Properties

Label 7581.2
Level 7581
Weight 2
Dimension 1481584
Nonzero newspaces 64
Sturm bound 8317440

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 7581 = 3 \cdot 7 \cdot 19^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 64 \)
Sturm bound: \(8317440\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(7581))\).

Total New Old
Modular forms 2091456 1490956 600500
Cusp forms 2067265 1481584 585681
Eisenstein series 24191 9372 14819

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(7581))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
7581.2.a \(\chi_{7581}(1, \cdot)\) 7581.2.a.a 1 1
7581.2.a.b 1
7581.2.a.c 1
7581.2.a.d 1
7581.2.a.e 1
7581.2.a.f 1
7581.2.a.g 2
7581.2.a.h 2
7581.2.a.i 2
7581.2.a.j 2
7581.2.a.k 3
7581.2.a.l 3
7581.2.a.m 3
7581.2.a.n 3
7581.2.a.o 3
7581.2.a.p 3
7581.2.a.q 4
7581.2.a.r 4
7581.2.a.s 4
7581.2.a.t 4
7581.2.a.u 4
7581.2.a.v 4
7581.2.a.w 5
7581.2.a.x 5
7581.2.a.y 6
7581.2.a.z 6
7581.2.a.ba 6
7581.2.a.bb 6
7581.2.a.bc 6
7581.2.a.bd 6
7581.2.a.be 6
7581.2.a.bf 6
7581.2.a.bg 9
7581.2.a.bh 9
7581.2.a.bi 12
7581.2.a.bj 12
7581.2.a.bk 12
7581.2.a.bl 12
7581.2.a.bm 12
7581.2.a.bn 12
7581.2.a.bo 12
7581.2.a.bp 12
7581.2.a.bq 18
7581.2.a.br 18
7581.2.a.bs 18
7581.2.a.bt 18
7581.2.a.bu 20
7581.2.a.bv 20
7581.2.c \(\chi_{7581}(5053, \cdot)\) n/a 452 1
7581.2.d \(\chi_{7581}(3611, \cdot)\) n/a 876 1
7581.2.f \(\chi_{7581}(6497, \cdot)\) n/a 680 1
7581.2.i \(\chi_{7581}(2956, \cdot)\) n/a 908 2
7581.2.j \(\chi_{7581}(2167, \cdot)\) n/a 910 2
7581.2.k \(\chi_{7581}(2458, \cdot)\) n/a 680 2
7581.2.l \(\chi_{7581}(1873, \cdot)\) n/a 908 2
7581.2.m \(\chi_{7581}(3181, \cdot)\) n/a 908 2
7581.2.p \(\chi_{7581}(1151, \cdot)\) n/a 1748 2
7581.2.t \(\chi_{7581}(4040, \cdot)\) n/a 1360 2
7581.2.w \(\chi_{7581}(1082, \cdot)\) n/a 1748 2
7581.2.x \(\chi_{7581}(2459, \cdot)\) n/a 1748 2
7581.2.z \(\chi_{7581}(3317, \cdot)\) n/a 1752 2
7581.2.bc \(\chi_{7581}(362, \cdot)\) n/a 1750 2
7581.2.bd \(\chi_{7581}(68, \cdot)\) n/a 1748 2
7581.2.bg \(\chi_{7581}(430, \cdot)\) n/a 908 2
7581.2.bh \(\chi_{7581}(1804, \cdot)\) n/a 908 2
7581.2.bk \(\chi_{7581}(2596, \cdot)\) n/a 904 2
7581.2.bm \(\chi_{7581}(1376, \cdot)\) n/a 1748 2
7581.2.bo \(\chi_{7581}(967, \cdot)\) n/a 2040 6
7581.2.bp \(\chi_{7581}(3133, \cdot)\) n/a 2718 6
7581.2.bq \(\chi_{7581}(415, \cdot)\) n/a 2718 6
7581.2.br \(\chi_{7581}(1199, \cdot)\) n/a 5250 6
7581.2.bv \(\chi_{7581}(116, \cdot)\) n/a 5250 6
7581.2.bw \(\chi_{7581}(1751, \cdot)\) n/a 4080 6
7581.2.cb \(\chi_{7581}(1328, \cdot)\) n/a 5250 6
7581.2.cc \(\chi_{7581}(307, \cdot)\) n/a 2724 6
7581.2.cd \(\chi_{7581}(1921, \cdot)\) n/a 2718 6
7581.2.ci \(\chi_{7581}(2411, \cdot)\) n/a 5250 6
7581.2.cj \(\chi_{7581}(62, \cdot)\) n/a 5244 6
7581.2.ck \(\chi_{7581}(262, \cdot)\) n/a 2718 6
7581.2.cm \(\chi_{7581}(400, \cdot)\) n/a 6840 18
7581.2.cp \(\chi_{7581}(113, \cdot)\) n/a 13680 18
7581.2.cr \(\chi_{7581}(20, \cdot)\) n/a 18144 18
7581.2.cs \(\chi_{7581}(265, \cdot)\) n/a 9144 18
7581.2.cu \(\chi_{7581}(121, \cdot)\) n/a 18216 36
7581.2.cv \(\chi_{7581}(64, \cdot)\) n/a 13680 36
7581.2.cw \(\chi_{7581}(58, \cdot)\) n/a 18216 36
7581.2.cx \(\chi_{7581}(163, \cdot)\) n/a 18216 36
7581.2.cz \(\chi_{7581}(107, \cdot)\) n/a 36360 36
7581.2.db \(\chi_{7581}(160, \cdot)\) n/a 18288 36
7581.2.de \(\chi_{7581}(94, \cdot)\) n/a 18216 36
7581.2.df \(\chi_{7581}(31, \cdot)\) n/a 18216 36
7581.2.di \(\chi_{7581}(311, \cdot)\) n/a 36360 36
7581.2.dj \(\chi_{7581}(248, \cdot)\) n/a 36360 36
7581.2.dm \(\chi_{7581}(83, \cdot)\) n/a 36288 36
7581.2.do \(\chi_{7581}(65, \cdot)\) n/a 36360 36
7581.2.dp \(\chi_{7581}(170, \cdot)\) n/a 36360 36
7581.2.ds \(\chi_{7581}(8, \cdot)\) n/a 27360 36
7581.2.dw \(\chi_{7581}(26, \cdot)\) n/a 36360 36
7581.2.dz \(\chi_{7581}(145, \cdot)\) n/a 18216 36
7581.2.ea \(\chi_{7581}(4, \cdot)\) n/a 54756 108
7581.2.eb \(\chi_{7581}(130, \cdot)\) n/a 54756 108
7581.2.ec \(\chi_{7581}(43, \cdot)\) n/a 41040 108
7581.2.ee \(\chi_{7581}(10, \cdot)\) n/a 54756 108
7581.2.ef \(\chi_{7581}(104, \cdot)\) n/a 109080 108
7581.2.eg \(\chi_{7581}(17, \cdot)\) n/a 108972 108
7581.2.el \(\chi_{7581}(52, \cdot)\) n/a 54756 108
7581.2.em \(\chi_{7581}(13, \cdot)\) n/a 54648 108
7581.2.en \(\chi_{7581}(5, \cdot)\) n/a 108972 108
7581.2.es \(\chi_{7581}(29, \cdot)\) n/a 82080 108
7581.2.et \(\chi_{7581}(86, \cdot)\) n/a 108972 108
7581.2.ex \(\chi_{7581}(2, \cdot)\) n/a 108972 108

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(7581))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(7581)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(19))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(57))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(133))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(361))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(399))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1083))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2527))\)\(^{\oplus 2}\)