Properties

Label 399.2.a.f.1.4
Level $399$
Weight $2$
Character 399.1
Self dual yes
Analytic conductor $3.186$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [399,2,Mod(1,399)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("399.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(399, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 399 = 3 \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 399.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,1,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.18603104065\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.1240016.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 8x^{3} + 2x^{2} + 16x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.77304\) of defining polynomial
Character \(\chi\) \(=\) 399.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.91670 q^{2} +1.00000 q^{3} +1.67374 q^{4} +2.54204 q^{5} +1.91670 q^{6} +1.00000 q^{7} -0.625344 q^{8} +1.00000 q^{9} +4.87234 q^{10} -5.54608 q^{11} +1.67374 q^{12} -1.83340 q^{13} +1.91670 q^{14} +2.54204 q^{15} -4.54608 q^{16} -3.88952 q^{17} +1.91670 q^{18} +1.00000 q^{19} +4.25472 q^{20} +1.00000 q^{21} -10.6302 q^{22} +5.54608 q^{23} -0.625344 q^{24} +1.46199 q^{25} -3.51408 q^{26} +1.00000 q^{27} +1.67374 q^{28} +8.08812 q^{29} +4.87234 q^{30} -3.54608 q^{31} -7.46278 q^{32} -5.54608 q^{33} -7.45505 q^{34} +2.54204 q^{35} +1.67374 q^{36} +5.73661 q^{37} +1.91670 q^{38} -1.83340 q^{39} -1.58965 q^{40} -2.48592 q^{41} +1.91670 q^{42} +3.80947 q^{43} -9.28268 q^{44} +2.54204 q^{45} +10.6302 q^{46} -2.99597 q^{47} -4.54608 q^{48} +1.00000 q^{49} +2.80219 q^{50} -3.88952 q^{51} -3.06863 q^{52} -3.31529 q^{53} +1.91670 q^{54} -14.0984 q^{55} -0.625344 q^{56} +1.00000 q^{57} +15.5025 q^{58} -11.0922 q^{59} +4.25472 q^{60} +8.43157 q^{61} -6.79676 q^{62} +1.00000 q^{63} -5.21175 q^{64} -4.66058 q^{65} -10.6302 q^{66} -6.14424 q^{67} -6.51005 q^{68} +5.54608 q^{69} +4.87234 q^{70} +8.18491 q^{71} -0.625344 q^{72} +8.31932 q^{73} +10.9954 q^{74} +1.46199 q^{75} +1.67374 q^{76} -5.54608 q^{77} -3.51408 q^{78} -4.79676 q^{79} -11.5563 q^{80} +1.00000 q^{81} -4.76477 q^{82} -15.3234 q^{83} +1.67374 q^{84} -9.88734 q^{85} +7.30160 q^{86} +8.08812 q^{87} +3.46820 q^{88} -12.6541 q^{89} +4.87234 q^{90} -1.83340 q^{91} +9.28268 q^{92} -3.54608 q^{93} -5.74237 q^{94} +2.54204 q^{95} -7.46278 q^{96} +15.1241 q^{97} +1.91670 q^{98} -5.54608 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + q^{2} + 5 q^{3} + 7 q^{4} - 2 q^{5} + q^{6} + 5 q^{7} + 3 q^{8} + 5 q^{9} - 2 q^{11} + 7 q^{12} + 8 q^{13} + q^{14} - 2 q^{15} + 3 q^{16} - 2 q^{17} + q^{18} + 5 q^{19} - 2 q^{20} + 5 q^{21} + 2 q^{22}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.91670 1.35531 0.677656 0.735379i \(-0.262996\pi\)
0.677656 + 0.735379i \(0.262996\pi\)
\(3\) 1.00000 0.577350
\(4\) 1.67374 0.836870
\(5\) 2.54204 1.13684 0.568418 0.822740i \(-0.307556\pi\)
0.568418 + 0.822740i \(0.307556\pi\)
\(6\) 1.91670 0.782490
\(7\) 1.00000 0.377964
\(8\) −0.625344 −0.221092
\(9\) 1.00000 0.333333
\(10\) 4.87234 1.54077
\(11\) −5.54608 −1.67220 −0.836102 0.548574i \(-0.815171\pi\)
−0.836102 + 0.548574i \(0.815171\pi\)
\(12\) 1.67374 0.483167
\(13\) −1.83340 −0.508494 −0.254247 0.967139i \(-0.581828\pi\)
−0.254247 + 0.967139i \(0.581828\pi\)
\(14\) 1.91670 0.512260
\(15\) 2.54204 0.656353
\(16\) −4.54608 −1.13652
\(17\) −3.88952 −0.943348 −0.471674 0.881773i \(-0.656350\pi\)
−0.471674 + 0.881773i \(0.656350\pi\)
\(18\) 1.91670 0.451771
\(19\) 1.00000 0.229416
\(20\) 4.25472 0.951384
\(21\) 1.00000 0.218218
\(22\) −10.6302 −2.26636
\(23\) 5.54608 1.15644 0.578218 0.815882i \(-0.303748\pi\)
0.578218 + 0.815882i \(0.303748\pi\)
\(24\) −0.625344 −0.127648
\(25\) 1.46199 0.292397
\(26\) −3.51408 −0.689167
\(27\) 1.00000 0.192450
\(28\) 1.67374 0.316307
\(29\) 8.08812 1.50193 0.750963 0.660344i \(-0.229590\pi\)
0.750963 + 0.660344i \(0.229590\pi\)
\(30\) 4.87234 0.889563
\(31\) −3.54608 −0.636894 −0.318447 0.947941i \(-0.603161\pi\)
−0.318447 + 0.947941i \(0.603161\pi\)
\(32\) −7.46278 −1.31924
\(33\) −5.54608 −0.965448
\(34\) −7.45505 −1.27853
\(35\) 2.54204 0.429684
\(36\) 1.67374 0.278957
\(37\) 5.73661 0.943093 0.471546 0.881841i \(-0.343696\pi\)
0.471546 + 0.881841i \(0.343696\pi\)
\(38\) 1.91670 0.310930
\(39\) −1.83340 −0.293579
\(40\) −1.58965 −0.251346
\(41\) −2.48592 −0.388236 −0.194118 0.980978i \(-0.562184\pi\)
−0.194118 + 0.980978i \(0.562184\pi\)
\(42\) 1.91670 0.295753
\(43\) 3.80947 0.580938 0.290469 0.956884i \(-0.406189\pi\)
0.290469 + 0.956884i \(0.406189\pi\)
\(44\) −9.28268 −1.39942
\(45\) 2.54204 0.378946
\(46\) 10.6302 1.56733
\(47\) −2.99597 −0.437007 −0.218503 0.975836i \(-0.570117\pi\)
−0.218503 + 0.975836i \(0.570117\pi\)
\(48\) −4.54608 −0.656169
\(49\) 1.00000 0.142857
\(50\) 2.80219 0.396290
\(51\) −3.88952 −0.544642
\(52\) −3.06863 −0.425543
\(53\) −3.31529 −0.455390 −0.227695 0.973732i \(-0.573119\pi\)
−0.227695 + 0.973732i \(0.573119\pi\)
\(54\) 1.91670 0.260830
\(55\) −14.0984 −1.90102
\(56\) −0.625344 −0.0835651
\(57\) 1.00000 0.132453
\(58\) 15.5025 2.03558
\(59\) −11.0922 −1.44408 −0.722038 0.691854i \(-0.756794\pi\)
−0.722038 + 0.691854i \(0.756794\pi\)
\(60\) 4.25472 0.549282
\(61\) 8.43157 1.07955 0.539776 0.841809i \(-0.318509\pi\)
0.539776 + 0.841809i \(0.318509\pi\)
\(62\) −6.79676 −0.863190
\(63\) 1.00000 0.125988
\(64\) −5.21175 −0.651469
\(65\) −4.66058 −0.578074
\(66\) −10.6302 −1.30848
\(67\) −6.14424 −0.750639 −0.375319 0.926896i \(-0.622467\pi\)
−0.375319 + 0.926896i \(0.622467\pi\)
\(68\) −6.51005 −0.789459
\(69\) 5.54608 0.667669
\(70\) 4.87234 0.582356
\(71\) 8.18491 0.971370 0.485685 0.874134i \(-0.338570\pi\)
0.485685 + 0.874134i \(0.338570\pi\)
\(72\) −0.625344 −0.0736975
\(73\) 8.31932 0.973703 0.486851 0.873485i \(-0.338145\pi\)
0.486851 + 0.873485i \(0.338145\pi\)
\(74\) 10.9954 1.27818
\(75\) 1.46199 0.168816
\(76\) 1.67374 0.191991
\(77\) −5.54608 −0.632034
\(78\) −3.51408 −0.397891
\(79\) −4.79676 −0.539678 −0.269839 0.962905i \(-0.586970\pi\)
−0.269839 + 0.962905i \(0.586970\pi\)
\(80\) −11.5563 −1.29204
\(81\) 1.00000 0.111111
\(82\) −4.76477 −0.526180
\(83\) −15.3234 −1.68196 −0.840978 0.541069i \(-0.818020\pi\)
−0.840978 + 0.541069i \(0.818020\pi\)
\(84\) 1.67374 0.182620
\(85\) −9.88734 −1.07243
\(86\) 7.30160 0.787352
\(87\) 8.08812 0.867137
\(88\) 3.46820 0.369712
\(89\) −12.6541 −1.34133 −0.670666 0.741760i \(-0.733992\pi\)
−0.670666 + 0.741760i \(0.733992\pi\)
\(90\) 4.87234 0.513589
\(91\) −1.83340 −0.192193
\(92\) 9.28268 0.967787
\(93\) −3.54608 −0.367711
\(94\) −5.74237 −0.592281
\(95\) 2.54204 0.260808
\(96\) −7.46278 −0.761666
\(97\) 15.1241 1.53562 0.767812 0.640675i \(-0.221345\pi\)
0.767812 + 0.640675i \(0.221345\pi\)
\(98\) 1.91670 0.193616
\(99\) −5.54608 −0.557402
\(100\) 2.44699 0.244699
\(101\) 14.9817 1.49073 0.745366 0.666655i \(-0.232275\pi\)
0.745366 + 0.666655i \(0.232275\pi\)
\(102\) −7.45505 −0.738160
\(103\) 6.36176 0.626843 0.313421 0.949614i \(-0.398525\pi\)
0.313421 + 0.949614i \(0.398525\pi\)
\(104\) 1.14651 0.112424
\(105\) 2.54204 0.248078
\(106\) −6.35442 −0.617196
\(107\) 17.9296 1.73332 0.866659 0.498901i \(-0.166263\pi\)
0.866659 + 0.498901i \(0.166263\pi\)
\(108\) 1.67374 0.161056
\(109\) −4.00806 −0.383903 −0.191951 0.981404i \(-0.561482\pi\)
−0.191951 + 0.981404i \(0.561482\pi\)
\(110\) −27.0223 −2.57648
\(111\) 5.73661 0.544495
\(112\) −4.54608 −0.429564
\(113\) 1.96781 0.185116 0.0925581 0.995707i \(-0.470496\pi\)
0.0925581 + 0.995707i \(0.470496\pi\)
\(114\) 1.91670 0.179515
\(115\) 14.0984 1.31468
\(116\) 13.5374 1.25692
\(117\) −1.83340 −0.169498
\(118\) −21.2603 −1.95717
\(119\) −3.88952 −0.356552
\(120\) −1.58965 −0.145115
\(121\) 19.7590 1.79627
\(122\) 16.1608 1.46313
\(123\) −2.48592 −0.224148
\(124\) −5.93521 −0.532997
\(125\) −8.99378 −0.804428
\(126\) 1.91670 0.170753
\(127\) 7.44928 0.661017 0.330509 0.943803i \(-0.392780\pi\)
0.330509 + 0.943803i \(0.392780\pi\)
\(128\) 4.93619 0.436301
\(129\) 3.80947 0.335405
\(130\) −8.93294 −0.783471
\(131\) −15.4356 −1.34861 −0.674307 0.738451i \(-0.735558\pi\)
−0.674307 + 0.738451i \(0.735558\pi\)
\(132\) −9.28268 −0.807954
\(133\) 1.00000 0.0867110
\(134\) −11.7767 −1.01735
\(135\) 2.54204 0.218784
\(136\) 2.43229 0.208567
\(137\) −15.4539 −1.32032 −0.660158 0.751127i \(-0.729511\pi\)
−0.660158 + 0.751127i \(0.729511\pi\)
\(138\) 10.6302 0.904900
\(139\) −10.3193 −0.875273 −0.437637 0.899152i \(-0.644184\pi\)
−0.437637 + 0.899152i \(0.644184\pi\)
\(140\) 4.25472 0.359589
\(141\) −2.99597 −0.252306
\(142\) 15.6880 1.31651
\(143\) 10.1682 0.850306
\(144\) −4.54608 −0.378840
\(145\) 20.5604 1.70744
\(146\) 15.9456 1.31967
\(147\) 1.00000 0.0824786
\(148\) 9.60159 0.789246
\(149\) 12.0081 0.983739 0.491869 0.870669i \(-0.336314\pi\)
0.491869 + 0.870669i \(0.336314\pi\)
\(150\) 2.80219 0.228798
\(151\) 19.0463 1.54996 0.774982 0.631983i \(-0.217759\pi\)
0.774982 + 0.631983i \(0.217759\pi\)
\(152\) −0.625344 −0.0507221
\(153\) −3.88952 −0.314449
\(154\) −10.6302 −0.856603
\(155\) −9.01428 −0.724044
\(156\) −3.06863 −0.245687
\(157\) 5.93019 0.473281 0.236640 0.971597i \(-0.423954\pi\)
0.236640 + 0.971597i \(0.423954\pi\)
\(158\) −9.19396 −0.731432
\(159\) −3.31529 −0.262920
\(160\) −18.9707 −1.49977
\(161\) 5.54608 0.437092
\(162\) 1.91670 0.150590
\(163\) −2.31084 −0.180999 −0.0904995 0.995896i \(-0.528846\pi\)
−0.0904995 + 0.995896i \(0.528846\pi\)
\(164\) −4.16078 −0.324903
\(165\) −14.0984 −1.09756
\(166\) −29.3703 −2.27958
\(167\) −9.41729 −0.728732 −0.364366 0.931256i \(-0.618714\pi\)
−0.364366 + 0.931256i \(0.618714\pi\)
\(168\) −0.625344 −0.0482463
\(169\) −9.63864 −0.741434
\(170\) −18.9511 −1.45348
\(171\) 1.00000 0.0764719
\(172\) 6.37605 0.486170
\(173\) −13.5781 −1.03232 −0.516161 0.856492i \(-0.672639\pi\)
−0.516161 + 0.856492i \(0.672639\pi\)
\(174\) 15.5025 1.17524
\(175\) 1.46199 0.110516
\(176\) 25.2129 1.90049
\(177\) −11.0922 −0.833737
\(178\) −24.2541 −1.81792
\(179\) 1.55976 0.116582 0.0582910 0.998300i \(-0.481435\pi\)
0.0582910 + 0.998300i \(0.481435\pi\)
\(180\) 4.25472 0.317128
\(181\) 18.5334 1.37757 0.688787 0.724963i \(-0.258143\pi\)
0.688787 + 0.724963i \(0.258143\pi\)
\(182\) −3.51408 −0.260481
\(183\) 8.43157 0.623279
\(184\) −3.46820 −0.255679
\(185\) 14.5827 1.07214
\(186\) −6.79676 −0.498363
\(187\) 21.5716 1.57747
\(188\) −5.01447 −0.365718
\(189\) 1.00000 0.0727393
\(190\) 4.87234 0.353476
\(191\) −23.3811 −1.69179 −0.845897 0.533347i \(-0.820934\pi\)
−0.845897 + 0.533347i \(0.820934\pi\)
\(192\) −5.21175 −0.376126
\(193\) 16.8288 1.21136 0.605680 0.795708i \(-0.292901\pi\)
0.605680 + 0.795708i \(0.292901\pi\)
\(194\) 28.9885 2.08125
\(195\) −4.66058 −0.333751
\(196\) 1.67374 0.119553
\(197\) −23.1207 −1.64728 −0.823641 0.567111i \(-0.808061\pi\)
−0.823641 + 0.567111i \(0.808061\pi\)
\(198\) −10.6302 −0.755453
\(199\) 12.1762 0.863151 0.431575 0.902077i \(-0.357958\pi\)
0.431575 + 0.902077i \(0.357958\pi\)
\(200\) −0.914245 −0.0646469
\(201\) −6.14424 −0.433381
\(202\) 28.7154 2.02041
\(203\) 8.08812 0.567675
\(204\) −6.51005 −0.455794
\(205\) −6.31932 −0.441361
\(206\) 12.1936 0.849567
\(207\) 5.54608 0.385479
\(208\) 8.33478 0.577913
\(209\) −5.54608 −0.383630
\(210\) 4.87234 0.336223
\(211\) −6.95597 −0.478869 −0.239434 0.970913i \(-0.576962\pi\)
−0.239434 + 0.970913i \(0.576962\pi\)
\(212\) −5.54893 −0.381102
\(213\) 8.18491 0.560821
\(214\) 34.3656 2.34919
\(215\) 9.68383 0.660432
\(216\) −0.625344 −0.0425493
\(217\) −3.54608 −0.240723
\(218\) −7.68225 −0.520308
\(219\) 8.31932 0.562168
\(220\) −23.5970 −1.59091
\(221\) 7.13105 0.479686
\(222\) 10.9954 0.737960
\(223\) −28.4092 −1.90242 −0.951211 0.308542i \(-0.900159\pi\)
−0.951211 + 0.308542i \(0.900159\pi\)
\(224\) −7.46278 −0.498628
\(225\) 1.46199 0.0974658
\(226\) 3.77170 0.250890
\(227\) 3.31311 0.219899 0.109949 0.993937i \(-0.464931\pi\)
0.109949 + 0.993937i \(0.464931\pi\)
\(228\) 1.67374 0.110846
\(229\) 1.88776 0.124746 0.0623732 0.998053i \(-0.480133\pi\)
0.0623732 + 0.998053i \(0.480133\pi\)
\(230\) 27.0223 1.78180
\(231\) −5.54608 −0.364905
\(232\) −5.05786 −0.332064
\(233\) 23.7227 1.55413 0.777064 0.629422i \(-0.216708\pi\)
0.777064 + 0.629422i \(0.216708\pi\)
\(234\) −3.51408 −0.229722
\(235\) −7.61588 −0.496805
\(236\) −18.5654 −1.20850
\(237\) −4.79676 −0.311583
\(238\) −7.45505 −0.483239
\(239\) 21.9159 1.41762 0.708811 0.705399i \(-0.249232\pi\)
0.708811 + 0.705399i \(0.249232\pi\)
\(240\) −11.5563 −0.745957
\(241\) −17.2445 −1.11081 −0.555406 0.831579i \(-0.687437\pi\)
−0.555406 + 0.831579i \(0.687437\pi\)
\(242\) 37.8720 2.43450
\(243\) 1.00000 0.0641500
\(244\) 14.1122 0.903444
\(245\) 2.54204 0.162405
\(246\) −4.76477 −0.303790
\(247\) −1.83340 −0.116656
\(248\) 2.21752 0.140812
\(249\) −15.3234 −0.971078
\(250\) −17.2384 −1.09025
\(251\) −3.72636 −0.235206 −0.117603 0.993061i \(-0.537521\pi\)
−0.117603 + 0.993061i \(0.537521\pi\)
\(252\) 1.67374 0.105436
\(253\) −30.7590 −1.93380
\(254\) 14.2780 0.895884
\(255\) −9.88734 −0.619169
\(256\) 19.8847 1.24279
\(257\) 4.42999 0.276335 0.138168 0.990409i \(-0.455879\pi\)
0.138168 + 0.990409i \(0.455879\pi\)
\(258\) 7.30160 0.454578
\(259\) 5.73661 0.356456
\(260\) −7.80060 −0.483773
\(261\) 8.08812 0.500642
\(262\) −29.5854 −1.82779
\(263\) 2.23297 0.137691 0.0688454 0.997627i \(-0.478068\pi\)
0.0688454 + 0.997627i \(0.478068\pi\)
\(264\) 3.46820 0.213453
\(265\) −8.42761 −0.517704
\(266\) 1.91670 0.117520
\(267\) −12.6541 −0.774418
\(268\) −10.2839 −0.628187
\(269\) 4.87505 0.297237 0.148619 0.988895i \(-0.452517\pi\)
0.148619 + 0.988895i \(0.452517\pi\)
\(270\) 4.87234 0.296521
\(271\) −16.5519 −1.00545 −0.502727 0.864445i \(-0.667670\pi\)
−0.502727 + 0.864445i \(0.667670\pi\)
\(272\) 17.6821 1.07213
\(273\) −1.83340 −0.110962
\(274\) −29.6205 −1.78944
\(275\) −8.10829 −0.488948
\(276\) 9.28268 0.558752
\(277\) 28.0841 1.68741 0.843704 0.536808i \(-0.180370\pi\)
0.843704 + 0.536808i \(0.180370\pi\)
\(278\) −19.7790 −1.18627
\(279\) −3.54608 −0.212298
\(280\) −1.58965 −0.0949998
\(281\) 11.2674 0.672158 0.336079 0.941834i \(-0.390899\pi\)
0.336079 + 0.941834i \(0.390899\pi\)
\(282\) −5.74237 −0.341953
\(283\) 15.7952 0.938925 0.469463 0.882952i \(-0.344448\pi\)
0.469463 + 0.882952i \(0.344448\pi\)
\(284\) 13.6994 0.812910
\(285\) 2.54204 0.150578
\(286\) 19.4893 1.15243
\(287\) −2.48592 −0.146739
\(288\) −7.46278 −0.439748
\(289\) −1.87161 −0.110095
\(290\) 39.4080 2.31412
\(291\) 15.1241 0.886593
\(292\) 13.9244 0.814862
\(293\) 26.4573 1.54565 0.772827 0.634617i \(-0.218842\pi\)
0.772827 + 0.634617i \(0.218842\pi\)
\(294\) 1.91670 0.111784
\(295\) −28.1967 −1.64168
\(296\) −3.58735 −0.208511
\(297\) −5.54608 −0.321816
\(298\) 23.0159 1.33327
\(299\) −10.1682 −0.588041
\(300\) 2.44699 0.141277
\(301\) 3.80947 0.219574
\(302\) 36.5060 2.10068
\(303\) 14.9817 0.860675
\(304\) −4.54608 −0.260735
\(305\) 21.4334 1.22727
\(306\) −7.45505 −0.426177
\(307\) 11.7875 0.672750 0.336375 0.941728i \(-0.390799\pi\)
0.336375 + 0.941728i \(0.390799\pi\)
\(308\) −9.28268 −0.528930
\(309\) 6.36176 0.361908
\(310\) −17.2777 −0.981306
\(311\) 2.39938 0.136056 0.0680281 0.997683i \(-0.478329\pi\)
0.0680281 + 0.997683i \(0.478329\pi\)
\(312\) 1.14651 0.0649081
\(313\) 6.66058 0.376478 0.188239 0.982123i \(-0.439722\pi\)
0.188239 + 0.982123i \(0.439722\pi\)
\(314\) 11.3664 0.641443
\(315\) 2.54204 0.143228
\(316\) −8.02853 −0.451640
\(317\) −18.3376 −1.02994 −0.514972 0.857207i \(-0.672198\pi\)
−0.514972 + 0.857207i \(0.672198\pi\)
\(318\) −6.35442 −0.356338
\(319\) −44.8573 −2.51153
\(320\) −13.2485 −0.740614
\(321\) 17.9296 1.00073
\(322\) 10.6302 0.592396
\(323\) −3.88952 −0.216419
\(324\) 1.67374 0.0929855
\(325\) −2.68041 −0.148682
\(326\) −4.42919 −0.245310
\(327\) −4.00806 −0.221646
\(328\) 1.55456 0.0858360
\(329\) −2.99597 −0.165173
\(330\) −27.0223 −1.48753
\(331\) −3.09099 −0.169896 −0.0849482 0.996385i \(-0.527072\pi\)
−0.0849482 + 0.996385i \(0.527072\pi\)
\(332\) −25.6473 −1.40758
\(333\) 5.73661 0.314364
\(334\) −18.0501 −0.987658
\(335\) −15.6189 −0.853353
\(336\) −4.54608 −0.248009
\(337\) 16.8233 0.916425 0.458213 0.888843i \(-0.348490\pi\)
0.458213 + 0.888843i \(0.348490\pi\)
\(338\) −18.4744 −1.00487
\(339\) 1.96781 0.106877
\(340\) −16.5488 −0.897486
\(341\) 19.6668 1.06502
\(342\) 1.91670 0.103643
\(343\) 1.00000 0.0539949
\(344\) −2.38223 −0.128441
\(345\) 14.0984 0.759031
\(346\) −26.0251 −1.39912
\(347\) −26.8877 −1.44341 −0.721705 0.692201i \(-0.756641\pi\)
−0.721705 + 0.692201i \(0.756641\pi\)
\(348\) 13.5374 0.725681
\(349\) −4.80367 −0.257134 −0.128567 0.991701i \(-0.541038\pi\)
−0.128567 + 0.991701i \(0.541038\pi\)
\(350\) 2.80219 0.149783
\(351\) −1.83340 −0.0978597
\(352\) 41.3891 2.20605
\(353\) −12.5775 −0.669432 −0.334716 0.942319i \(-0.608640\pi\)
−0.334716 + 0.942319i \(0.608640\pi\)
\(354\) −21.2603 −1.12997
\(355\) 20.8064 1.10429
\(356\) −21.1797 −1.12252
\(357\) −3.88952 −0.205855
\(358\) 2.98960 0.158005
\(359\) −31.3332 −1.65370 −0.826851 0.562421i \(-0.809870\pi\)
−0.826851 + 0.562421i \(0.809870\pi\)
\(360\) −1.58965 −0.0837820
\(361\) 1.00000 0.0526316
\(362\) 35.5229 1.86704
\(363\) 19.7590 1.03708
\(364\) −3.06863 −0.160840
\(365\) 21.1481 1.10694
\(366\) 16.1608 0.844738
\(367\) −21.0841 −1.10058 −0.550290 0.834973i \(-0.685483\pi\)
−0.550290 + 0.834973i \(0.685483\pi\)
\(368\) −25.2129 −1.31431
\(369\) −2.48592 −0.129412
\(370\) 27.9507 1.45309
\(371\) −3.31529 −0.172121
\(372\) −5.93521 −0.307726
\(373\) −23.6097 −1.22246 −0.611231 0.791452i \(-0.709325\pi\)
−0.611231 + 0.791452i \(0.709325\pi\)
\(374\) 41.3463 2.13796
\(375\) −8.99378 −0.464437
\(376\) 1.87351 0.0966189
\(377\) −14.8288 −0.763720
\(378\) 1.91670 0.0985844
\(379\) 7.13803 0.366656 0.183328 0.983052i \(-0.441313\pi\)
0.183328 + 0.983052i \(0.441313\pi\)
\(380\) 4.25472 0.218262
\(381\) 7.44928 0.381638
\(382\) −44.8145 −2.29291
\(383\) −9.41729 −0.481201 −0.240600 0.970624i \(-0.577344\pi\)
−0.240600 + 0.970624i \(0.577344\pi\)
\(384\) 4.93619 0.251899
\(385\) −14.0984 −0.718519
\(386\) 32.2557 1.64177
\(387\) 3.80947 0.193646
\(388\) 25.3139 1.28512
\(389\) −28.0721 −1.42331 −0.711655 0.702529i \(-0.752054\pi\)
−0.711655 + 0.702529i \(0.752054\pi\)
\(390\) −8.93294 −0.452337
\(391\) −21.5716 −1.09092
\(392\) −0.625344 −0.0315846
\(393\) −15.4356 −0.778623
\(394\) −44.3155 −2.23258
\(395\) −12.1936 −0.613526
\(396\) −9.28268 −0.466472
\(397\) −6.59078 −0.330782 −0.165391 0.986228i \(-0.552889\pi\)
−0.165391 + 0.986228i \(0.552889\pi\)
\(398\) 23.3382 1.16984
\(399\) 1.00000 0.0500626
\(400\) −6.64630 −0.332315
\(401\) 34.1865 1.70719 0.853596 0.520936i \(-0.174417\pi\)
0.853596 + 0.520936i \(0.174417\pi\)
\(402\) −11.7767 −0.587367
\(403\) 6.50138 0.323857
\(404\) 25.0754 1.24755
\(405\) 2.54204 0.126315
\(406\) 15.5025 0.769376
\(407\) −31.8157 −1.57704
\(408\) 2.43229 0.120416
\(409\) −33.4555 −1.65427 −0.827134 0.562005i \(-0.810030\pi\)
−0.827134 + 0.562005i \(0.810030\pi\)
\(410\) −12.1122 −0.598181
\(411\) −15.4539 −0.762285
\(412\) 10.6479 0.524586
\(413\) −11.0922 −0.545809
\(414\) 10.6302 0.522444
\(415\) −38.9526 −1.91211
\(416\) 13.6823 0.670828
\(417\) −10.3193 −0.505339
\(418\) −10.6302 −0.519938
\(419\) −30.4418 −1.48718 −0.743590 0.668636i \(-0.766879\pi\)
−0.743590 + 0.668636i \(0.766879\pi\)
\(420\) 4.25472 0.207609
\(421\) −17.4678 −0.851328 −0.425664 0.904881i \(-0.639959\pi\)
−0.425664 + 0.904881i \(0.639959\pi\)
\(422\) −13.3325 −0.649017
\(423\) −2.99597 −0.145669
\(424\) 2.07320 0.100683
\(425\) −5.68643 −0.275833
\(426\) 15.6880 0.760087
\(427\) 8.43157 0.408032
\(428\) 30.0094 1.45056
\(429\) 10.1682 0.490924
\(430\) 18.5610 0.895091
\(431\) 24.8969 1.19924 0.599621 0.800284i \(-0.295318\pi\)
0.599621 + 0.800284i \(0.295318\pi\)
\(432\) −4.54608 −0.218723
\(433\) −11.3177 −0.543895 −0.271948 0.962312i \(-0.587668\pi\)
−0.271948 + 0.962312i \(0.587668\pi\)
\(434\) −6.79676 −0.326255
\(435\) 20.5604 0.985794
\(436\) −6.70845 −0.321277
\(437\) 5.54608 0.265305
\(438\) 15.9456 0.761912
\(439\) 12.7424 0.608162 0.304081 0.952646i \(-0.401651\pi\)
0.304081 + 0.952646i \(0.401651\pi\)
\(440\) 8.81633 0.420302
\(441\) 1.00000 0.0476190
\(442\) 13.6681 0.650125
\(443\) −22.6140 −1.07443 −0.537213 0.843447i \(-0.680523\pi\)
−0.537213 + 0.843447i \(0.680523\pi\)
\(444\) 9.60159 0.455671
\(445\) −32.1673 −1.52487
\(446\) −54.4519 −2.57837
\(447\) 12.0081 0.567962
\(448\) −5.21175 −0.246232
\(449\) 5.06578 0.239069 0.119534 0.992830i \(-0.461860\pi\)
0.119534 + 0.992830i \(0.461860\pi\)
\(450\) 2.80219 0.132097
\(451\) 13.7871 0.649210
\(452\) 3.29360 0.154918
\(453\) 19.0463 0.894872
\(454\) 6.35023 0.298031
\(455\) −4.66058 −0.218492
\(456\) −0.625344 −0.0292844
\(457\) −7.79559 −0.364662 −0.182331 0.983237i \(-0.558364\pi\)
−0.182331 + 0.983237i \(0.558364\pi\)
\(458\) 3.61826 0.169070
\(459\) −3.88952 −0.181547
\(460\) 23.5970 1.10022
\(461\) 6.89680 0.321216 0.160608 0.987018i \(-0.448655\pi\)
0.160608 + 0.987018i \(0.448655\pi\)
\(462\) −10.6302 −0.494560
\(463\) 10.6950 0.497037 0.248518 0.968627i \(-0.420056\pi\)
0.248518 + 0.968627i \(0.420056\pi\)
\(464\) −36.7692 −1.70697
\(465\) −9.01428 −0.418027
\(466\) 45.4694 2.10633
\(467\) 11.2146 0.518952 0.259476 0.965750i \(-0.416450\pi\)
0.259476 + 0.965750i \(0.416450\pi\)
\(468\) −3.06863 −0.141848
\(469\) −6.14424 −0.283715
\(470\) −14.5974 −0.673326
\(471\) 5.93019 0.273249
\(472\) 6.93641 0.319274
\(473\) −21.1276 −0.971447
\(474\) −9.19396 −0.422292
\(475\) 1.46199 0.0670806
\(476\) −6.51005 −0.298388
\(477\) −3.31529 −0.151797
\(478\) 42.0062 1.92132
\(479\) −35.4607 −1.62024 −0.810120 0.586264i \(-0.800598\pi\)
−0.810120 + 0.586264i \(0.800598\pi\)
\(480\) −18.9707 −0.865890
\(481\) −10.5175 −0.479557
\(482\) −33.0524 −1.50550
\(483\) 5.54608 0.252355
\(484\) 33.0713 1.50324
\(485\) 38.4462 1.74575
\(486\) 1.91670 0.0869433
\(487\) 8.58734 0.389129 0.194565 0.980890i \(-0.437671\pi\)
0.194565 + 0.980890i \(0.437671\pi\)
\(488\) −5.27263 −0.238681
\(489\) −2.31084 −0.104500
\(490\) 4.87234 0.220110
\(491\) −33.7384 −1.52259 −0.761297 0.648403i \(-0.775437\pi\)
−0.761297 + 0.648403i \(0.775437\pi\)
\(492\) −4.16078 −0.187583
\(493\) −31.4589 −1.41684
\(494\) −3.51408 −0.158106
\(495\) −14.0984 −0.633674
\(496\) 16.1207 0.723842
\(497\) 8.18491 0.367143
\(498\) −29.3703 −1.31611
\(499\) −10.9364 −0.489581 −0.244790 0.969576i \(-0.578719\pi\)
−0.244790 + 0.969576i \(0.578719\pi\)
\(500\) −15.0532 −0.673202
\(501\) −9.41729 −0.420733
\(502\) −7.14232 −0.318777
\(503\) 22.9454 1.02309 0.511543 0.859258i \(-0.329074\pi\)
0.511543 + 0.859258i \(0.329074\pi\)
\(504\) −0.625344 −0.0278550
\(505\) 38.0841 1.69472
\(506\) −58.9557 −2.62090
\(507\) −9.63864 −0.428067
\(508\) 12.4682 0.553185
\(509\) 7.57001 0.335535 0.167767 0.985827i \(-0.446344\pi\)
0.167767 + 0.985827i \(0.446344\pi\)
\(510\) −18.9511 −0.839167
\(511\) 8.31932 0.368025
\(512\) 28.2406 1.24807
\(513\) 1.00000 0.0441511
\(514\) 8.49096 0.374520
\(515\) 16.1719 0.712618
\(516\) 6.37605 0.280690
\(517\) 16.6159 0.730765
\(518\) 10.9954 0.483108
\(519\) −13.5781 −0.596011
\(520\) 2.91447 0.127808
\(521\) −0.827184 −0.0362396 −0.0181198 0.999836i \(-0.505768\pi\)
−0.0181198 + 0.999836i \(0.505768\pi\)
\(522\) 15.5025 0.678526
\(523\) −17.2414 −0.753915 −0.376958 0.926230i \(-0.623030\pi\)
−0.376958 + 0.926230i \(0.623030\pi\)
\(524\) −25.8352 −1.12861
\(525\) 1.46199 0.0638064
\(526\) 4.27993 0.186614
\(527\) 13.7925 0.600812
\(528\) 25.2129 1.09725
\(529\) 7.75895 0.337346
\(530\) −16.1532 −0.701651
\(531\) −11.0922 −0.481358
\(532\) 1.67374 0.0725658
\(533\) 4.55769 0.197415
\(534\) −24.2541 −1.04958
\(535\) 45.5778 1.97050
\(536\) 3.84226 0.165961
\(537\) 1.55976 0.0673087
\(538\) 9.34401 0.402849
\(539\) −5.54608 −0.238886
\(540\) 4.25472 0.183094
\(541\) 34.1280 1.46728 0.733638 0.679540i \(-0.237821\pi\)
0.733638 + 0.679540i \(0.237821\pi\)
\(542\) −31.7250 −1.36270
\(543\) 18.5334 0.795343
\(544\) 29.0266 1.24451
\(545\) −10.1887 −0.436435
\(546\) −3.51408 −0.150389
\(547\) 30.0101 1.28314 0.641569 0.767066i \(-0.278284\pi\)
0.641569 + 0.767066i \(0.278284\pi\)
\(548\) −25.8658 −1.10493
\(549\) 8.43157 0.359850
\(550\) −15.5412 −0.662677
\(551\) 8.08812 0.344565
\(552\) −3.46820 −0.147617
\(553\) −4.79676 −0.203979
\(554\) 53.8287 2.28696
\(555\) 14.5827 0.619002
\(556\) −17.2719 −0.732490
\(557\) −34.9066 −1.47904 −0.739521 0.673134i \(-0.764948\pi\)
−0.739521 + 0.673134i \(0.764948\pi\)
\(558\) −6.79676 −0.287730
\(559\) −6.98428 −0.295403
\(560\) −11.5563 −0.488344
\(561\) 21.5716 0.910753
\(562\) 21.5963 0.910984
\(563\) 20.8358 0.878123 0.439061 0.898457i \(-0.355311\pi\)
0.439061 + 0.898457i \(0.355311\pi\)
\(564\) −5.01447 −0.211147
\(565\) 5.00226 0.210447
\(566\) 30.2746 1.27254
\(567\) 1.00000 0.0419961
\(568\) −5.11838 −0.214763
\(569\) 32.3180 1.35484 0.677421 0.735595i \(-0.263097\pi\)
0.677421 + 0.735595i \(0.263097\pi\)
\(570\) 4.87234 0.204080
\(571\) 20.4451 0.855599 0.427800 0.903874i \(-0.359289\pi\)
0.427800 + 0.903874i \(0.359289\pi\)
\(572\) 17.0189 0.711595
\(573\) −23.3811 −0.976757
\(574\) −4.76477 −0.198877
\(575\) 8.10829 0.338139
\(576\) −5.21175 −0.217156
\(577\) 20.1462 0.838699 0.419349 0.907825i \(-0.362258\pi\)
0.419349 + 0.907825i \(0.362258\pi\)
\(578\) −3.58732 −0.149213
\(579\) 16.8288 0.699379
\(580\) 34.4127 1.42891
\(581\) −15.3234 −0.635720
\(582\) 28.9885 1.20161
\(583\) 18.3869 0.761506
\(584\) −5.20244 −0.215278
\(585\) −4.66058 −0.192691
\(586\) 50.7108 2.09484
\(587\) −9.60605 −0.396484 −0.198242 0.980153i \(-0.563523\pi\)
−0.198242 + 0.980153i \(0.563523\pi\)
\(588\) 1.67374 0.0690238
\(589\) −3.54608 −0.146113
\(590\) −54.0447 −2.22498
\(591\) −23.1207 −0.951059
\(592\) −26.0791 −1.07184
\(593\) 36.4249 1.49579 0.747895 0.663817i \(-0.231064\pi\)
0.747895 + 0.663817i \(0.231064\pi\)
\(594\) −10.6302 −0.436161
\(595\) −9.88734 −0.405341
\(596\) 20.0984 0.823261
\(597\) 12.1762 0.498340
\(598\) −19.4893 −0.796979
\(599\) 12.6358 0.516284 0.258142 0.966107i \(-0.416890\pi\)
0.258142 + 0.966107i \(0.416890\pi\)
\(600\) −0.914245 −0.0373239
\(601\) −2.95144 −0.120392 −0.0601960 0.998187i \(-0.519173\pi\)
−0.0601960 + 0.998187i \(0.519173\pi\)
\(602\) 7.30160 0.297591
\(603\) −6.14424 −0.250213
\(604\) 31.8785 1.29712
\(605\) 50.2281 2.04206
\(606\) 28.7154 1.16648
\(607\) −3.09215 −0.125507 −0.0627533 0.998029i \(-0.519988\pi\)
−0.0627533 + 0.998029i \(0.519988\pi\)
\(608\) −7.46278 −0.302656
\(609\) 8.08812 0.327747
\(610\) 41.0814 1.66334
\(611\) 5.49281 0.222215
\(612\) −6.51005 −0.263153
\(613\) −22.9195 −0.925709 −0.462855 0.886434i \(-0.653175\pi\)
−0.462855 + 0.886434i \(0.653175\pi\)
\(614\) 22.5932 0.911785
\(615\) −6.31932 −0.254820
\(616\) 3.46820 0.139738
\(617\) −13.8913 −0.559242 −0.279621 0.960110i \(-0.590209\pi\)
−0.279621 + 0.960110i \(0.590209\pi\)
\(618\) 12.1936 0.490498
\(619\) −42.8963 −1.72415 −0.862074 0.506783i \(-0.830835\pi\)
−0.862074 + 0.506783i \(0.830835\pi\)
\(620\) −15.0876 −0.605931
\(621\) 5.54608 0.222556
\(622\) 4.59889 0.184399
\(623\) −12.6541 −0.506976
\(624\) 8.33478 0.333658
\(625\) −30.1725 −1.20690
\(626\) 12.7663 0.510246
\(627\) −5.54608 −0.221489
\(628\) 9.92559 0.396074
\(629\) −22.3127 −0.889664
\(630\) 4.87234 0.194119
\(631\) 39.0613 1.55501 0.777504 0.628878i \(-0.216486\pi\)
0.777504 + 0.628878i \(0.216486\pi\)
\(632\) 2.99963 0.119319
\(633\) −6.95597 −0.276475
\(634\) −35.1477 −1.39590
\(635\) 18.9364 0.751468
\(636\) −5.54893 −0.220029
\(637\) −1.83340 −0.0726420
\(638\) −85.9780 −3.40390
\(639\) 8.18491 0.323790
\(640\) 12.5480 0.496003
\(641\) 49.8109 1.96741 0.983705 0.179789i \(-0.0575416\pi\)
0.983705 + 0.179789i \(0.0575416\pi\)
\(642\) 34.3656 1.35630
\(643\) 19.9187 0.785515 0.392758 0.919642i \(-0.371521\pi\)
0.392758 + 0.919642i \(0.371521\pi\)
\(644\) 9.28268 0.365789
\(645\) 9.68383 0.381300
\(646\) −7.45505 −0.293315
\(647\) −38.5332 −1.51490 −0.757448 0.652896i \(-0.773554\pi\)
−0.757448 + 0.652896i \(0.773554\pi\)
\(648\) −0.625344 −0.0245658
\(649\) 61.5179 2.41479
\(650\) −5.13754 −0.201511
\(651\) −3.54608 −0.138982
\(652\) −3.86775 −0.151473
\(653\) −1.47322 −0.0576515 −0.0288257 0.999584i \(-0.509177\pi\)
−0.0288257 + 0.999584i \(0.509177\pi\)
\(654\) −7.68225 −0.300400
\(655\) −39.2380 −1.53315
\(656\) 11.3012 0.441237
\(657\) 8.31932 0.324568
\(658\) −5.74237 −0.223861
\(659\) 35.4063 1.37923 0.689616 0.724175i \(-0.257779\pi\)
0.689616 + 0.724175i \(0.257779\pi\)
\(660\) −23.5970 −0.918512
\(661\) 12.2390 0.476043 0.238022 0.971260i \(-0.423501\pi\)
0.238022 + 0.971260i \(0.423501\pi\)
\(662\) −5.92451 −0.230262
\(663\) 7.13105 0.276947
\(664\) 9.58236 0.371868
\(665\) 2.54204 0.0985762
\(666\) 10.9954 0.426062
\(667\) 44.8573 1.73688
\(668\) −15.7621 −0.609853
\(669\) −28.4092 −1.09836
\(670\) −29.9368 −1.15656
\(671\) −46.7621 −1.80523
\(672\) −7.46278 −0.287883
\(673\) −39.6565 −1.52864 −0.764322 0.644835i \(-0.776926\pi\)
−0.764322 + 0.644835i \(0.776926\pi\)
\(674\) 32.2453 1.24204
\(675\) 1.46199 0.0562719
\(676\) −16.1326 −0.620484
\(677\) −12.7354 −0.489463 −0.244731 0.969591i \(-0.578700\pi\)
−0.244731 + 0.969591i \(0.578700\pi\)
\(678\) 3.77170 0.144851
\(679\) 15.1241 0.580412
\(680\) 6.18299 0.237107
\(681\) 3.31311 0.126958
\(682\) 37.6954 1.44343
\(683\) −10.2019 −0.390366 −0.195183 0.980767i \(-0.562530\pi\)
−0.195183 + 0.980767i \(0.562530\pi\)
\(684\) 1.67374 0.0639970
\(685\) −39.2845 −1.50098
\(686\) 1.91670 0.0731800
\(687\) 1.88776 0.0720224
\(688\) −17.3181 −0.660247
\(689\) 6.07825 0.231563
\(690\) 27.0223 1.02872
\(691\) −16.3435 −0.621736 −0.310868 0.950453i \(-0.600620\pi\)
−0.310868 + 0.950453i \(0.600620\pi\)
\(692\) −22.7262 −0.863919
\(693\) −5.54608 −0.210678
\(694\) −51.5357 −1.95627
\(695\) −26.2322 −0.995043
\(696\) −5.05786 −0.191718
\(697\) 9.66905 0.366241
\(698\) −9.20719 −0.348497
\(699\) 23.7227 0.897276
\(700\) 2.44699 0.0924874
\(701\) 19.9807 0.754660 0.377330 0.926079i \(-0.376842\pi\)
0.377330 + 0.926079i \(0.376842\pi\)
\(702\) −3.51408 −0.132630
\(703\) 5.73661 0.216360
\(704\) 28.9048 1.08939
\(705\) −7.61588 −0.286831
\(706\) −24.1073 −0.907289
\(707\) 14.9817 0.563444
\(708\) −18.5654 −0.697729
\(709\) −2.38955 −0.0897414 −0.0448707 0.998993i \(-0.514288\pi\)
−0.0448707 + 0.998993i \(0.514288\pi\)
\(710\) 39.8796 1.49666
\(711\) −4.79676 −0.179893
\(712\) 7.91316 0.296558
\(713\) −19.6668 −0.736527
\(714\) −7.45505 −0.278998
\(715\) 25.8479 0.966659
\(716\) 2.61063 0.0975640
\(717\) 21.9159 0.818464
\(718\) −60.0563 −2.24128
\(719\) 48.8139 1.82045 0.910225 0.414113i \(-0.135908\pi\)
0.910225 + 0.414113i \(0.135908\pi\)
\(720\) −11.5563 −0.430679
\(721\) 6.36176 0.236924
\(722\) 1.91670 0.0713322
\(723\) −17.2445 −0.641328
\(724\) 31.0200 1.15285
\(725\) 11.8247 0.439159
\(726\) 37.8720 1.40556
\(727\) −27.4034 −1.01634 −0.508168 0.861258i \(-0.669677\pi\)
−0.508168 + 0.861258i \(0.669677\pi\)
\(728\) 1.14651 0.0424923
\(729\) 1.00000 0.0370370
\(730\) 40.5345 1.50025
\(731\) −14.8170 −0.548027
\(732\) 14.1122 0.521604
\(733\) 16.5229 0.610288 0.305144 0.952306i \(-0.401295\pi\)
0.305144 + 0.952306i \(0.401295\pi\)
\(734\) −40.4119 −1.49163
\(735\) 2.54204 0.0937647
\(736\) −41.3891 −1.52562
\(737\) 34.0764 1.25522
\(738\) −4.76477 −0.175393
\(739\) −22.6771 −0.834192 −0.417096 0.908863i \(-0.636952\pi\)
−0.417096 + 0.908863i \(0.636952\pi\)
\(740\) 24.4077 0.897243
\(741\) −1.83340 −0.0673516
\(742\) −6.35442 −0.233278
\(743\) 15.2185 0.558313 0.279156 0.960246i \(-0.409945\pi\)
0.279156 + 0.960246i \(0.409945\pi\)
\(744\) 2.21752 0.0812981
\(745\) 30.5250 1.11835
\(746\) −45.2526 −1.65682
\(747\) −15.3234 −0.560652
\(748\) 36.1052 1.32014
\(749\) 17.9296 0.655133
\(750\) −17.2384 −0.629457
\(751\) −12.3674 −0.451294 −0.225647 0.974209i \(-0.572450\pi\)
−0.225647 + 0.974209i \(0.572450\pi\)
\(752\) 13.6199 0.496667
\(753\) −3.72636 −0.135796
\(754\) −28.4223 −1.03508
\(755\) 48.4165 1.76206
\(756\) 1.67374 0.0608733
\(757\) −14.9271 −0.542536 −0.271268 0.962504i \(-0.587443\pi\)
−0.271268 + 0.962504i \(0.587443\pi\)
\(758\) 13.6815 0.496933
\(759\) −30.7590 −1.11648
\(760\) −1.58965 −0.0576627
\(761\) 15.2563 0.553041 0.276520 0.961008i \(-0.410819\pi\)
0.276520 + 0.961008i \(0.410819\pi\)
\(762\) 14.2780 0.517239
\(763\) −4.00806 −0.145102
\(764\) −39.1338 −1.41581
\(765\) −9.88734 −0.357477
\(766\) −18.0501 −0.652177
\(767\) 20.3364 0.734303
\(768\) 19.8847 0.717527
\(769\) −10.7563 −0.387883 −0.193941 0.981013i \(-0.562127\pi\)
−0.193941 + 0.981013i \(0.562127\pi\)
\(770\) −27.0223 −0.973818
\(771\) 4.42999 0.159542
\(772\) 28.1670 1.01375
\(773\) −13.8026 −0.496444 −0.248222 0.968703i \(-0.579846\pi\)
−0.248222 + 0.968703i \(0.579846\pi\)
\(774\) 7.30160 0.262451
\(775\) −5.18432 −0.186226
\(776\) −9.45779 −0.339515
\(777\) 5.73661 0.205800
\(778\) −53.8057 −1.92903
\(779\) −2.48592 −0.0890674
\(780\) −7.80060 −0.279306
\(781\) −45.3941 −1.62433
\(782\) −41.3463 −1.47854
\(783\) 8.08812 0.289046
\(784\) −4.54608 −0.162360
\(785\) 15.0748 0.538043
\(786\) −29.5854 −1.05528
\(787\) −19.6101 −0.699023 −0.349512 0.936932i \(-0.613653\pi\)
−0.349512 + 0.936932i \(0.613653\pi\)
\(788\) −38.6980 −1.37856
\(789\) 2.23297 0.0794958
\(790\) −23.3714 −0.831519
\(791\) 1.96781 0.0699673
\(792\) 3.46820 0.123237
\(793\) −15.4584 −0.548945
\(794\) −12.6325 −0.448312
\(795\) −8.42761 −0.298897
\(796\) 20.3798 0.722345
\(797\) −25.2766 −0.895344 −0.447672 0.894198i \(-0.647747\pi\)
−0.447672 + 0.894198i \(0.647747\pi\)
\(798\) 1.91670 0.0678504
\(799\) 11.6529 0.412250
\(800\) −10.9105 −0.385744
\(801\) −12.6541 −0.447111
\(802\) 65.5252 2.31378
\(803\) −46.1396 −1.62823
\(804\) −10.2839 −0.362684
\(805\) 14.0984 0.496902
\(806\) 12.4612 0.438927
\(807\) 4.87505 0.171610
\(808\) −9.36870 −0.329590
\(809\) 36.3718 1.27876 0.639382 0.768889i \(-0.279190\pi\)
0.639382 + 0.768889i \(0.279190\pi\)
\(810\) 4.87234 0.171196
\(811\) 38.3409 1.34633 0.673165 0.739492i \(-0.264934\pi\)
0.673165 + 0.739492i \(0.264934\pi\)
\(812\) 13.5374 0.475070
\(813\) −16.5519 −0.580500
\(814\) −60.9811 −2.13739
\(815\) −5.87426 −0.205766
\(816\) 17.6821 0.618996
\(817\) 3.80947 0.133276
\(818\) −64.1241 −2.24205
\(819\) −1.83340 −0.0640642
\(820\) −10.5769 −0.369361
\(821\) 7.02009 0.245003 0.122501 0.992468i \(-0.460908\pi\)
0.122501 + 0.992468i \(0.460908\pi\)
\(822\) −29.6205 −1.03313
\(823\) −18.4767 −0.644056 −0.322028 0.946730i \(-0.604365\pi\)
−0.322028 + 0.946730i \(0.604365\pi\)
\(824\) −3.97829 −0.138590
\(825\) −8.10829 −0.282294
\(826\) −21.2603 −0.739741
\(827\) −30.2879 −1.05321 −0.526606 0.850109i \(-0.676536\pi\)
−0.526606 + 0.850109i \(0.676536\pi\)
\(828\) 9.28268 0.322596
\(829\) 5.07259 0.176178 0.0880891 0.996113i \(-0.471924\pi\)
0.0880891 + 0.996113i \(0.471924\pi\)
\(830\) −74.6605 −2.59150
\(831\) 28.0841 0.974226
\(832\) 9.55523 0.331268
\(833\) −3.88952 −0.134764
\(834\) −19.7790 −0.684892
\(835\) −23.9392 −0.828449
\(836\) −9.28268 −0.321048
\(837\) −3.54608 −0.122570
\(838\) −58.3478 −2.01559
\(839\) 5.10458 0.176230 0.0881149 0.996110i \(-0.471916\pi\)
0.0881149 + 0.996110i \(0.471916\pi\)
\(840\) −1.58965 −0.0548482
\(841\) 36.4177 1.25578
\(842\) −33.4805 −1.15381
\(843\) 11.2674 0.388071
\(844\) −11.6425 −0.400751
\(845\) −24.5019 −0.842889
\(846\) −5.74237 −0.197427
\(847\) 19.7590 0.678926
\(848\) 15.0716 0.517559
\(849\) 15.7952 0.542089
\(850\) −10.8992 −0.373839
\(851\) 31.8157 1.09063
\(852\) 13.6994 0.469334
\(853\) −38.4821 −1.31760 −0.658800 0.752318i \(-0.728936\pi\)
−0.658800 + 0.752318i \(0.728936\pi\)
\(854\) 16.1608 0.553011
\(855\) 2.54204 0.0869361
\(856\) −11.2122 −0.383224
\(857\) −47.8034 −1.63293 −0.816466 0.577394i \(-0.804070\pi\)
−0.816466 + 0.577394i \(0.804070\pi\)
\(858\) 19.4893 0.665355
\(859\) −10.5654 −0.360486 −0.180243 0.983622i \(-0.557688\pi\)
−0.180243 + 0.983622i \(0.557688\pi\)
\(860\) 16.2082 0.552695
\(861\) −2.48592 −0.0847200
\(862\) 47.7199 1.62535
\(863\) 1.30828 0.0445344 0.0222672 0.999752i \(-0.492912\pi\)
0.0222672 + 0.999752i \(0.492912\pi\)
\(864\) −7.46278 −0.253889
\(865\) −34.5161 −1.17358
\(866\) −21.6927 −0.737148
\(867\) −1.87161 −0.0635633
\(868\) −5.93521 −0.201454
\(869\) 26.6032 0.902452
\(870\) 39.4080 1.33606
\(871\) 11.2649 0.381695
\(872\) 2.50642 0.0848780
\(873\) 15.1241 0.511875
\(874\) 10.6302 0.359571
\(875\) −8.99378 −0.304045
\(876\) 13.9244 0.470461
\(877\) 47.8543 1.61592 0.807962 0.589235i \(-0.200571\pi\)
0.807962 + 0.589235i \(0.200571\pi\)
\(878\) 24.4234 0.824249
\(879\) 26.4573 0.892384
\(880\) 64.0922 2.16055
\(881\) 45.8583 1.54501 0.772503 0.635011i \(-0.219005\pi\)
0.772503 + 0.635011i \(0.219005\pi\)
\(882\) 1.91670 0.0645387
\(883\) 28.6217 0.963196 0.481598 0.876392i \(-0.340056\pi\)
0.481598 + 0.876392i \(0.340056\pi\)
\(884\) 11.9355 0.401435
\(885\) −28.1967 −0.947823
\(886\) −43.3443 −1.45618
\(887\) −58.2209 −1.95487 −0.977434 0.211243i \(-0.932249\pi\)
−0.977434 + 0.211243i \(0.932249\pi\)
\(888\) −3.58735 −0.120384
\(889\) 7.44928 0.249841
\(890\) −61.6550 −2.06668
\(891\) −5.54608 −0.185801
\(892\) −47.5496 −1.59208
\(893\) −2.99597 −0.100256
\(894\) 23.0159 0.769765
\(895\) 3.96498 0.132535
\(896\) 4.93619 0.164906
\(897\) −10.1682 −0.339506
\(898\) 9.70958 0.324013
\(899\) −28.6811 −0.956568
\(900\) 2.44699 0.0815662
\(901\) 12.8949 0.429591
\(902\) 26.4258 0.879881
\(903\) 3.80947 0.126771
\(904\) −1.23056 −0.0409278
\(905\) 47.1126 1.56608
\(906\) 36.5060 1.21283
\(907\) −34.9591 −1.16080 −0.580399 0.814332i \(-0.697104\pi\)
−0.580399 + 0.814332i \(0.697104\pi\)
\(908\) 5.54527 0.184026
\(909\) 14.9817 0.496911
\(910\) −8.93294 −0.296124
\(911\) 14.7994 0.490325 0.245162 0.969482i \(-0.421159\pi\)
0.245162 + 0.969482i \(0.421159\pi\)
\(912\) −4.54608 −0.150536
\(913\) 84.9845 2.81258
\(914\) −14.9418 −0.494231
\(915\) 21.4334 0.708567
\(916\) 3.15961 0.104396
\(917\) −15.4356 −0.509728
\(918\) −7.45505 −0.246053
\(919\) 0.762136 0.0251405 0.0125703 0.999921i \(-0.495999\pi\)
0.0125703 + 0.999921i \(0.495999\pi\)
\(920\) −8.81633 −0.290666
\(921\) 11.7875 0.388412
\(922\) 13.2191 0.435348
\(923\) −15.0062 −0.493936
\(924\) −9.28268 −0.305378
\(925\) 8.38685 0.275758
\(926\) 20.4990 0.673640
\(927\) 6.36176 0.208948
\(928\) −60.3598 −1.98141
\(929\) 26.5680 0.871667 0.435833 0.900027i \(-0.356454\pi\)
0.435833 + 0.900027i \(0.356454\pi\)
\(930\) −17.2777 −0.566557
\(931\) 1.00000 0.0327737
\(932\) 39.7057 1.30060
\(933\) 2.39938 0.0785521
\(934\) 21.4951 0.703341
\(935\) 54.8359 1.79333
\(936\) 1.14651 0.0374747
\(937\) −28.7590 −0.939514 −0.469757 0.882796i \(-0.655658\pi\)
−0.469757 + 0.882796i \(0.655658\pi\)
\(938\) −11.7767 −0.384522
\(939\) 6.66058 0.217360
\(940\) −12.7470 −0.415761
\(941\) −34.1732 −1.11402 −0.557008 0.830507i \(-0.688051\pi\)
−0.557008 + 0.830507i \(0.688051\pi\)
\(942\) 11.3664 0.370337
\(943\) −13.7871 −0.448970
\(944\) 50.4258 1.64122
\(945\) 2.54204 0.0826927
\(946\) −40.4952 −1.31661
\(947\) −40.5626 −1.31811 −0.659054 0.752096i \(-0.729043\pi\)
−0.659054 + 0.752096i \(0.729043\pi\)
\(948\) −8.02853 −0.260755
\(949\) −15.2526 −0.495122
\(950\) 2.80219 0.0909151
\(951\) −18.3376 −0.594638
\(952\) 2.43229 0.0788309
\(953\) −38.6589 −1.25229 −0.626143 0.779709i \(-0.715367\pi\)
−0.626143 + 0.779709i \(0.715367\pi\)
\(954\) −6.35442 −0.205732
\(955\) −59.4357 −1.92329
\(956\) 36.6815 1.18636
\(957\) −44.8573 −1.45003
\(958\) −67.9675 −2.19593
\(959\) −15.4539 −0.499033
\(960\) −13.2485 −0.427594
\(961\) −18.4254 −0.594366
\(962\) −20.1589 −0.649949
\(963\) 17.9296 0.577773
\(964\) −28.8627 −0.929606
\(965\) 42.7794 1.37712
\(966\) 10.6302 0.342020
\(967\) 6.83153 0.219687 0.109844 0.993949i \(-0.464965\pi\)
0.109844 + 0.993949i \(0.464965\pi\)
\(968\) −12.3561 −0.397141
\(969\) −3.88952 −0.124949
\(970\) 73.6899 2.36604
\(971\) 57.7215 1.85237 0.926186 0.377068i \(-0.123068\pi\)
0.926186 + 0.377068i \(0.123068\pi\)
\(972\) 1.67374 0.0536852
\(973\) −10.3193 −0.330822
\(974\) 16.4593 0.527392
\(975\) −2.68041 −0.0858418
\(976\) −38.3305 −1.22693
\(977\) 38.7294 1.23906 0.619532 0.784972i \(-0.287323\pi\)
0.619532 + 0.784972i \(0.287323\pi\)
\(978\) −4.42919 −0.141630
\(979\) 70.1806 2.24298
\(980\) 4.25472 0.135912
\(981\) −4.00806 −0.127968
\(982\) −64.6665 −2.06359
\(983\) 44.7814 1.42831 0.714153 0.699990i \(-0.246812\pi\)
0.714153 + 0.699990i \(0.246812\pi\)
\(984\) 1.55456 0.0495574
\(985\) −58.7739 −1.87269
\(986\) −60.2973 −1.92026
\(987\) −2.99597 −0.0953627
\(988\) −3.06863 −0.0976263
\(989\) 21.1276 0.671818
\(990\) −27.0223 −0.858826
\(991\) 22.1647 0.704086 0.352043 0.935984i \(-0.385487\pi\)
0.352043 + 0.935984i \(0.385487\pi\)
\(992\) 26.4636 0.840219
\(993\) −3.09099 −0.0980897
\(994\) 15.6880 0.497594
\(995\) 30.9525 0.981261
\(996\) −25.6473 −0.812666
\(997\) 5.54303 0.175549 0.0877747 0.996140i \(-0.472024\pi\)
0.0877747 + 0.996140i \(0.472024\pi\)
\(998\) −20.9618 −0.663535
\(999\) 5.73661 0.181498
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 399.2.a.f.1.4 5
3.2 odd 2 1197.2.a.p.1.2 5
4.3 odd 2 6384.2.a.cc.1.5 5
5.4 even 2 9975.2.a.bq.1.2 5
7.6 odd 2 2793.2.a.be.1.4 5
19.18 odd 2 7581.2.a.x.1.2 5
21.20 even 2 8379.2.a.ce.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.a.f.1.4 5 1.1 even 1 trivial
1197.2.a.p.1.2 5 3.2 odd 2
2793.2.a.be.1.4 5 7.6 odd 2
6384.2.a.cc.1.5 5 4.3 odd 2
7581.2.a.x.1.2 5 19.18 odd 2
8379.2.a.ce.1.2 5 21.20 even 2
9975.2.a.bq.1.2 5 5.4 even 2