Defining parameters
| Level: | \( N \) | \(=\) | \( 7581 = 3 \cdot 7 \cdot 19^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 7581.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 48 \) | ||
| Sturm bound: | \(2026\) | ||
| Trace bound: | \(7\) | ||
| Distinguishing \(T_p\): | \(2\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(7581))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 1052 | 340 | 712 |
| Cusp forms | 973 | 340 | 633 |
| Eisenstein series | 79 | 0 | 79 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(3\) | \(7\) | \(19\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(123\) | \(41\) | \(82\) | \(114\) | \(41\) | \(73\) | \(9\) | \(0\) | \(9\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(138\) | \(45\) | \(93\) | \(128\) | \(45\) | \(83\) | \(10\) | \(0\) | \(10\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(133\) | \(39\) | \(94\) | \(123\) | \(39\) | \(84\) | \(10\) | \(0\) | \(10\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(130\) | \(45\) | \(85\) | \(120\) | \(45\) | \(75\) | \(10\) | \(0\) | \(10\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(140\) | \(49\) | \(91\) | \(130\) | \(49\) | \(81\) | \(10\) | \(0\) | \(10\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(125\) | \(36\) | \(89\) | \(115\) | \(36\) | \(79\) | \(10\) | \(0\) | \(10\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(130\) | \(31\) | \(99\) | \(120\) | \(31\) | \(89\) | \(10\) | \(0\) | \(10\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(133\) | \(54\) | \(79\) | \(123\) | \(54\) | \(69\) | \(10\) | \(0\) | \(10\) | |||
| Plus space | \(+\) | \(508\) | \(153\) | \(355\) | \(469\) | \(153\) | \(316\) | \(39\) | \(0\) | \(39\) | |||||
| Minus space | \(-\) | \(544\) | \(187\) | \(357\) | \(504\) | \(187\) | \(317\) | \(40\) | \(0\) | \(40\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(7581))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(7581))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(7581)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(133))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(361))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(399))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1083))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2527))\)\(^{\oplus 2}\)