\(374\) −41.3463 −2.13796
\(375\) 8.99378 0.464437
\(376\) −1.87351 −0.0966189
\(377\) −14.8288 −0.763720
\(378\) 1.91670 0.0985844
\(379\) −7.13803 −0.366656 −0.183328 0.983052i \(-0.558687\pi\)
−0.183328 + 0.983052i \(0.558687\pi\)
\(380\) 0 0
\(381\) 7.44928 0.381638
\(382\) 44.8145 2.29291
\(383\) 9.41729 0.481201 0.240600 0.970624i \(-0.422656\pi\)
0.240600 + 0.970624i \(0.422656\pi\)
\(384\) 4.93619 0.251899
\(385\) −14.0984 −0.718519
\(386\) 32.2557 1.64177
\(387\) 3.80947 0.193646
\(388\) −25.3139 −1.28512
\(389\) −28.0721 −1.42331 −0.711655 0.702529i \(-0.752054\pi\)
−0.711655 + 0.702529i \(0.752054\pi\)
\(390\) 8.93294 0.452337
\(391\) −21.5716 −1.09092
\(392\) 0.625344 0.0315846
\(393\) 15.4356 0.778623
\(394\) 44.3155 2.23258
\(395\) 12.1936 0.613526
\(396\) −9.28268 −0.466472
\(397\) −6.59078 −0.330782 −0.165391 0.986228i \(-0.552889\pi\)
−0.165391 + 0.986228i \(0.552889\pi\)
\(398\) −23.3382 −1.16984
\(399\) 0 0
\(400\) −6.64630 −0.332315
\(401\) −34.1865 −1.70719 −0.853596 0.520936i \(-0.825583\pi\)
−0.853596 + 0.520936i \(0.825583\pi\)
\(402\) 11.7767 0.587367
\(403\) 6.50138 0.323857
\(404\) 25.0754 1.24755
\(405\) 2.54204 0.126315
\(406\) 15.5025 0.769376
\(407\) 31.8157 1.57704
\(408\) 2.43229 0.120416
\(409\) 33.4555 1.65427 0.827134 0.562005i \(-0.189970\pi\)
0.827134 + 0.562005i \(0.189970\pi\)
\(410\) −12.1122 −0.598181
\(411\) 15.4539 0.762285
\(412\) −10.6479 −0.524586
\(413\) 11.0922 0.545809
\(414\) −10.6302 −0.522444
\(415\) −38.9526 −1.91211
\(416\) 13.6823 0.670828
\(417\) 10.3193 0.505339
\(418\) 0 0
\(419\) −30.4418 −1.48718 −0.743590 0.668636i \(-0.766879\pi\)
−0.743590 + 0.668636i \(0.766879\pi\)
\(420\) −4.25472 −0.207609
\(421\) 17.4678 0.851328 0.425664 0.904881i \(-0.360041\pi\)
0.425664 + 0.904881i \(0.360041\pi\)
\(422\) −13.3325 −0.649017
\(423\) −2.99597 −0.145669
\(424\) 2.07320 0.100683
\(425\) −5.68643 −0.275833
\(426\) −15.6880 −0.760087
\(427\) 8.43157 0.408032
\(428\) −30.0094 −1.45056
\(429\) 10.1682 0.490924
\(430\) −18.5610 −0.895091
\(431\) −24.8969 −1.19924 −0.599621 0.800284i \(-0.704682\pi\)
−0.599621 + 0.800284i \(0.704682\pi\)
\(432\) 4.54608 0.218723
\(433\) 11.3177 0.543895 0.271948 0.962312i \(-0.412332\pi\)
0.271948 + 0.962312i \(0.412332\pi\)
\(434\) −6.79676 −0.326255
\(435\) 20.5604 0.985794
\(436\) 6.70845 0.321277
\(437\) 0 0
\(438\) 15.9456 0.761912
\(439\) −12.7424 −0.608162 −0.304081 0.952646i \(-0.598349\pi\)
−0.304081 + 0.952646i \(0.598349\pi\)
\(440\) −8.81633 −0.420302
\(441\) 1.00000 0.0476190
\(442\) 13.6681 0.650125
\(443\) −22.6140 −1.07443 −0.537213 0.843447i \(-0.680523\pi\)
−0.537213 + 0.843447i \(0.680523\pi\)
\(444\) 9.60159 0.455671
\(445\) 32.1673 1.52487
\(446\) −54.4519 −2.57837
\(447\) −12.0081 −0.567962
\(448\) −5.21175 −0.246232
\(449\) −5.06578 −0.239069 −0.119534 0.992830i \(-0.538140\pi\)
−0.119534 + 0.992830i \(0.538140\pi\)
\(450\) −2.80219 −0.132097
\(451\) −13.7871 −0.649210
\(452\) −3.29360 −0.154918
\(453\) 19.0463 0.894872
\(454\) 6.35023 0.298031
\(455\) 4.66058 0.218492
\(456\) 0 0
\(457\) −7.79559 −0.364662 −0.182331 0.983237i \(-0.558364\pi\)
−0.182331 + 0.983237i \(0.558364\pi\)
\(458\) −3.61826 −0.169070
\(459\) 3.88952 0.181547
\(460\) 23.5970 1.10022
\(461\) 6.89680 0.321216 0.160608 0.987018i \(-0.448655\pi\)
0.160608 + 0.987018i \(0.448655\pi\)
\(462\) −10.6302 −0.494560
\(463\) 10.6950 0.497037 0.248518 0.968627i \(-0.420056\pi\)
0.248518 + 0.968627i \(0.420056\pi\)
\(464\) 36.7692 1.70697
\(465\) −9.01428 −0.418027
\(466\) −45.4694 −2.10633
\(467\) 11.2146 0.518952 0.259476 0.965750i \(-0.416450\pi\)
0.259476 + 0.965750i \(0.416450\pi\)
\(468\) 3.06863 0.141848
\(469\) 6.14424 0.283715
\(470\) 14.5974 0.673326
\(471\) −5.93019 −0.273249
\(472\) 6.93641 0.319274
\(473\) −21.1276 −0.971447
\(474\) 9.19396 0.422292
\(475\) 0 0
\(476\) −6.51005 −0.298388
\(477\) 3.31529 0.151797
\(478\) −42.0062 −1.92132
\(479\) −35.4607 −1.62024 −0.810120 0.586264i \(-0.800598\pi\)
−0.810120 + 0.586264i \(0.800598\pi\)
\(480\) −18.9707 −0.865890
\(481\) −10.5175 −0.479557
\(482\) −33.0524 −1.50550
\(483\) −5.54608 −0.252355
\(484\) 33.0713 1.50324
\(485\) −38.4462 −1.74575
\(486\) 1.91670 0.0869433
\(487\) −8.58734 −0.389129 −0.194565 0.980890i \(-0.562329\pi\)
−0.194565 + 0.980890i \(0.562329\pi\)
\(488\) 5.27263 0.238681
\(489\) 2.31084 0.104500
\(490\) −4.87234 −0.220110
\(491\) −33.7384 −1.52259 −0.761297 0.648403i \(-0.775437\pi\)
−0.761297 + 0.648403i \(0.775437\pi\)
\(492\) −4.16078 −0.187583
\(493\) 31.4589 1.41684
\(494\) 0 0
\(495\) −14.0984 −0.633674
\(496\) −16.1207 −0.723842
\(497\) −8.18491 −0.367143
\(498\) −29.3703 −1.31611
\(499\) −10.9364 −0.489581 −0.244790 0.969576i \(-0.578719\pi\)
−0.244790 + 0.969576i \(0.578719\pi\)
\(500\) −15.0532 −0.673202
\(501\) −9.41729 −0.420733
\(502\) 7.14232 0.318777
\(503\) 22.9454 1.02309 0.511543 0.859258i \(-0.329074\pi\)
0.511543 + 0.859258i \(0.329074\pi\)
\(504\) 0.625344 0.0278550
\(505\) 38.0841 1.69472
\(506\) 58.9557 2.62090
\(507\) 9.63864 0.428067
\(508\) −12.4682 −0.553185
\(509\) −7.57001 −0.335535 −0.167767 0.985827i \(-0.553656\pi\)
−0.167767 + 0.985827i \(0.553656\pi\)
\(510\) −18.9511 −0.839167
\(511\) 8.31932 0.368025
\(512\) −28.2406 −1.24807
\(513\) 0 0
\(514\) 8.49096 0.374520
\(515\) −16.1719 −0.712618
\(516\) −6.37605 −0.280690
\(517\) 16.6159 0.730765
\(518\) 10.9954 0.483108
\(519\) −13.5781 −0.596011
\(520\) 2.91447 0.127808
\(521\) 0.827184 0.0362396 0.0181198 0.999836i \(-0.494232\pi\)
0.0181198 + 0.999836i \(0.494232\pi\)
\(522\) 15.5025 0.678526
\(523\) 17.2414 0.753915 0.376958 0.926230i \(-0.376970\pi\)
0.376958 + 0.926230i \(0.376970\pi\)
\(524\) −25.8352 −1.12861
\(525\) −1.46199 −0.0638064
\(526\) −4.27993 −0.186614
\(527\) −13.7925 −0.600812
\(528\) −25.2129 −1.09725
\(529\) 7.75895 0.337346
\(530\) −16.1532 −0.701651
\(531\) 11.0922 0.481358
\(532\) 0 0
\(533\) 4.55769 0.197415
\(534\) 24.2541 1.04958
\(535\) −45.5778 −1.97050
\(536\) 3.84226 0.165961
\(537\) 1.55976 0.0673087
\(538\) 9.34401 0.402849
\(539\) −5.54608 −0.238886
\(540\) −4.25472 −0.183094
\(541\) 34.1280 1.46728 0.733638 0.679540i \(-0.237821\pi\)
0.733638 + 0.679540i \(0.237821\pi\)
\(542\) 31.7250 1.36270
\(543\) 18.5334 0.795343
\(544\) −29.0266 −1.24451
\(545\) 10.1887 0.436435
\(546\) 3.51408 0.150389
\(547\) −30.0101 −1.28314 −0.641569 0.767066i \(-0.721716\pi\)
−0.641569 + 0.767066i \(0.721716\pi\)
\(548\) −25.8658 −1.10493
\(549\) 8.43157 0.359850
\(550\) 15.5412 0.662677
\(551\) 0 0
\(552\) −3.46820 −0.147617
\(553\) 4.79676 0.203979
\(554\) −53.8287 −2.28696
\(555\) 14.5827 0.619002
\(556\) −17.2719 −0.732490
\(557\) −34.9066 −1.47904 −0.739521 0.673134i \(-0.764948\pi\)
−0.739521 + 0.673134i \(0.764948\pi\)
\(558\) −6.79676 −0.287730
\(559\) 6.98428 0.295403
\(560\) −11.5563 −0.488344
\(561\) −21.5716 −0.910753
\(562\) 21.5963 0.910984
\(563\) −20.8358 −0.878123 −0.439061 0.898457i \(-0.644689\pi\)
−0.439061 + 0.898457i \(0.644689\pi\)
\(564\) 5.01447 0.211147
\(565\) −5.00226 −0.210447
\(566\) −30.2746 −1.27254
\(567\) 1.00000 0.0419961
\(568\) −5.11838 −0.214763
\(569\) −32.3180 −1.35484 −0.677421 0.735595i \(-0.736903\pi\)
−0.677421 + 0.735595i \(0.736903\pi\)
\(570\) 0 0
\(571\) 20.4451 0.855599 0.427800 0.903874i \(-0.359289\pi\)
0.427800 + 0.903874i \(0.359289\pi\)
\(572\) −17.0189 −0.711595
\(573\) 23.3811 0.976757
\(574\) −4.76477 −0.198877
\(575\) 8.10829 0.338139
\(576\) −5.21175 −0.217156
\(577\) 20.1462 0.838699 0.419349 0.907825i \(-0.362258\pi\)
0.419349 + 0.907825i \(0.362258\pi\)
\(578\) 3.58732 0.149213
\(579\) 16.8288 0.699379
\(580\) −34.4127 −1.42891
\(581\) −15.3234 −0.635720
\(582\) −28.9885 −1.20161
\(583\) −18.3869 −0.761506
\(584\) 5.20244 0.215278
\(585\) 4.66058 0.192691
\(586\) 50.7108 2.09484
\(587\) −9.60605 −0.396484 −0.198242 0.980153i \(-0.563523\pi\)
−0.198242 + 0.980153i \(0.563523\pi\)
\(588\) −1.67374 −0.0690238
\(589\) 0 0
\(590\) −54.0447 −2.22498
\(591\) 23.1207 0.951059
\(592\) 26.0791 1.07184
\(593\) 36.4249 1.49579 0.747895 0.663817i \(-0.231064\pi\)
0.747895 + 0.663817i \(0.231064\pi\)
\(594\) −10.6302 −0.436161
\(595\) −9.88734 −0.405341
\(596\) 20.0984 0.823261
\(597\) −12.1762 −0.498340
\(598\) −19.4893 −0.796979
\(599\) −12.6358 −0.516284 −0.258142 0.966107i \(-0.583110\pi\)
−0.258142 + 0.966107i \(0.583110\pi\)
\(600\) −0.914245 −0.0373239
\(601\) 2.95144 0.120392 0.0601960 0.998187i \(-0.480827\pi\)
0.0601960 + 0.998187i \(0.480827\pi\)
\(602\) −7.30160 −0.297591
\(603\) 6.14424 0.250213
\(604\) −31.8785 −1.29712
\(605\) 50.2281 2.04206
\(606\) 28.7154 1.16648
\(607\) 3.09215 0.125507 0.0627533 0.998029i \(-0.480012\pi\)
0.0627533 + 0.998029i \(0.480012\pi\)
\(608\) 0 0
\(609\) 8.08812 0.327747
\(610\) −41.0814 −1.66334
\(611\) −5.49281 −0.222215
\(612\) −6.51005 −0.263153
\(613\) −22.9195 −0.925709 −0.462855 0.886434i \(-0.653175\pi\)
−0.462855 + 0.886434i \(0.653175\pi\)
\(614\) 22.5932 0.911785
\(615\) −6.31932 −0.254820
\(616\) −3.46820 −0.139738
\(617\) −13.8913 −0.559242 −0.279621 0.960110i \(-0.590209\pi\)
−0.279621 + 0.960110i \(0.590209\pi\)
\(618\) −12.1936 −0.490498
\(619\) −42.8963 −1.72415 −0.862074 0.506783i \(-0.830835\pi\)
−0.862074 + 0.506783i \(0.830835\pi\)
\(620\) 15.0876 0.605931
\(621\) −5.54608 −0.222556
\(622\) −4.59889 −0.184399
\(623\) 12.6541 0.506976
\(624\) 8.33478 0.333658
\(625\) −30.1725 −1.20690
\(626\) −12.7663 −0.510246
\(627\) 0 0
\(628\) 9.92559 0.396074
\(629\) 22.3127 0.889664
\(630\) −4.87234 −0.194119
\(631\) 39.0613 1.55501 0.777504 0.628878i \(-0.216486\pi\)
0.777504 + 0.628878i \(0.216486\pi\)
\(632\) 2.99963 0.119319
\(633\) −6.95597 −0.276475
\(634\) −35.1477 −1.39590
\(635\) −18.9364 −0.751468
\(636\) −5.54893 −0.220029
\(637\) 1.83340 0.0726420
\(638\) −85.9780 −3.40390
\(639\) −8.18491 −0.323790
\(640\) −12.5480 −0.496003
\(641\) −49.8109 −1.96741 −0.983705 0.179789i \(-0.942458\pi\)
−0.983705 + 0.179789i \(0.942458\pi\)
\(642\) −34.3656 −1.35630
\(643\) 19.9187 0.785515 0.392758 0.919642i \(-0.371521\pi\)
0.392758 + 0.919642i \(0.371521\pi\)
\(644\) 9.28268 0.365789
\(645\) −9.68383 −0.381300
\(646\) 0 0
\(647\) −38.5332 −1.51490 −0.757448 0.652896i \(-0.773554\pi\)
−0.757448 + 0.652896i \(0.773554\pi\)
\(648\) 0.625344 0.0245658
\(649\) −61.5179 −2.41479
\(650\) −5.13754 −0.201511
\(651\) −3.54608 −0.138982
\(652\) −3.86775 −0.151473
\(653\) −1.47322 −0.0576515 −0.0288257 0.999584i \(-0.509177\pi\)
−0.0288257 + 0.999584i \(0.509177\pi\)
\(654\) 7.68225 0.300400
\(655\) −39.2380 −1.53315
\(656\) −11.3012 −0.441237
\(657\) 8.31932 0.324568
\(658\) 5.74237 0.223861
\(659\) −35.4063 −1.37923 −0.689616 0.724175i \(-0.742221\pi\)
−0.689616 + 0.724175i \(0.742221\pi\)
\(660\) 23.5970 0.918512
\(661\) −12.2390 −0.476043 −0.238022 0.971260i \(-0.576499\pi\)
−0.238022 + 0.971260i \(0.576499\pi\)
\(662\) −5.92451 −0.230262
\(663\) 7.13105 0.276947
\(664\) −9.58236 −0.371868
\(665\) 0 0
\(666\) 10.9954 0.426062
\(667\) −44.8573 −1.73688
\(668\) 15.7621 0.609853
\(669\) −28.4092 −1.09836
\(670\) −29.9368 −1.15656
\(671\) −46.7621 −1.80523
\(672\) −7.46278 −0.287883
\(673\) 39.6565 1.52864 0.764322 0.644835i \(-0.223074\pi\)
0.764322 + 0.644835i \(0.223074\pi\)
\(674\) 32.2453 1.24204
\(675\) −1.46199 −0.0562719
\(676\) −16.1326 −0.620484
\(677\) 12.7354 0.489463 0.244731 0.969591i \(-0.421300\pi\)
0.244731 + 0.969591i \(0.421300\pi\)
\(678\) −3.77170 −0.144851
\(679\) −15.1241 −0.580412
\(680\) −6.18299 −0.237107
\(681\) 3.31311 0.126958
\(682\) 37.6954 1.44343
\(683\) 10.2019 0.390366 0.195183 0.980767i \(-0.437470\pi\)
0.195183 + 0.980767i \(0.437470\pi\)
\(684\) 0 0
\(685\) −39.2845 −1.50098
\(686\) −1.91670 −0.0731800
\(687\) −1.88776 −0.0720224
\(688\) −17.3181 −0.660247
\(689\) 6.07825 0.231563
\(690\) 27.0223 1.02872
\(691\) −16.3435 −0.621736 −0.310868 0.950453i \(-0.600620\pi\)
−0.310868 + 0.950453i \(0.600620\pi\)
\(692\) 22.7262 0.863919
\(693\) −5.54608 −0.210678
\(694\) 51.5357 1.95627
\(695\) −26.2322 −0.995043
\(696\) 5.05786 0.191718
\(697\) −9.66905 −0.366241
\(698\) 9.20719 0.348497
\(699\) −23.7227 −0.897276
\(700\) 2.44699 0.0924874
\(701\) 19.9807 0.754660 0.377330 0.926079i \(-0.376842\pi\)
0.377330 + 0.926079i \(0.376842\pi\)
\(702\) 3.51408 0.132630
\(703\) 0 0
\(704\) 28.9048 1.08939
\(705\) 7.61588 0.286831
\(706\) 24.1073 0.907289
\(707\) 14.9817 0.563444
\(708\) −18.5654 −0.697729
\(709\) −2.38955 −0.0897414 −0.0448707 0.998993i \(-0.514288\pi\)
−0.0448707 + 0.998993i \(0.514288\pi\)
\(710\) 39.8796 1.49666
\(711\) 4.79676 0.179893
\(712\) 7.91316 0.296558
\(713\) 19.6668 0.736527
\(714\) −7.45505 −0.278998
\(715\) −25.8479 −0.966659
\(716\) −2.61063 −0.0975640
\(717\) −21.9159 −0.818464
\(718\) 60.0563 2.24128
\(719\) 48.8139 1.82045 0.910225 0.414113i \(-0.135908\pi\)
0.910225 + 0.414113i \(0.135908\pi\)
\(720\) −11.5563 −0.430679
\(721\) −6.36176 −0.236924
\(722\) 0 0
\(723\) −17.2445 −0.641328
\(724\) −31.0200 −1.15285
\(725\) −11.8247 −0.439159
\(726\) 37.8720 1.40556
\(727\) −27.4034 −1.01634 −0.508168 0.861258i \(-0.669677\pi\)
−0.508168 + 0.861258i \(0.669677\pi\)
\(728\) 1.14651 0.0424923
\(729\) 1.00000 0.0370370
\(730\) −40.5345 −1.50025
\(731\) −14.8170 −0.548027
\(732\) −14.1122 −0.521604
\(733\) 16.5229 0.610288 0.305144 0.952306i \(-0.401295\pi\)
0.305144 + 0.952306i \(0.401295\pi\)
\(734\) 40.4119 1.49163
\(735\) −2.54204 −0.0937647
\(736\) 41.3891 1.52562
\(737\) −34.0764 −1.25522
\(738\) −4.76477 −0.175393
\(739\) −22.6771 −0.834192 −0.417096 0.908863i \(-0.636952\pi\)
−0.417096 + 0.908863i \(0.636952\pi\)
\(740\) −24.4077 −0.897243
\(741\) 0 0
\(742\) −6.35442 −0.233278
\(743\) −15.2185 −0.558313 −0.279156 0.960246i \(-0.590055\pi\)
−0.279156 + 0.960246i \(0.590055\pi\)
\(744\) −2.21752 −0.0812981
\(745\) 30.5250 1.11835
\(746\) −45.2526 −1.65682
\(747\) −15.3234 −0.560652
\(748\) 36.1052 1.32014
\(749\) −17.9296 −0.655133
\(750\) −17.2384 −0.629457
\(751\) 12.3674 0.451294 0.225647 0.974209i \(-0.427550\pi\)
0.225647 + 0.974209i \(0.427550\pi\)
\(752\) 13.6199 0.496667
\(753\) 3.72636 0.135796
\(754\) 28.4223 1.03508
\(755\) −48.4165 −1.76206
\(756\) −1.67374 −0.0608733
\(757\) −14.9271 −0.542536 −0.271268 0.962504i \(-0.587443\pi\)
−0.271268 + 0.962504i \(0.587443\pi\)
\(758\) 13.6815 0.496933
\(759\) 30.7590 1.11648
\(760\) 0 0
\(761\) 15.2563 0.553041 0.276520 0.961008i \(-0.410819\pi\)
0.276520 + 0.961008i \(0.410819\pi\)
\(762\) −14.2780 −0.517239
\(763\) 4.00806 0.145102
\(764\) −39.1338 −1.41581
\(765\) −9.88734 −0.357477
\(766\) −18.0501 −0.652177
\(767\) 20.3364 0.734303
\(768\) −19.8847 −0.717527
\(769\) −10.7563 −0.387883 −0.193941 0.981013i \(-0.562127\pi\)
−0.193941 + 0.981013i \(0.562127\pi\)
\(770\) 27.0223 0.973818
\(771\) 4.42999 0.159542
\(772\) −28.1670 −1.01375
\(773\) 13.8026 0.496444 0.248222 0.968703i \(-0.420154\pi\)
0.248222 + 0.968703i \(0.420154\pi\)
\(774\) −7.30160 −0.262451
\(775\) 5.18432 0.186226
\(776\) −9.45779 −0.339515
\(777\) 5.73661 0.205800
\(778\) 53.8057 1.92903
\(779\) 0 0
\(780\) −7.80060 −0.279306
\(781\) 45.3941 1.62433
\(782\) 41.3463 1.47854
\(783\) 8.08812 0.289046
\(784\) −4.54608 −0.162360
\(785\) 15.0748 0.538043
\(786\) −29.5854 −1.05528
\(787\) 19.6101 0.699023 0.349512 0.936932i \(-0.386347\pi\)
0.349512 + 0.936932i \(0.386347\pi\)
\(788\) −38.6980 −1.37856
\(789\) −2.23297 −0.0794958
\(790\) −23.3714 −0.831519
\(791\) −1.96781 −0.0699673
\(792\) −3.46820 −0.123237
\(793\) 15.4584 0.548945
\(794\) 12.6325 0.448312
\(795\) −8.42761 −0.298897
\(796\) 20.3798 0.722345
\(797\) 25.2766 0.895344 0.447672 0.894198i \(-0.352253\pi\)
0.447672 + 0.894198i \(0.352253\pi\)
\(798\) 0 0
\(799\) 11.6529 0.412250
\(800\) 10.9105 0.385744
\(801\) 12.6541 0.447111
\(802\) 65.5252 2.31378
\(803\) −46.1396 −1.62823
\(804\) −10.2839 −0.362684
\(805\) 14.0984 0.496902
\(806\) −12.4612 −0.438927
\(807\) 4.87505 0.171610
\(808\) 9.36870 0.329590
\(809\) 36.3718 1.27876 0.639382 0.768889i \(-0.279190\pi\)
0.639382 + 0.768889i \(0.279190\pi\)
\(810\) −4.87234 −0.171196
\(811\) −38.3409 −1.34633 −0.673165 0.739492i \(-0.735066\pi\)
−0.673165 + 0.739492i \(0.735066\pi\)
\(812\) −13.5374 −0.475070
\(813\) 16.5519 0.580500
\(814\) −60.9811 −2.13739
\(815\) −5.87426 −0.205766
\(816\) −17.6821 −0.618996
\(817\) 0 0
\(818\) −64.1241 −2.24205
\(819\) 1.83340 0.0640642
\(820\) 10.5769 0.369361
\(821\) 7.02009 0.245003 0.122501 0.992468i \(-0.460908\pi\)
0.122501 + 0.992468i \(0.460908\pi\)
\(822\) −29.6205 −1.03313
\(823\) −18.4767 −0.644056 −0.322028 0.946730i \(-0.604365\pi\)
−0.322028 + 0.946730i \(0.604365\pi\)
\(824\) −3.97829 −0.138590
\(825\) 8.10829 0.282294
\(826\) −21.2603 −0.739741
\(827\) 30.2879 1.05321 0.526606 0.850109i \(-0.323464\pi\)
0.526606 + 0.850109i \(0.323464\pi\)
\(828\) 9.28268 0.322596
\(829\) −5.07259 −0.176178 −0.0880891 0.996113i \(-0.528076\pi\)
−0.0880891 + 0.996113i \(0.528076\pi\)
\(830\) 74.6605 2.59150
\(831\) −28.0841 −0.974226
\(832\) −9.55523 −0.331268
\(833\) −3.88952 −0.134764
\(834\) −19.7790 −0.684892
\(835\) 23.9392 0.828449
\(836\) 0 0
\(837\) −3.54608 −0.122570
\(838\) 58.3478 2.01559
\(839\) −5.10458 −0.176230 −0.0881149 0.996110i \(-0.528084\pi\)
−0.0881149 + 0.996110i \(0.528084\pi\)
\(840\) −1.58965 −0.0548482
\(841\) 36.4177 1.25578
\(842\) −33.4805 −1.15381
\(843\) 11.2674 0.388071
\(844\) 11.6425 0.400751
\(845\) −24.5019 −0.842889
\(846\) 5.74237 0.197427
\(847\) 19.7590 0.678926
\(848\) −15.0716 −0.517559
\(849\) −15.7952 −0.542089
\(850\) 10.8992 0.373839
\(851\) −31.8157 −1.09063
\(852\) 13.6994 0.469334
\(853\) −38.4821 −1.31760 −0.658800 0.752318i \(-0.728936\pi\)
−0.658800 + 0.752318i \(0.728936\pi\)
\(854\) −16.1608 −0.553011
\(855\) 0 0
\(856\) −11.2122 −0.383224
\(857\) 47.8034 1.63293 0.816466 0.577394i \(-0.195930\pi\)
0.816466 + 0.577394i \(0.195930\pi\)
\(858\) −19.4893 −0.665355
\(859\) −10.5654 −0.360486 −0.180243 0.983622i \(-0.557688\pi\)
−0.180243 + 0.983622i \(0.557688\pi\)
\(860\) 16.2082 0.552695
\(861\) −2.48592 −0.0847200
\(862\) 47.7199 1.62535
\(863\) −1.30828 −0.0445344 −0.0222672 0.999752i \(-0.507088\pi\)
−0.0222672 + 0.999752i \(0.507088\pi\)
\(864\) −7.46278 −0.253889
\(865\) 34.5161 1.17358
\(866\) −21.6927 −0.737148
\(867\) 1.87161 0.0635633
\(868\) 5.93521 0.201454
\(869\) −26.6032 −0.902452
\(870\) −39.4080 −1.33606
\(871\) 11.2649 0.381695
\(872\) 2.50642 0.0848780
\(873\) −15.1241 −0.511875
\(874\) 0 0
\(875\) −8.99378 −0.304045
\(876\) −13.9244 −0.470461
\(877\) −47.8543 −1.61592 −0.807962 0.589235i \(-0.799429\pi\)
−0.807962 + 0.589235i \(0.799429\pi\)
\(878\) 24.4234 0.824249
\(879\) 26.4573 0.892384
\(880\) 64.0922 2.16055
\(881\) 45.8583 1.54501 0.772503 0.635011i \(-0.219005\pi\)
0.772503 + 0.635011i \(0.219005\pi\)
\(882\) −1.91670 −0.0645387
\(883\) 28.6217 0.963196 0.481598 0.876392i \(-0.340056\pi\)
0.481598 + 0.876392i \(0.340056\pi\)
\(884\) −11.9355 −0.401435
\(885\) −28.1967 −0.947823
\(886\) 43.3443 1.45618
\(887\) 58.2209 1.95487 0.977434 0.211243i \(-0.0677511\pi\)
0.977434 + 0.211243i \(0.0677511\pi\)
\(888\) 3.58735 0.120384
\(889\) −7.44928 −0.249841
\(890\) −61.6550 −2.06668
\(891\) −5.54608 −0.185801
\(892\) 47.5496 1.59208
\(893\) 0 0
\(894\) 23.0159 0.769765
\(895\) −3.96498 −0.132535
\(896\) −4.93619 −0.164906
\(897\) −10.1682 −0.339506
\(898\) 9.70958 0.324013
\(899\) −28.6811 −0.956568
\(900\) 2.44699 0.0815662
\(901\) −12.8949 −0.429591
\(902\) 26.4258 0.879881
\(903\) −3.80947 −0.126771
\(904\) −1.23056 −0.0409278
\(905\) −47.1126 −1.56608
\(906\) −36.5060 −1.21283
\(907\) 34.9591 1.16080 0.580399 0.814332i \(-0.302896\pi\)
0.580399 + 0.814332i \(0.302896\pi\)
\(908\) −5.54527 −0.184026
\(909\) 14.9817 0.496911
\(910\) −8.93294 −0.296124
\(911\) −14.7994 −0.490325 −0.245162 0.969482i \(-0.578841\pi\)
−0.245162 + 0.969482i \(0.578841\pi\)
\(912\) 0 0
\(913\) 84.9845 2.81258
\(914\) 14.9418 0.494231
\(915\) −21.4334 −0.708567
\(916\) 3.15961 0.104396
\(917\) −15.4356 −0.509728
\(918\) −7.45505 −0.246053
\(919\) 0.762136 0.0251405 0.0125703 0.999921i \(-0.495999\pi\)
0.0125703 + 0.999921i \(0.495999\pi\)
\(920\) 8.81633 0.290666
\(921\) 11.7875 0.388412
\(922\) −13.2191 −0.435348
\(923\) −15.0062 −0.493936
\(924\) 9.28268 0.305378
\(925\) −8.38685 −0.275758
\(926\) −20.4990 −0.673640
\(927\) −6.36176 −0.208948
\(928\) −60.3598 −1.98141
\(929\) 26.5680 0.871667 0.435833 0.900027i \(-0.356454\pi\)
0.435833 + 0.900027i \(0.356454\pi\)
\(930\) 17.2777 0.566557
\(931\) 0 0
\(932\) 39.7057 1.30060
\(933\) −2.39938 −0.0785521
\(934\) −21.4951 −0.703341
\(935\) 54.8359 1.79333
\(936\) 1.14651 0.0374747
\(937\) −28.7590 −0.939514 −0.469757 0.882796i \(-0.655658\pi\)
−0.469757 + 0.882796i \(0.655658\pi\)
\(938\) −11.7767 −0.384522
\(939\) −6.66058 −0.217360
\(940\) −12.7470 −0.415761
\(941\) 34.1732 1.11402 0.557008 0.830507i \(-0.311949\pi\)
0.557008 + 0.830507i \(0.311949\pi\)
\(942\) 11.3664 0.370337
\(943\) 13.7871 0.448970
\(944\) −50.4258 −1.64122
\(945\) −2.54204 −0.0826927
\(946\) 40.4952 1.31661
\(947\) −40.5626 −1.31811 −0.659054 0.752096i \(-0.729043\pi\)
−0.659054 + 0.752096i \(0.729043\pi\)
\(948\) −8.02853 −0.260755
\(949\) 15.2526 0.495122
\(950\) 0 0
\(951\) −18.3376 −0.594638
\(952\) −2.43229 −0.0788309
\(953\) 38.6589 1.25229 0.626143 0.779709i \(-0.284633\pi\)
0.626143 + 0.779709i \(0.284633\pi\)
\(954\) −6.35442 −0.205732
\(955\) −59.4357 −1.92329
\(956\) 36.6815 1.18636
\(957\) −44.8573 −1.45003
\(958\) 67.9675 2.19593
\(959\) −15.4539 −0.499033
\(960\) 13.2485 0.427594
\(961\) −18.4254 −0.594366
\(962\) 20.1589 0.649949
\(963\) −17.9296 −0.577773
\(964\) 28.8627 0.929606
\(965\) −42.7794 −1.37712
\(966\) 10.6302 0.342020
\(967\) 6.83153 0.219687 0.109844 0.993949i \(-0.464965\pi\)
0.109844 + 0.993949i \(0.464965\pi\)
\(968\) 12.3561 0.397141
\(969\) 0 0
\(970\) 73.6899 2.36604
\(971\) −57.7215 −1.85237 −0.926186 0.377068i \(-0.876932\pi\)
−0.926186 + 0.377068i \(0.876932\pi\)
\(972\) −1.67374 −0.0536852
\(973\) −10.3193 −0.330822
\(974\) 16.4593 0.527392
\(975\) −2.68041 −0.0858418
\(976\) −38.3305 −1.22693
\(977\) −38.7294 −1.23906 −0.619532 0.784972i \(-0.712677\pi\)
−0.619532 + 0.784972i \(0.712677\pi\)
\(978\) −4.42919 −0.141630
\(979\) −70.1806 −2.24298
\(980\) 4.25472 0.135912
\(981\) 4.00806 0.127968
\(982\) 64.6665 2.06359
\(983\) −44.7814 −1.42831 −0.714153 0.699990i \(-0.753188\pi\)
−0.714153 + 0.699990i \(0.753188\pi\)
\(984\) −1.55456 −0.0495574
\(985\) −58.7739 −1.87269
\(986\) −60.2973 −1.92026
\(987\) 2.99597 0.0953627
\(988\) 0 0
\(989\) 21.1276 0.671818
\(990\) 27.0223 0.858826
\(991\) −22.1647 −0.704086 −0.352043 0.935984i \(-0.614513\pi\)
−0.352043 + 0.935984i \(0.614513\pi\)
\(992\) 26.4636 0.840219
\(993\) −3.09099 −0.0980897
\(994\) 15.6880 0.497594
\(995\) 30.9525 0.981261
\(996\) 25.6473 0.812666
\(997\) 5.54303 0.175549 0.0877747 0.996140i \(-0.472024\pi\)
0.0877747 + 0.996140i \(0.472024\pi\)
\(998\) 20.9618 0.663535
\(999\) 5.73661 0.181498
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7581.2.a.x.1.2 5
19.18 odd 2 399.2.a.f.1.4 5
57.56 even 2 1197.2.a.p.1.2 5
76.75 even 2 6384.2.a.cc.1.5 5
95.94 odd 2 9975.2.a.bq.1.2 5
133.132 even 2 2793.2.a.be.1.4 5
399.398 odd 2 8379.2.a.ce.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.a.f.1.4 5 19.18 odd 2
1197.2.a.p.1.2 5 57.56 even 2
2793.2.a.be.1.4 5 133.132 even 2
6384.2.a.cc.1.5 5 76.75 even 2
7581.2.a.x.1.2 5 1.1 even 1 trivial
8379.2.a.ce.1.2 5 399.398 odd 2
9975.2.a.bq.1.2 5 95.94 odd 2