Properties

Label 7581.2.a
Level $7581$
Weight $2$
Character orbit 7581.a
Rep. character $\chi_{7581}(1,\cdot)$
Character field $\Q$
Dimension $340$
Newform subspaces $48$
Sturm bound $2026$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 7581 = 3 \cdot 7 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7581.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 48 \)
Sturm bound: \(2026\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(2\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(7581))\).

Total New Old
Modular forms 1052 340 712
Cusp forms 973 340 633
Eisenstein series 79 0 79

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(7\)\(19\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(123\)\(41\)\(82\)\(114\)\(41\)\(73\)\(9\)\(0\)\(9\)
\(+\)\(+\)\(-\)\(-\)\(138\)\(45\)\(93\)\(128\)\(45\)\(83\)\(10\)\(0\)\(10\)
\(+\)\(-\)\(+\)\(-\)\(133\)\(39\)\(94\)\(123\)\(39\)\(84\)\(10\)\(0\)\(10\)
\(+\)\(-\)\(-\)\(+\)\(130\)\(45\)\(85\)\(120\)\(45\)\(75\)\(10\)\(0\)\(10\)
\(-\)\(+\)\(+\)\(-\)\(140\)\(49\)\(91\)\(130\)\(49\)\(81\)\(10\)\(0\)\(10\)
\(-\)\(+\)\(-\)\(+\)\(125\)\(36\)\(89\)\(115\)\(36\)\(79\)\(10\)\(0\)\(10\)
\(-\)\(-\)\(+\)\(+\)\(130\)\(31\)\(99\)\(120\)\(31\)\(89\)\(10\)\(0\)\(10\)
\(-\)\(-\)\(-\)\(-\)\(133\)\(54\)\(79\)\(123\)\(54\)\(69\)\(10\)\(0\)\(10\)
Plus space\(+\)\(508\)\(153\)\(355\)\(469\)\(153\)\(316\)\(39\)\(0\)\(39\)
Minus space\(-\)\(544\)\(187\)\(357\)\(504\)\(187\)\(317\)\(40\)\(0\)\(40\)

Trace form

\( 340 q - 4 q^{2} + 340 q^{4} - 8 q^{5} + 4 q^{6} - 2 q^{7} - 12 q^{8} + 340 q^{9} - 8 q^{10} - 8 q^{11} - 8 q^{12} - 8 q^{13} - 2 q^{14} + 8 q^{15} + 332 q^{16} - 16 q^{17} - 4 q^{18} + 2 q^{21} + 16 q^{22}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(7581))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 7 19
7581.2.a.a 7581.a 1.a $1$ $60.535$ \(\Q\) None 7581.2.a.a \(-1\) \(1\) \(-4\) \(-1\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}-q^{4}-4q^{5}-q^{6}-q^{7}+\cdots\)
7581.2.a.b 7581.a 1.a $1$ $60.535$ \(\Q\) None 399.2.a.c \(-1\) \(1\) \(0\) \(-1\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}-q^{4}-q^{6}-q^{7}+3q^{8}+\cdots\)
7581.2.a.c 7581.a 1.a $1$ $60.535$ \(\Q\) None 7581.2.a.a \(1\) \(-1\) \(-4\) \(-1\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}-q^{4}-4q^{5}-q^{6}-q^{7}+\cdots\)
7581.2.a.d 7581.a 1.a $1$ $60.535$ \(\Q\) None 21.2.a.a \(1\) \(-1\) \(-2\) \(-1\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}-q^{4}-2q^{5}-q^{6}-q^{7}+\cdots\)
7581.2.a.e 7581.a 1.a $1$ $60.535$ \(\Q\) None 399.2.a.b \(1\) \(-1\) \(4\) \(-1\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}-q^{4}+4q^{5}-q^{6}-q^{7}+\cdots\)
7581.2.a.f 7581.a 1.a $1$ $60.535$ \(\Q\) None 399.2.a.a \(1\) \(1\) \(0\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}-q^{4}+q^{6}+q^{7}-3q^{8}+\cdots\)
7581.2.a.g 7581.a 1.a $2$ $60.535$ \(\Q(\sqrt{5}) \) None 7581.2.a.g \(-2\) \(2\) \(3\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}-q^{4}+(1+\beta )q^{5}-q^{6}+\cdots\)
7581.2.a.h 7581.a 1.a $2$ $60.535$ \(\Q(\sqrt{5}) \) None 7581.2.a.h \(-1\) \(2\) \(-4\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+q^{3}+(-1+\beta )q^{4}+(-3+2\beta )q^{5}+\cdots\)
7581.2.a.i 7581.a 1.a $2$ $60.535$ \(\Q(\sqrt{5}) \) None 7581.2.a.h \(1\) \(-2\) \(-4\) \(-2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}-q^{3}+(-1+\beta )q^{4}+(-3+2\beta )q^{5}+\cdots\)
7581.2.a.j 7581.a 1.a $2$ $60.535$ \(\Q(\sqrt{5}) \) None 7581.2.a.g \(2\) \(-2\) \(3\) \(-2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}-q^{4}+(2-\beta )q^{5}-q^{6}+\cdots\)
7581.2.a.k 7581.a 1.a $3$ $60.535$ \(\Q(\zeta_{18})^+\) None 399.2.bo.a \(-3\) \(3\) \(0\) \(-3\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}-q^{4}+(-\beta _{1}-\beta _{2})q^{5}+\cdots\)
7581.2.a.l 7581.a 1.a $3$ $60.535$ 3.3.404.1 None 399.2.a.e \(-1\) \(-3\) \(0\) \(-3\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{2}-q^{3}+(3+\beta _{1}-\beta _{2})q^{4}+(-\beta _{1}+\cdots)q^{5}+\cdots\)
7581.2.a.m 7581.a 1.a $3$ $60.535$ 3.3.148.1 None 7581.2.a.m \(-1\) \(3\) \(2\) \(3\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+q^{3}+(\beta _{1}+\beta _{2})q^{4}+(1-\beta _{1}+\cdots)q^{5}+\cdots\)
7581.2.a.n 7581.a 1.a $3$ $60.535$ 3.3.148.1 None 399.2.a.d \(-1\) \(3\) \(4\) \(-3\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+q^{3}+(\beta _{1}+\beta _{2})q^{4}+(1+\beta _{1}+\cdots)q^{5}+\cdots\)
7581.2.a.o 7581.a 1.a $3$ $60.535$ 3.3.148.1 None 7581.2.a.m \(1\) \(-3\) \(2\) \(3\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-q^{3}+(\beta _{1}+\beta _{2})q^{4}+(1-\beta _{1}+\cdots)q^{5}+\cdots\)
7581.2.a.p 7581.a 1.a $3$ $60.535$ \(\Q(\zeta_{18})^+\) None 399.2.bo.a \(3\) \(-3\) \(0\) \(-3\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}-q^{4}+(2\beta _{1}-\beta _{2})q^{5}-q^{6}+\cdots\)
7581.2.a.q 7581.a 1.a $4$ $60.535$ 4.4.6224.1 None 7581.2.a.q \(-2\) \(-4\) \(6\) \(-4\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{3})q^{2}-q^{3}+(1-\beta _{1}-\beta _{2}+\cdots)q^{4}+\cdots\)
7581.2.a.r 7581.a 1.a $4$ $60.535$ 4.4.1957.1 None 399.2.k.b \(-1\) \(-4\) \(-2\) \(-4\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{3}q^{2}-q^{3}+(1-\beta _{1}+\beta _{2})q^{4}+(-1+\cdots)q^{5}+\cdots\)
7581.2.a.s 7581.a 1.a $4$ $60.535$ 4.4.12197.1 None 399.2.k.a \(-1\) \(-4\) \(-2\) \(4\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-q^{3}+(1+\beta _{2}-\beta _{3})q^{4}+(-1+\cdots)q^{5}+\cdots\)
7581.2.a.t 7581.a 1.a $4$ $60.535$ 4.4.1957.1 None 399.2.k.b \(1\) \(4\) \(-2\) \(-4\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{3}q^{2}+q^{3}+(1-\beta _{1}+\beta _{2})q^{4}+(-1+\cdots)q^{5}+\cdots\)
7581.2.a.u 7581.a 1.a $4$ $60.535$ 4.4.12197.1 None 399.2.k.a \(1\) \(4\) \(-2\) \(4\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+q^{3}+(1+\beta _{2}-\beta _{3})q^{4}+(-1+\cdots)q^{5}+\cdots\)
7581.2.a.v 7581.a 1.a $4$ $60.535$ 4.4.6224.1 None 7581.2.a.q \(2\) \(4\) \(6\) \(-4\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{3})q^{2}+q^{3}+(1-\beta _{1}-\beta _{2})q^{4}+\cdots\)
7581.2.a.w 7581.a 1.a $5$ $60.535$ 5.5.368464.1 None 399.2.a.g \(-3\) \(5\) \(4\) \(5\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+q^{3}+(2-\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
7581.2.a.x 7581.a 1.a $5$ $60.535$ 5.5.1240016.1 None 399.2.a.f \(-1\) \(-5\) \(-2\) \(5\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{3}q^{2}-q^{3}+(1+\beta _{4})q^{4}+\beta _{2}q^{5}+\cdots\)
7581.2.a.y 7581.a 1.a $6$ $60.535$ 6.6.5953625.1 None 7581.2.a.y \(-3\) \(6\) \(2\) \(-6\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{3})q^{2}+q^{3}+(2-\beta _{1}+\beta _{3}+\cdots)q^{4}+\cdots\)
7581.2.a.z 7581.a 1.a $6$ $60.535$ 6.6.8512625.1 None 7581.2.a.z \(-2\) \(-6\) \(-5\) \(-6\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-q^{3}+(2+\beta _{3}+\beta _{4})q^{4}+(-1+\cdots)q^{5}+\cdots\)
7581.2.a.ba 7581.a 1.a $6$ $60.535$ 6.6.343395288.1 None 399.2.k.c \(-1\) \(-6\) \(0\) \(-6\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-q^{3}+(2+\beta _{2})q^{4}+\beta _{3}q^{5}+\cdots\)
7581.2.a.bb 7581.a 1.a $6$ $60.535$ 6.6.130040728.1 None 399.2.k.d \(-1\) \(-6\) \(4\) \(6\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-q^{3}+(2+\beta _{2})q^{4}+(1+\beta _{5})q^{5}+\cdots\)
7581.2.a.bc 7581.a 1.a $6$ $60.535$ 6.6.343395288.1 None 399.2.k.c \(1\) \(6\) \(0\) \(-6\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+q^{3}+(2+\beta _{2})q^{4}+\beta _{3}q^{5}+\cdots\)
7581.2.a.bd 7581.a 1.a $6$ $60.535$ 6.6.130040728.1 None 399.2.k.d \(1\) \(6\) \(4\) \(6\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+q^{3}+(2+\beta _{2})q^{4}+(1+\beta _{5})q^{5}+\cdots\)
7581.2.a.be 7581.a 1.a $6$ $60.535$ 6.6.8512625.1 None 7581.2.a.z \(2\) \(6\) \(-5\) \(-6\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+q^{3}+(2+\beta _{3}+\beta _{4})q^{4}+(-1+\cdots)q^{5}+\cdots\)
7581.2.a.bf 7581.a 1.a $6$ $60.535$ 6.6.5953625.1 None 7581.2.a.y \(3\) \(-6\) \(2\) \(-6\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta _{3})q^{2}-q^{3}+(2-\beta _{1}+\beta _{3}-\beta _{4}+\cdots)q^{4}+\cdots\)
7581.2.a.bg 7581.a 1.a $9$ $60.535$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 399.2.bo.b \(-3\) \(-9\) \(0\) \(-9\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-q^{3}+(1-\beta _{5}-\beta _{7}+\beta _{8})q^{4}+\cdots\)
7581.2.a.bh 7581.a 1.a $9$ $60.535$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 399.2.bo.b \(3\) \(9\) \(0\) \(-9\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+q^{3}+(1-\beta _{5}-\beta _{7}+\beta _{8})q^{4}+\cdots\)
7581.2.a.bi 7581.a 1.a $12$ $60.535$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 7581.2.a.bi \(-4\) \(12\) \(-2\) \(12\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+q^{3}+(\beta _{1}+\beta _{4}-\beta _{5})q^{4}+\cdots\)
7581.2.a.bj 7581.a 1.a $12$ $60.535$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 7581.2.a.bj \(-3\) \(-12\) \(-2\) \(12\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-q^{3}+(1+\beta _{2})q^{4}+(\beta _{1}+\beta _{4}+\cdots)q^{5}+\cdots\)
7581.2.a.bk 7581.a 1.a $12$ $60.535$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 7581.2.a.bk \(-1\) \(-12\) \(-2\) \(12\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-q^{3}+(1+\beta _{2})q^{4}+\beta _{10}q^{5}+\cdots\)
7581.2.a.bl 7581.a 1.a $12$ $60.535$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 399.2.bo.c \(0\) \(-12\) \(-12\) \(12\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-q^{3}+(1+\beta _{2})q^{4}+(-1-\beta _{4}+\cdots)q^{5}+\cdots\)
7581.2.a.bm 7581.a 1.a $12$ $60.535$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 399.2.bo.c \(0\) \(12\) \(-12\) \(12\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+q^{3}+(1+\beta _{2})q^{4}+(-1-\beta _{4}+\cdots)q^{5}+\cdots\)
7581.2.a.bn 7581.a 1.a $12$ $60.535$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 7581.2.a.bk \(1\) \(12\) \(-2\) \(12\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+q^{3}+(1+\beta _{2})q^{4}+\beta _{10}q^{5}+\cdots\)
7581.2.a.bo 7581.a 1.a $12$ $60.535$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 7581.2.a.bj \(3\) \(12\) \(-2\) \(12\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+q^{3}+(1+\beta _{2})q^{4}+(\beta _{1}+\beta _{4}+\cdots)q^{5}+\cdots\)
7581.2.a.bp 7581.a 1.a $12$ $60.535$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 7581.2.a.bi \(4\) \(-12\) \(-2\) \(12\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-q^{3}+(\beta _{1}+\beta _{4}-\beta _{5})q^{4}+\cdots\)
7581.2.a.bq 7581.a 1.a $18$ $60.535$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 399.2.bo.e \(0\) \(-18\) \(0\) \(-18\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-q^{3}+(1+\beta _{2})q^{4}-\beta _{12}q^{5}+\cdots\)
7581.2.a.br 7581.a 1.a $18$ $60.535$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 399.2.bo.d \(0\) \(-18\) \(12\) \(18\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-q^{3}+(1+\beta _{2})q^{4}+(1+\beta _{9}+\cdots)q^{5}+\cdots\)
7581.2.a.bs 7581.a 1.a $18$ $60.535$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 399.2.bo.e \(0\) \(18\) \(0\) \(-18\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+q^{3}+(1+\beta _{2})q^{4}-\beta _{12}q^{5}+\cdots\)
7581.2.a.bt 7581.a 1.a $18$ $60.535$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 399.2.bo.d \(0\) \(18\) \(12\) \(18\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+q^{3}+(1+\beta _{2})q^{4}+(1+\beta _{9}+\cdots)q^{5}+\cdots\)
7581.2.a.bu 7581.a 1.a $20$ $60.535$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 7581.2.a.bu \(-4\) \(-20\) \(-2\) \(-20\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-q^{3}+(1+\beta _{2})q^{4}+\beta _{12}q^{5}+\cdots\)
7581.2.a.bv 7581.a 1.a $20$ $60.535$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 7581.2.a.bu \(4\) \(20\) \(-2\) \(-20\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+q^{3}+(1+\beta _{2})q^{4}+\beta _{12}q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(7581))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(7581)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(133))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(361))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(399))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1083))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2527))\)\(^{\oplus 2}\)