Properties

Label 75.4.e.c.68.1
Level $75$
Weight $4$
Character 75.68
Analytic conductor $4.425$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [75,4,Mod(32,75)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(75, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("75.32"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 75 = 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 75.e (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,6,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.42514325043\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.28356903014400.8
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 209x^{4} + 1600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 68.1
Root \(-2.66260 + 2.66260i\) of defining polynomial
Character \(\chi\) \(=\) 75.68
Dual form 75.4.e.c.32.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.66260 - 2.66260i) q^{2} +(2.80471 + 4.37420i) q^{3} +6.17891i q^{4} +(4.17891 - 19.1146i) q^{6} +(-9.35782 + 9.35782i) q^{7} +(-4.84884 + 4.84884i) q^{8} +(-11.2672 + 24.5367i) q^{9} +34.1375i q^{11} +(-27.0278 + 17.3301i) q^{12} +(-2.82109 - 2.82109i) q^{13} +49.8323 q^{14} +75.2524 q^{16} +(64.2384 + 64.2384i) q^{17} +(95.3316 - 35.3316i) q^{18} +19.0735i q^{19} +(-67.1789 - 14.6869i) q^{21} +(90.8945 - 90.8945i) q^{22} +(-51.4018 + 51.4018i) q^{23} +(-34.8094 - 7.61018i) q^{24} +15.0229i q^{26} +(-138.930 + 19.5337i) q^{27} +(-57.8211 - 57.8211i) q^{28} -50.5042 q^{29} -93.3673 q^{31} +(-161.576 - 161.576i) q^{32} +(-149.324 + 95.7458i) q^{33} -342.083i q^{34} +(-151.610 - 69.6188i) q^{36} +(161.537 - 161.537i) q^{37} +(50.7850 - 50.7850i) q^{38} +(4.42765 - 20.2524i) q^{39} -88.7935i q^{41} +(139.765 + 217.976i) q^{42} +(-176.399 - 176.399i) q^{43} -210.932 q^{44} +273.725 q^{46} +(38.2843 + 38.2843i) q^{47} +(211.061 + 329.169i) q^{48} +167.863i q^{49} +(-100.821 + 461.162i) q^{51} +(17.4313 - 17.4313i) q^{52} +(344.569 - 344.569i) q^{53} +(421.925 + 317.904i) q^{54} -90.7492i q^{56} +(-83.4310 + 53.4956i) q^{57} +(134.473 + 134.473i) q^{58} +421.133 q^{59} +2.00000 q^{61} +(248.600 + 248.600i) q^{62} +(-124.174 - 335.046i) q^{63} +258.409i q^{64} +(652.524 + 142.657i) q^{66} +(-430.987 + 430.987i) q^{67} +(-396.923 + 396.923i) q^{68} +(-369.009 - 80.6742i) q^{69} -733.866i q^{71} +(-64.3420 - 173.607i) q^{72} +(348.073 + 348.073i) q^{73} -860.216 q^{74} -117.853 q^{76} +(-319.452 - 319.452i) q^{77} +(-65.7131 + 42.1349i) q^{78} +588.019i q^{79} +(-475.102 - 552.919i) q^{81} +(-236.422 + 236.422i) q^{82} +(-217.997 + 217.997i) q^{83} +(90.7492 - 415.092i) q^{84} +939.362i q^{86} +(-141.650 - 220.915i) q^{87} +(-165.527 - 165.527i) q^{88} +1272.00 q^{89} +52.7985 q^{91} +(-317.607 - 317.607i) q^{92} +(-261.868 - 408.407i) q^{93} -203.872i q^{94} +(253.591 - 1159.94i) q^{96} +(432.111 - 432.111i) q^{97} +(446.951 - 446.951i) q^{98} +(-837.622 - 384.633i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{3} - 12 q^{6} + 16 q^{7} - 132 q^{12} - 68 q^{13} + 284 q^{16} + 240 q^{18} - 492 q^{21} + 500 q^{22} - 702 q^{27} - 508 q^{28} + 616 q^{31} + 240 q^{33} - 804 q^{36} + 1156 q^{37} - 540 q^{42}+ \cdots - 1904 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/75\mathbb{Z}\right)^\times\).

\(n\) \(26\) \(52\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.66260 2.66260i −0.941372 0.941372i 0.0570018 0.998374i \(-0.481846\pi\)
−0.998374 + 0.0570018i \(0.981846\pi\)
\(3\) 2.80471 + 4.37420i 0.539767 + 0.841814i
\(4\) 6.17891i 0.772364i
\(5\) 0 0
\(6\) 4.17891 19.1146i 0.284339 1.30058i
\(7\) −9.35782 + 9.35782i −0.505275 + 0.505275i −0.913072 0.407798i \(-0.866297\pi\)
0.407798 + 0.913072i \(0.366297\pi\)
\(8\) −4.84884 + 4.84884i −0.214291 + 0.214291i
\(9\) −11.2672 + 24.5367i −0.417303 + 0.908768i
\(10\) 0 0
\(11\) 34.1375i 0.935712i 0.883805 + 0.467856i \(0.154973\pi\)
−0.883805 + 0.467856i \(0.845027\pi\)
\(12\) −27.0278 + 17.3301i −0.650187 + 0.416897i
\(13\) −2.82109 2.82109i −0.0601869 0.0601869i 0.676373 0.736560i \(-0.263551\pi\)
−0.736560 + 0.676373i \(0.763551\pi\)
\(14\) 49.8323 0.951303
\(15\) 0 0
\(16\) 75.2524 1.17582
\(17\) 64.2384 + 64.2384i 0.916477 + 0.916477i 0.996771 0.0802942i \(-0.0255860\pi\)
−0.0802942 + 0.996771i \(0.525586\pi\)
\(18\) 95.3316 35.3316i 1.24833 0.462652i
\(19\) 19.0735i 0.230303i 0.993348 + 0.115151i \(0.0367353\pi\)
−0.993348 + 0.115151i \(0.963265\pi\)
\(20\) 0 0
\(21\) −67.1789 14.6869i −0.698078 0.152617i
\(22\) 90.8945 90.8945i 0.880854 0.880854i
\(23\) −51.4018 + 51.4018i −0.466001 + 0.466001i −0.900616 0.434616i \(-0.856884\pi\)
0.434616 + 0.900616i \(0.356884\pi\)
\(24\) −34.8094 7.61018i −0.296060 0.0647259i
\(25\) 0 0
\(26\) 15.0229i 0.113317i
\(27\) −138.930 + 19.5337i −0.990260 + 0.139232i
\(28\) −57.8211 57.8211i −0.390256 0.390256i
\(29\) −50.5042 −0.323393 −0.161697 0.986841i \(-0.551697\pi\)
−0.161697 + 0.986841i \(0.551697\pi\)
\(30\) 0 0
\(31\) −93.3673 −0.540944 −0.270472 0.962728i \(-0.587180\pi\)
−0.270472 + 0.962728i \(0.587180\pi\)
\(32\) −161.576 161.576i −0.892592 0.892592i
\(33\) −149.324 + 95.7458i −0.787696 + 0.505067i
\(34\) 342.083i 1.72549i
\(35\) 0 0
\(36\) −151.610 69.6188i −0.701899 0.322309i
\(37\) 161.537 161.537i 0.717743 0.717743i −0.250400 0.968142i \(-0.580562\pi\)
0.968142 + 0.250400i \(0.0805621\pi\)
\(38\) 50.7850 50.7850i 0.216800 0.216800i
\(39\) 4.42765 20.2524i 0.0181793 0.0831531i
\(40\) 0 0
\(41\) 88.7935i 0.338225i −0.985597 0.169112i \(-0.945910\pi\)
0.985597 0.169112i \(-0.0540901\pi\)
\(42\) 139.765 + 217.976i 0.513482 + 0.800820i
\(43\) −176.399 176.399i −0.625596 0.625596i 0.321361 0.946957i \(-0.395860\pi\)
−0.946957 + 0.321361i \(0.895860\pi\)
\(44\) −210.932 −0.722710
\(45\) 0 0
\(46\) 273.725 0.877360
\(47\) 38.2843 + 38.2843i 0.118816 + 0.118816i 0.764015 0.645199i \(-0.223225\pi\)
−0.645199 + 0.764015i \(0.723225\pi\)
\(48\) 211.061 + 329.169i 0.634668 + 0.989820i
\(49\) 167.863i 0.489395i
\(50\) 0 0
\(51\) −100.821 + 461.162i −0.276819 + 1.26619i
\(52\) 17.4313 17.4313i 0.0464862 0.0464862i
\(53\) 344.569 344.569i 0.893022 0.893022i −0.101784 0.994806i \(-0.532455\pi\)
0.994806 + 0.101784i \(0.0324551\pi\)
\(54\) 421.925 + 317.904i 1.06327 + 0.801134i
\(55\) 0 0
\(56\) 90.7492i 0.216551i
\(57\) −83.4310 + 53.4956i −0.193872 + 0.124310i
\(58\) 134.473 + 134.473i 0.304433 + 0.304433i
\(59\) 421.133 0.929268 0.464634 0.885503i \(-0.346186\pi\)
0.464634 + 0.885503i \(0.346186\pi\)
\(60\) 0 0
\(61\) 2.00000 0.00419793 0.00209897 0.999998i \(-0.499332\pi\)
0.00209897 + 0.999998i \(0.499332\pi\)
\(62\) 248.600 + 248.600i 0.509229 + 0.509229i
\(63\) −124.174 335.046i −0.248325 0.670030i
\(64\) 258.409i 0.504704i
\(65\) 0 0
\(66\) 652.524 + 142.657i 1.21697 + 0.266059i
\(67\) −430.987 + 430.987i −0.785872 + 0.785872i −0.980815 0.194943i \(-0.937548\pi\)
0.194943 + 0.980815i \(0.437548\pi\)
\(68\) −396.923 + 396.923i −0.707853 + 0.707853i
\(69\) −369.009 80.6742i −0.643818 0.140754i
\(70\) 0 0
\(71\) 733.866i 1.22667i −0.789822 0.613337i \(-0.789827\pi\)
0.789822 0.613337i \(-0.210173\pi\)
\(72\) −64.3420 173.607i −0.105316 0.284164i
\(73\) 348.073 + 348.073i 0.558067 + 0.558067i 0.928757 0.370690i \(-0.120879\pi\)
−0.370690 + 0.928757i \(0.620879\pi\)
\(74\) −860.216 −1.35133
\(75\) 0 0
\(76\) −117.853 −0.177877
\(77\) −319.452 319.452i −0.472792 0.472792i
\(78\) −65.7131 + 42.1349i −0.0953915 + 0.0611646i
\(79\) 588.019i 0.837434i 0.908117 + 0.418717i \(0.137520\pi\)
−0.908117 + 0.418717i \(0.862480\pi\)
\(80\) 0 0
\(81\) −475.102 552.919i −0.651717 0.758462i
\(82\) −236.422 + 236.422i −0.318395 + 0.318395i
\(83\) −217.997 + 217.997i −0.288293 + 0.288293i −0.836405 0.548112i \(-0.815347\pi\)
0.548112 + 0.836405i \(0.315347\pi\)
\(84\) 90.7492 415.092i 0.117876 0.539170i
\(85\) 0 0
\(86\) 939.362i 1.17784i
\(87\) −141.650 220.915i −0.174557 0.272237i
\(88\) −165.527 165.527i −0.200514 0.200514i
\(89\) 1272.00 1.51497 0.757483 0.652855i \(-0.226429\pi\)
0.757483 + 0.652855i \(0.226429\pi\)
\(90\) 0 0
\(91\) 52.7985 0.0608219
\(92\) −317.607 317.607i −0.359922 0.359922i
\(93\) −261.868 408.407i −0.291984 0.455374i
\(94\) 203.872i 0.223700i
\(95\) 0 0
\(96\) 253.591 1159.94i 0.269605 1.23319i
\(97\) 432.111 432.111i 0.452312 0.452312i −0.443809 0.896121i \(-0.646373\pi\)
0.896121 + 0.443809i \(0.146373\pi\)
\(98\) 446.951 446.951i 0.460703 0.460703i
\(99\) −837.622 384.633i −0.850345 0.390475i
\(100\) 0 0
\(101\) 1662.30i 1.63767i 0.574029 + 0.818835i \(0.305380\pi\)
−0.574029 + 0.818835i \(0.694620\pi\)
\(102\) 1496.34 959.444i 1.45254 0.931364i
\(103\) 774.495 + 774.495i 0.740906 + 0.740906i 0.972752 0.231847i \(-0.0744768\pi\)
−0.231847 + 0.972752i \(0.574477\pi\)
\(104\) 27.3581 0.0257950
\(105\) 0 0
\(106\) −1834.90 −1.68133
\(107\) 1170.26 + 1170.26i 1.05732 + 1.05732i 0.998254 + 0.0590633i \(0.0188114\pi\)
0.0590633 + 0.998254i \(0.481189\pi\)
\(108\) −120.697 858.433i −0.107537 0.764841i
\(109\) 1264.60i 1.11125i −0.831432 0.555627i \(-0.812478\pi\)
0.831432 0.555627i \(-0.187522\pi\)
\(110\) 0 0
\(111\) 1159.66 + 253.529i 0.991620 + 0.216792i
\(112\) −704.198 + 704.198i −0.594111 + 0.594111i
\(113\) −381.173 + 381.173i −0.317325 + 0.317325i −0.847739 0.530414i \(-0.822037\pi\)
0.530414 + 0.847739i \(0.322037\pi\)
\(114\) 364.581 + 79.7062i 0.299528 + 0.0654839i
\(115\) 0 0
\(116\) 312.061i 0.249777i
\(117\) 101.006 37.4346i 0.0798121 0.0295798i
\(118\) −1121.31 1121.31i −0.874787 0.874787i
\(119\) −1202.26 −0.926145
\(120\) 0 0
\(121\) 165.633 0.124442
\(122\) −5.32521 5.32521i −0.00395182 0.00395182i
\(123\) 388.400 249.040i 0.284722 0.182563i
\(124\) 576.908i 0.417805i
\(125\) 0 0
\(126\) −561.469 + 1222.72i −0.396981 + 0.864513i
\(127\) 439.588 439.588i 0.307142 0.307142i −0.536658 0.843800i \(-0.680313\pi\)
0.843800 + 0.536658i \(0.180313\pi\)
\(128\) −604.571 + 604.571i −0.417477 + 0.417477i
\(129\) 276.856 1266.35i 0.188959 0.864312i
\(130\) 0 0
\(131\) 1399.28i 0.933247i −0.884456 0.466623i \(-0.845470\pi\)
0.884456 0.466623i \(-0.154530\pi\)
\(132\) −591.605 922.659i −0.390095 0.608388i
\(133\) −178.486 178.486i −0.116366 0.116366i
\(134\) 2295.09 1.47960
\(135\) 0 0
\(136\) −622.964 −0.392785
\(137\) −1092.28 1092.28i −0.681169 0.681169i 0.279095 0.960264i \(-0.409966\pi\)
−0.960264 + 0.279095i \(0.909966\pi\)
\(138\) 767.720 + 1197.33i 0.473570 + 0.738574i
\(139\) 2498.43i 1.52456i 0.647245 + 0.762282i \(0.275921\pi\)
−0.647245 + 0.762282i \(0.724079\pi\)
\(140\) 0 0
\(141\) −60.0866 + 274.840i −0.0358880 + 0.164154i
\(142\) −1953.99 + 1953.99i −1.15476 + 1.15476i
\(143\) 96.3049 96.3049i 0.0563177 0.0563177i
\(144\) −847.881 + 1846.45i −0.490672 + 1.06855i
\(145\) 0 0
\(146\) 1853.56i 1.05070i
\(147\) −734.264 + 470.806i −0.411980 + 0.264159i
\(148\) 998.121 + 998.121i 0.554358 + 0.554358i
\(149\) −3570.40 −1.96308 −0.981538 0.191270i \(-0.938739\pi\)
−0.981538 + 0.191270i \(0.938739\pi\)
\(150\) 0 0
\(151\) 2687.14 1.44819 0.724094 0.689701i \(-0.242258\pi\)
0.724094 + 0.689701i \(0.242258\pi\)
\(152\) −92.4842 92.4842i −0.0493517 0.0493517i
\(153\) −2299.99 + 852.415i −1.21531 + 0.450416i
\(154\) 1701.15i 0.890146i
\(155\) 0 0
\(156\) 125.137 + 27.3581i 0.0642245 + 0.0140410i
\(157\) 1810.48 1810.48i 0.920333 0.920333i −0.0767201 0.997053i \(-0.524445\pi\)
0.997053 + 0.0767201i \(0.0244448\pi\)
\(158\) 1565.66 1565.66i 0.788337 0.788337i
\(159\) 2473.63 + 540.795i 1.23378 + 0.269735i
\(160\) 0 0
\(161\) 962.017i 0.470916i
\(162\) −207.196 + 2737.21i −0.100487 + 1.32750i
\(163\) 2679.06 + 2679.06i 1.28736 + 1.28736i 0.936382 + 0.350982i \(0.114152\pi\)
0.350982 + 0.936382i \(0.385848\pi\)
\(164\) 548.647 0.261232
\(165\) 0 0
\(166\) 1160.88 0.542782
\(167\) −139.543 139.543i −0.0646597 0.0646597i 0.674037 0.738697i \(-0.264559\pi\)
−0.738697 + 0.674037i \(0.764559\pi\)
\(168\) 396.955 254.525i 0.182296 0.116887i
\(169\) 2181.08i 0.992755i
\(170\) 0 0
\(171\) −468.000 214.904i −0.209292 0.0961059i
\(172\) 1089.95 1089.95i 0.483188 0.483188i
\(173\) 881.613 881.613i 0.387444 0.387444i −0.486331 0.873775i \(-0.661665\pi\)
0.873775 + 0.486331i \(0.161665\pi\)
\(174\) −211.053 + 965.367i −0.0919532 + 0.420599i
\(175\) 0 0
\(176\) 2568.93i 1.10023i
\(177\) 1181.16 + 1842.12i 0.501588 + 0.782271i
\(178\) −3386.84 3386.84i −1.42615 1.42615i
\(179\) 2512.87 1.04928 0.524638 0.851325i \(-0.324201\pi\)
0.524638 + 0.851325i \(0.324201\pi\)
\(180\) 0 0
\(181\) 269.796 0.110795 0.0553973 0.998464i \(-0.482357\pi\)
0.0553973 + 0.998464i \(0.482357\pi\)
\(182\) −140.581 140.581i −0.0572560 0.0572560i
\(183\) 5.60943 + 8.74839i 0.00226591 + 0.00353388i
\(184\) 498.478i 0.199719i
\(185\) 0 0
\(186\) −390.173 + 1784.68i −0.153811 + 0.703542i
\(187\) −2192.94 + 2192.94i −0.857559 + 0.857559i
\(188\) −236.555 + 236.555i −0.0917690 + 0.0917690i
\(189\) 1117.29 1482.87i 0.430003 0.570703i
\(190\) 0 0
\(191\) 2420.22i 0.916864i 0.888729 + 0.458432i \(0.151589\pi\)
−0.888729 + 0.458432i \(0.848411\pi\)
\(192\) −1130.33 + 724.762i −0.424867 + 0.272423i
\(193\) −1965.28 1965.28i −0.732973 0.732973i 0.238234 0.971208i \(-0.423431\pi\)
−0.971208 + 0.238234i \(0.923431\pi\)
\(194\) −2301.08 −0.851588
\(195\) 0 0
\(196\) −1037.21 −0.377991
\(197\) 832.602 + 832.602i 0.301119 + 0.301119i 0.841452 0.540333i \(-0.181702\pi\)
−0.540333 + 0.841452i \(0.681702\pi\)
\(198\) 1206.13 + 3254.38i 0.432909 + 1.16807i
\(199\) 1540.54i 0.548775i 0.961619 + 0.274387i \(0.0884750\pi\)
−0.961619 + 0.274387i \(0.911525\pi\)
\(200\) 0 0
\(201\) −3094.02 676.426i −1.08575 0.237370i
\(202\) 4426.04 4426.04i 1.54166 1.54166i
\(203\) 472.609 472.609i 0.163402 0.163402i
\(204\) −2849.48 622.964i −0.977957 0.213805i
\(205\) 0 0
\(206\) 4124.35i 1.39494i
\(207\) −682.079 1840.38i −0.229023 0.617949i
\(208\) −212.294 212.294i −0.0707689 0.0707689i
\(209\) −651.119 −0.215497
\(210\) 0 0
\(211\) −10.9380 −0.00356874 −0.00178437 0.999998i \(-0.500568\pi\)
−0.00178437 + 0.999998i \(0.500568\pi\)
\(212\) 2129.06 + 2129.06i 0.689738 + 0.689738i
\(213\) 3210.07 2058.28i 1.03263 0.662118i
\(214\) 6231.86i 1.99066i
\(215\) 0 0
\(216\) 578.932 768.364i 0.182367 0.242039i
\(217\) 873.714 873.714i 0.273325 0.273325i
\(218\) −3367.13 + 3367.13i −1.04610 + 1.04610i
\(219\) −546.295 + 2498.79i −0.168563 + 0.771016i
\(220\) 0 0
\(221\) 362.445i 0.110320i
\(222\) −2412.66 3762.75i −0.729401 1.13757i
\(223\) −831.512 831.512i −0.249696 0.249696i 0.571150 0.820846i \(-0.306497\pi\)
−0.820846 + 0.571150i \(0.806497\pi\)
\(224\) 3024.00 0.902008
\(225\) 0 0
\(226\) 2029.83 0.597443
\(227\) −3441.18 3441.18i −1.00616 1.00616i −0.999981 0.00618314i \(-0.998032\pi\)
−0.00618314 0.999981i \(-0.501968\pi\)
\(228\) −330.544 515.512i −0.0960124 0.149740i
\(229\) 1680.38i 0.484903i −0.970164 0.242451i \(-0.922049\pi\)
0.970164 0.242451i \(-0.0779515\pi\)
\(230\) 0 0
\(231\) 501.375 2293.32i 0.142805 0.653200i
\(232\) 244.887 244.887i 0.0693001 0.0693001i
\(233\) −2106.74 + 2106.74i −0.592348 + 0.592348i −0.938265 0.345917i \(-0.887568\pi\)
0.345917 + 0.938265i \(0.387568\pi\)
\(234\) −368.613 169.265i −0.102978 0.0472873i
\(235\) 0 0
\(236\) 2602.14i 0.717733i
\(237\) −2572.11 + 1649.22i −0.704964 + 0.452019i
\(238\) 3201.15 + 3201.15i 0.871847 + 0.871847i
\(239\) −261.125 −0.0706728 −0.0353364 0.999375i \(-0.511250\pi\)
−0.0353364 + 0.999375i \(0.511250\pi\)
\(240\) 0 0
\(241\) −6001.45 −1.60410 −0.802048 0.597259i \(-0.796256\pi\)
−0.802048 + 0.597259i \(0.796256\pi\)
\(242\) −441.014 441.014i −0.117147 0.117147i
\(243\) 1086.05 3628.97i 0.286709 0.958018i
\(244\) 12.3578i 0.00324233i
\(245\) 0 0
\(246\) −1697.25 371.060i −0.439889 0.0961704i
\(247\) 53.8080 53.8080i 0.0138612 0.0138612i
\(248\) 452.723 452.723i 0.115919 0.115919i
\(249\) −1564.98 342.143i −0.398300 0.0870781i
\(250\) 0 0
\(251\) 3044.59i 0.765630i 0.923825 + 0.382815i \(0.125045\pi\)
−0.923825 + 0.382815i \(0.874955\pi\)
\(252\) 2070.22 767.260i 0.517506 0.191797i
\(253\) −1754.73 1754.73i −0.436042 0.436042i
\(254\) −2340.89 −0.578271
\(255\) 0 0
\(256\) 5286.74 1.29071
\(257\) 946.317 + 946.317i 0.229687 + 0.229687i 0.812562 0.582875i \(-0.198072\pi\)
−0.582875 + 0.812562i \(0.698072\pi\)
\(258\) −4108.95 + 2634.64i −0.991521 + 0.635758i
\(259\) 3023.26i 0.725314i
\(260\) 0 0
\(261\) 569.040 1239.21i 0.134953 0.293889i
\(262\) −3725.72 + 3725.72i −0.878532 + 0.878532i
\(263\) −67.0257 + 67.0257i −0.0157148 + 0.0157148i −0.714921 0.699206i \(-0.753537\pi\)
0.699206 + 0.714921i \(0.253537\pi\)
\(264\) 259.792 1188.31i 0.0605648 0.277027i
\(265\) 0 0
\(266\) 950.474i 0.219088i
\(267\) 3567.60 + 5563.99i 0.817729 + 1.27532i
\(268\) −2663.03 2663.03i −0.606979 0.606979i
\(269\) 2658.15 0.602492 0.301246 0.953546i \(-0.402597\pi\)
0.301246 + 0.953546i \(0.402597\pi\)
\(270\) 0 0
\(271\) 145.673 0.0326530 0.0163265 0.999867i \(-0.494803\pi\)
0.0163265 + 0.999867i \(0.494803\pi\)
\(272\) 4834.09 + 4834.09i 1.07761 + 1.07761i
\(273\) 148.085 + 230.951i 0.0328296 + 0.0512007i
\(274\) 5816.64i 1.28247i
\(275\) 0 0
\(276\) 498.478 2280.07i 0.108713 0.497261i
\(277\) 1074.57 1074.57i 0.233085 0.233085i −0.580894 0.813979i \(-0.697297\pi\)
0.813979 + 0.580894i \(0.197297\pi\)
\(278\) 6652.34 6652.34i 1.43518 1.43518i
\(279\) 1051.98 2290.93i 0.225737 0.491592i
\(280\) 0 0
\(281\) 2020.29i 0.428898i 0.976735 + 0.214449i \(0.0687956\pi\)
−0.976735 + 0.214449i \(0.931204\pi\)
\(282\) 891.776 571.802i 0.188314 0.120746i
\(283\) 2400.34 + 2400.34i 0.504189 + 0.504189i 0.912737 0.408548i \(-0.133965\pi\)
−0.408548 + 0.912737i \(0.633965\pi\)
\(284\) 4534.49 0.947438
\(285\) 0 0
\(286\) −512.844 −0.106032
\(287\) 830.913 + 830.913i 0.170896 + 0.170896i
\(288\) 5785.06 2144.05i 1.18364 0.438678i
\(289\) 3340.15i 0.679860i
\(290\) 0 0
\(291\) 3102.09 + 678.191i 0.624906 + 0.136619i
\(292\) −2150.71 + 2150.71i −0.431031 + 0.431031i
\(293\) −2533.13 + 2533.13i −0.505075 + 0.505075i −0.913011 0.407936i \(-0.866249\pi\)
0.407936 + 0.913011i \(0.366249\pi\)
\(294\) 3208.62 + 701.482i 0.636499 + 0.139154i
\(295\) 0 0
\(296\) 1566.53i 0.307611i
\(297\) −666.830 4742.71i −0.130281 0.926598i
\(298\) 9506.54 + 9506.54i 1.84798 + 1.84798i
\(299\) 290.018 0.0560943
\(300\) 0 0
\(301\) 3301.42 0.632196
\(302\) −7154.79 7154.79i −1.36328 1.36328i
\(303\) −7271.21 + 4662.27i −1.37861 + 0.883961i
\(304\) 1435.32i 0.270794i
\(305\) 0 0
\(306\) 8393.59 + 3854.31i 1.56807 + 0.720052i
\(307\) −3159.93 + 3159.93i −0.587449 + 0.587449i −0.936940 0.349491i \(-0.886355\pi\)
0.349491 + 0.936940i \(0.386355\pi\)
\(308\) 1973.87 1973.87i 0.365167 0.365167i
\(309\) −1215.56 + 5560.03i −0.223788 + 1.02362i
\(310\) 0 0
\(311\) 7206.19i 1.31391i −0.753931 0.656954i \(-0.771845\pi\)
0.753931 0.656954i \(-0.228155\pi\)
\(312\) 76.7315 + 119.670i 0.0139233 + 0.0217146i
\(313\) −2029.31 2029.31i −0.366464 0.366464i 0.499722 0.866186i \(-0.333436\pi\)
−0.866186 + 0.499722i \(0.833436\pi\)
\(314\) −9641.19 −1.73275
\(315\) 0 0
\(316\) −3633.31 −0.646804
\(317\) 689.223 + 689.223i 0.122116 + 0.122116i 0.765524 0.643408i \(-0.222480\pi\)
−0.643408 + 0.765524i \(0.722480\pi\)
\(318\) −5146.37 8026.21i −0.907528 1.41537i
\(319\) 1724.09i 0.302603i
\(320\) 0 0
\(321\) −1836.70 + 8401.16i −0.319360 + 1.46077i
\(322\) −2561.47 + 2561.47i −0.443308 + 0.443308i
\(323\) −1225.25 + 1225.25i −0.211067 + 0.211067i
\(324\) 3416.44 2935.61i 0.585809 0.503363i
\(325\) 0 0
\(326\) 14266.6i 2.42378i
\(327\) 5531.60 3546.84i 0.935469 0.599818i
\(328\) 430.546 + 430.546i 0.0724784 + 0.0724784i
\(329\) −716.516 −0.120069
\(330\) 0 0
\(331\) −8226.53 −1.36608 −0.683038 0.730383i \(-0.739342\pi\)
−0.683038 + 0.730383i \(0.739342\pi\)
\(332\) −1346.99 1346.99i −0.222667 0.222667i
\(333\) 2143.52 + 5783.64i 0.352745 + 0.951777i
\(334\) 743.096i 0.121738i
\(335\) 0 0
\(336\) −5055.37 1105.23i −0.820813 0.179449i
\(337\) −1777.34 + 1777.34i −0.287294 + 0.287294i −0.836009 0.548715i \(-0.815117\pi\)
0.548715 + 0.836009i \(0.315117\pi\)
\(338\) −5807.36 + 5807.36i −0.934552 + 0.934552i
\(339\) −2736.41 598.245i −0.438411 0.0958472i
\(340\) 0 0
\(341\) 3187.32i 0.506168i
\(342\) 673.895 + 1818.30i 0.106550 + 0.287493i
\(343\) −4780.56 4780.56i −0.752554 0.752554i
\(344\) 1710.66 0.268119
\(345\) 0 0
\(346\) −4694.77 −0.729458
\(347\) 1715.22 + 1715.22i 0.265354 + 0.265354i 0.827225 0.561871i \(-0.189918\pi\)
−0.561871 + 0.827225i \(0.689918\pi\)
\(348\) 1365.02 875.242i 0.210266 0.134821i
\(349\) 8603.96i 1.31965i −0.751417 0.659827i \(-0.770629\pi\)
0.751417 0.659827i \(-0.229371\pi\)
\(350\) 0 0
\(351\) 447.039 + 336.827i 0.0679806 + 0.0512208i
\(352\) 5515.81 5515.81i 0.835209 0.835209i
\(353\) 5425.13 5425.13i 0.817990 0.817990i −0.167827 0.985816i \(-0.553675\pi\)
0.985816 + 0.167827i \(0.0536750\pi\)
\(354\) 1759.87 8049.77i 0.264227 1.20859i
\(355\) 0 0
\(356\) 7859.58i 1.17010i
\(357\) −3372.00 5258.93i −0.499903 0.779642i
\(358\) −6690.76 6690.76i −0.987759 0.987759i
\(359\) −11418.9 −1.67874 −0.839370 0.543560i \(-0.817076\pi\)
−0.839370 + 0.543560i \(0.817076\pi\)
\(360\) 0 0
\(361\) 6495.20 0.946961
\(362\) −718.361 718.361i −0.104299 0.104299i
\(363\) 464.552 + 724.510i 0.0671699 + 0.104757i
\(364\) 326.237i 0.0469766i
\(365\) 0 0
\(366\) 8.35782 38.2292i 0.00119363 0.00545976i
\(367\) −6554.73 + 6554.73i −0.932299 + 0.932299i −0.997849 0.0655499i \(-0.979120\pi\)
0.0655499 + 0.997849i \(0.479120\pi\)
\(368\) −3868.11 + 3868.11i −0.547932 + 0.547932i
\(369\) 2178.70 + 1000.45i 0.307368 + 0.141142i
\(370\) 0 0
\(371\) 6448.83i 0.902443i
\(372\) 2523.51 1618.06i 0.351714 0.225518i
\(373\) 5967.46 + 5967.46i 0.828374 + 0.828374i 0.987292 0.158918i \(-0.0508005\pi\)
−0.158918 + 0.987292i \(0.550801\pi\)
\(374\) 11677.8 1.61456
\(375\) 0 0
\(376\) −371.270 −0.0509222
\(377\) 142.477 + 142.477i 0.0194640 + 0.0194640i
\(378\) −6923.18 + 973.408i −0.942037 + 0.132452i
\(379\) 1680.48i 0.227758i −0.993495 0.113879i \(-0.963672\pi\)
0.993495 0.113879i \(-0.0363276\pi\)
\(380\) 0 0
\(381\) 3155.76 + 689.925i 0.424342 + 0.0927715i
\(382\) 6444.09 6444.09i 0.863110 0.863110i
\(383\) 7493.42 7493.42i 0.999728 0.999728i −0.000271480 1.00000i \(-0.500086\pi\)
1.00000 0.000271480i \(8.64148e-5\pi\)
\(384\) −4340.16 948.864i −0.576779 0.126098i
\(385\) 0 0
\(386\) 10465.5i 1.38000i
\(387\) 6315.78 2340.74i 0.829584 0.307459i
\(388\) 2669.98 + 2669.98i 0.349349 + 0.349349i
\(389\) 7966.97 1.03841 0.519205 0.854650i \(-0.326228\pi\)
0.519205 + 0.854650i \(0.326228\pi\)
\(390\) 0 0
\(391\) −6603.94 −0.854158
\(392\) −813.939 813.939i −0.104873 0.104873i
\(393\) 6120.71 3924.57i 0.785620 0.503736i
\(394\) 4433.78i 0.566930i
\(395\) 0 0
\(396\) 2376.61 5175.59i 0.301589 0.656776i
\(397\) 8188.88 8188.88i 1.03523 1.03523i 0.0358786 0.999356i \(-0.488577\pi\)
0.999356 0.0358786i \(-0.0114230\pi\)
\(398\) 4101.85 4101.85i 0.516601 0.516601i
\(399\) 280.130 1281.33i 0.0351480 0.160769i
\(400\) 0 0
\(401\) 5167.66i 0.643542i −0.946817 0.321771i \(-0.895722\pi\)
0.946817 0.321771i \(-0.104278\pi\)
\(402\) 6437.08 + 10039.2i 0.798638 + 1.24555i
\(403\) 263.398 + 263.398i 0.0325577 + 0.0325577i
\(404\) −10271.2 −1.26488
\(405\) 0 0
\(406\) −2516.74 −0.307645
\(407\) 5514.46 + 5514.46i 0.671601 + 0.671601i
\(408\) −1747.24 2724.97i −0.212012 0.330652i
\(409\) 8514.82i 1.02941i 0.857366 + 0.514707i \(0.172099\pi\)
−0.857366 + 0.514707i \(0.827901\pi\)
\(410\) 0 0
\(411\) 1714.32 7841.41i 0.205745 0.941090i
\(412\) −4785.54 + 4785.54i −0.572249 + 0.572249i
\(413\) −3940.88 + 3940.88i −0.469535 + 0.469535i
\(414\) −3084.11 + 6716.32i −0.366125 + 0.797316i
\(415\) 0 0
\(416\) 911.644i 0.107445i
\(417\) −10928.6 + 7007.39i −1.28340 + 0.822910i
\(418\) 1733.67 + 1733.67i 0.202863 + 0.202863i
\(419\) 11939.7 1.39211 0.696053 0.717990i \(-0.254938\pi\)
0.696053 + 0.717990i \(0.254938\pi\)
\(420\) 0 0
\(421\) 10873.3 1.25875 0.629373 0.777103i \(-0.283312\pi\)
0.629373 + 0.777103i \(0.283312\pi\)
\(422\) 29.1236 + 29.1236i 0.00335951 + 0.00335951i
\(423\) −1370.73 + 508.016i −0.157558 + 0.0583938i
\(424\) 3341.52i 0.382733i
\(425\) 0 0
\(426\) −14027.5 3066.76i −1.59539 0.348791i
\(427\) −18.7156 + 18.7156i −0.00212111 + 0.00212111i
\(428\) −7230.91 + 7230.91i −0.816634 + 0.816634i
\(429\) 691.364 + 151.149i 0.0778074 + 0.0170106i
\(430\) 0 0
\(431\) 7603.48i 0.849760i 0.905250 + 0.424880i \(0.139684\pi\)
−0.905250 + 0.424880i \(0.860316\pi\)
\(432\) −10454.8 + 1469.95i −1.16437 + 0.163711i
\(433\) −4681.19 4681.19i −0.519547 0.519547i 0.397887 0.917434i \(-0.369743\pi\)
−0.917434 + 0.397887i \(0.869743\pi\)
\(434\) −4652.70 −0.514601
\(435\) 0 0
\(436\) 7813.84 0.858292
\(437\) −980.409 980.409i −0.107321 0.107321i
\(438\) 8107.85 5198.71i 0.884493 0.567133i
\(439\) 8608.08i 0.935857i −0.883766 0.467929i \(-0.845000\pi\)
0.883766 0.467929i \(-0.155000\pi\)
\(440\) 0 0
\(441\) −4118.80 1891.34i −0.444746 0.204226i
\(442\) −965.047 + 965.047i −0.103852 + 0.103852i
\(443\) −6466.81 + 6466.81i −0.693561 + 0.693561i −0.963014 0.269453i \(-0.913157\pi\)
0.269453 + 0.963014i \(0.413157\pi\)
\(444\) −1566.53 + 7165.42i −0.167442 + 0.765891i
\(445\) 0 0
\(446\) 4427.97i 0.470113i
\(447\) −10013.9 15617.6i −1.05960 1.65254i
\(448\) −2418.14 2418.14i −0.255014 0.255014i
\(449\) 356.370 0.0374569 0.0187284 0.999825i \(-0.494038\pi\)
0.0187284 + 0.999825i \(0.494038\pi\)
\(450\) 0 0
\(451\) 3031.19 0.316481
\(452\) −2355.24 2355.24i −0.245091 0.245091i
\(453\) 7536.66 + 11754.1i 0.781685 + 1.21911i
\(454\) 18325.0i 1.89435i
\(455\) 0 0
\(456\) 145.152 663.935i 0.0149065 0.0681834i
\(457\) −1512.80 + 1512.80i −0.154849 + 0.154849i −0.780280 0.625431i \(-0.784923\pi\)
0.625431 + 0.780280i \(0.284923\pi\)
\(458\) −4474.19 + 4474.19i −0.456474 + 0.456474i
\(459\) −10179.4 7669.81i −1.03515 0.779948i
\(460\) 0 0
\(461\) 13307.9i 1.34449i −0.740327 0.672246i \(-0.765330\pi\)
0.740327 0.672246i \(-0.234670\pi\)
\(462\) −7441.16 + 4771.23i −0.749338 + 0.480472i
\(463\) 1237.43 + 1237.43i 0.124208 + 0.124208i 0.766478 0.642270i \(-0.222007\pi\)
−0.642270 + 0.766478i \(0.722007\pi\)
\(464\) −3800.56 −0.380251
\(465\) 0 0
\(466\) 11218.8 1.11524
\(467\) −8201.87 8201.87i −0.812713 0.812713i 0.172327 0.985040i \(-0.444872\pi\)
−0.985040 + 0.172327i \(0.944872\pi\)
\(468\) 231.305 + 624.107i 0.0228463 + 0.0616439i
\(469\) 8066.19i 0.794162i
\(470\) 0 0
\(471\) 12997.3 + 2841.52i 1.27151 + 0.277984i
\(472\) −2042.01 + 2042.01i −0.199133 + 0.199133i
\(473\) 6021.83 6021.83i 0.585378 0.585378i
\(474\) 11239.7 + 2457.28i 1.08915 + 0.238115i
\(475\) 0 0
\(476\) 7428.67i 0.715321i
\(477\) 4572.28 + 12336.9i 0.438889 + 1.18421i
\(478\) 695.273 + 695.273i 0.0665294 + 0.0665294i
\(479\) 11419.1 1.08926 0.544629 0.838677i \(-0.316671\pi\)
0.544629 + 0.838677i \(0.316671\pi\)
\(480\) 0 0
\(481\) −911.420 −0.0863974
\(482\) 15979.5 + 15979.5i 1.51005 + 1.51005i
\(483\) 4208.05 2698.18i 0.396424 0.254185i
\(484\) 1023.43i 0.0961147i
\(485\) 0 0
\(486\) −12554.2 + 6770.77i −1.17175 + 0.631952i
\(487\) 6066.93 6066.93i 0.564515 0.564515i −0.366071 0.930587i \(-0.619297\pi\)
0.930587 + 0.366071i \(0.119297\pi\)
\(488\) −9.69769 + 9.69769i −0.000899577 + 0.000899577i
\(489\) −4204.74 + 19232.7i −0.388845 + 1.77860i
\(490\) 0 0
\(491\) 8978.88i 0.825277i −0.910895 0.412639i \(-0.864607\pi\)
0.910895 0.412639i \(-0.135393\pi\)
\(492\) 1538.80 + 2399.89i 0.141005 + 0.219909i
\(493\) −3244.31 3244.31i −0.296382 0.296382i
\(494\) −286.538 −0.0260971
\(495\) 0 0
\(496\) −7026.11 −0.636051
\(497\) 6867.38 + 6867.38i 0.619807 + 0.619807i
\(498\) 3255.94 + 5077.92i 0.292976 + 0.456922i
\(499\) 7674.34i 0.688478i −0.938882 0.344239i \(-0.888137\pi\)
0.938882 0.344239i \(-0.111863\pi\)
\(500\) 0 0
\(501\) 219.010 1001.77i 0.0195303 0.0893326i
\(502\) 8106.54 8106.54i 0.720743 0.720743i
\(503\) 4044.23 4044.23i 0.358496 0.358496i −0.504762 0.863258i \(-0.668420\pi\)
0.863258 + 0.504762i \(0.168420\pi\)
\(504\) 2226.69 + 1022.49i 0.196795 + 0.0903674i
\(505\) 0 0
\(506\) 9344.28i 0.820957i
\(507\) 9540.48 6117.31i 0.835715 0.535857i
\(508\) 2716.17 + 2716.17i 0.237226 + 0.237226i
\(509\) −12532.5 −1.09134 −0.545672 0.837999i \(-0.683725\pi\)
−0.545672 + 0.837999i \(0.683725\pi\)
\(510\) 0 0
\(511\) −6514.42 −0.563955
\(512\) −9239.91 9239.91i −0.797559 0.797559i
\(513\) −372.574 2649.87i −0.0320654 0.228059i
\(514\) 5039.33i 0.432443i
\(515\) 0 0
\(516\) 7824.69 + 1710.66i 0.667563 + 0.145945i
\(517\) −1306.93 + 1306.93i −0.111177 + 0.111177i
\(518\) 8049.75 8049.75i 0.682791 0.682791i
\(519\) 6329.02 + 1383.68i 0.535285 + 0.117026i
\(520\) 0 0
\(521\) 19201.8i 1.61468i 0.590089 + 0.807338i \(0.299093\pi\)
−0.590089 + 0.807338i \(0.700907\pi\)
\(522\) −4814.65 + 1784.39i −0.403700 + 0.149618i
\(523\) −5472.69 5472.69i −0.457560 0.457560i 0.440294 0.897854i \(-0.354874\pi\)
−0.897854 + 0.440294i \(0.854874\pi\)
\(524\) 8646.00 0.720806
\(525\) 0 0
\(526\) 356.926 0.0295869
\(527\) −5997.77 5997.77i −0.495762 0.495762i
\(528\) −11237.0 + 7205.10i −0.926187 + 0.593867i
\(529\) 6882.71i 0.565687i
\(530\) 0 0
\(531\) −4744.97 + 10333.2i −0.387786 + 0.844488i
\(532\) 1102.85 1102.85i 0.0898769 0.0898769i
\(533\) −250.495 + 250.495i −0.0203567 + 0.0203567i
\(534\) 5315.58 24313.8i 0.430763 1.97034i
\(535\) 0 0
\(536\) 4179.58i 0.336810i
\(537\) 7047.87 + 10991.8i 0.566365 + 0.883295i
\(538\) −7077.60 7077.60i −0.567169 0.567169i
\(539\) −5730.40 −0.457933
\(540\) 0 0
\(541\) 12778.2 1.01548 0.507741 0.861510i \(-0.330481\pi\)
0.507741 + 0.861510i \(0.330481\pi\)
\(542\) −387.868 387.868i −0.0307387 0.0307387i
\(543\) 756.702 + 1180.14i 0.0598033 + 0.0932684i
\(544\) 20758.8i 1.63608i
\(545\) 0 0
\(546\) 220.640 1009.22i 0.0172940 0.0791038i
\(547\) 2414.12 2414.12i 0.188702 0.188702i −0.606433 0.795135i \(-0.707400\pi\)
0.795135 + 0.606433i \(0.207400\pi\)
\(548\) 6749.12 6749.12i 0.526110 0.526110i
\(549\) −22.5343 + 49.0735i −0.00175181 + 0.00381494i
\(550\) 0 0
\(551\) 963.290i 0.0744783i
\(552\) 2180.44 1398.09i 0.168126 0.107802i
\(553\) −5502.57 5502.57i −0.423134 0.423134i
\(554\) −5722.30 −0.438840
\(555\) 0 0
\(556\) −15437.6 −1.17752
\(557\) −5573.05 5573.05i −0.423946 0.423946i 0.462614 0.886560i \(-0.346912\pi\)
−0.886560 + 0.462614i \(0.846912\pi\)
\(558\) −8900.85 + 3298.81i −0.675274 + 0.250268i
\(559\) 995.277i 0.0753054i
\(560\) 0 0
\(561\) −15742.9 3441.78i −1.18479 0.259023i
\(562\) 5379.23 5379.23i 0.403753 0.403753i
\(563\) −3488.75 + 3488.75i −0.261160 + 0.261160i −0.825525 0.564365i \(-0.809121\pi\)
0.564365 + 0.825525i \(0.309121\pi\)
\(564\) −1698.21 371.270i −0.126786 0.0277186i
\(565\) 0 0
\(566\) 12782.3i 0.949260i
\(567\) 9620.03 + 728.199i 0.712528 + 0.0539356i
\(568\) 3558.40 + 3558.40i 0.262865 + 0.262865i
\(569\) −4924.15 −0.362796 −0.181398 0.983410i \(-0.558062\pi\)
−0.181398 + 0.983410i \(0.558062\pi\)
\(570\) 0 0
\(571\) −5642.12 −0.413512 −0.206756 0.978393i \(-0.566291\pi\)
−0.206756 + 0.978393i \(0.566291\pi\)
\(572\) 595.059 + 595.059i 0.0434977 + 0.0434977i
\(573\) −10586.5 + 6788.02i −0.771829 + 0.494893i
\(574\) 4424.78i 0.321754i
\(575\) 0 0
\(576\) −6340.50 2911.53i −0.458659 0.210614i
\(577\) −8505.39 + 8505.39i −0.613663 + 0.613663i −0.943899 0.330235i \(-0.892872\pi\)
0.330235 + 0.943899i \(0.392872\pi\)
\(578\) 8893.50 8893.50i 0.640002 0.640002i
\(579\) 3084.47 14108.6i 0.221392 1.01266i
\(580\) 0 0
\(581\) 4079.96i 0.291334i
\(582\) −6453.87 10065.4i −0.459659 0.716879i
\(583\) 11762.7 + 11762.7i 0.835612 + 0.835612i
\(584\) −3375.51 −0.239177
\(585\) 0 0
\(586\) 13489.4 0.950927
\(587\) 1464.72 + 1464.72i 0.102990 + 0.102990i 0.756724 0.653734i \(-0.226798\pi\)
−0.653734 + 0.756724i \(0.726798\pi\)
\(588\) −2909.07 4536.95i −0.204027 0.318198i
\(589\) 1780.84i 0.124581i
\(590\) 0 0
\(591\) −1306.75 + 5977.17i −0.0909521 + 0.416020i
\(592\) 12156.0 12156.0i 0.843935 0.843935i
\(593\) −18086.4 + 18086.4i −1.25248 + 1.25248i −0.297871 + 0.954606i \(0.596277\pi\)
−0.954606 + 0.297871i \(0.903723\pi\)
\(594\) −10852.4 + 14403.4i −0.749631 + 0.994917i
\(595\) 0 0
\(596\) 22061.1i 1.51621i
\(597\) −6738.63 + 4320.78i −0.461966 + 0.296211i
\(598\) −772.204 772.204i −0.0528056 0.0528056i
\(599\) −21899.3 −1.49379 −0.746897 0.664940i \(-0.768457\pi\)
−0.746897 + 0.664940i \(0.768457\pi\)
\(600\) 0 0
\(601\) −12431.8 −0.843766 −0.421883 0.906650i \(-0.638631\pi\)
−0.421883 + 0.906650i \(0.638631\pi\)
\(602\) −8790.38 8790.38i −0.595132 0.595132i
\(603\) −5719.00 15431.0i −0.386229 1.04212i
\(604\) 16603.6i 1.11853i
\(605\) 0 0
\(606\) 31774.1 + 6946.59i 2.12993 + 0.465653i
\(607\) −8237.79 + 8237.79i −0.550843 + 0.550843i −0.926684 0.375841i \(-0.877354\pi\)
0.375841 + 0.926684i \(0.377354\pi\)
\(608\) 3081.82 3081.82i 0.205566 0.205566i
\(609\) 3392.82 + 741.752i 0.225754 + 0.0493552i
\(610\) 0 0
\(611\) 216.007i 0.0143023i
\(612\) −5267.00 14211.4i −0.347885 0.938663i
\(613\) 8913.02 + 8913.02i 0.587265 + 0.587265i 0.936890 0.349625i \(-0.113691\pi\)
−0.349625 + 0.936890i \(0.613691\pi\)
\(614\) 16827.3 1.10602
\(615\) 0 0
\(616\) 3097.95 0.202630
\(617\) −1378.18 1378.18i −0.0899244 0.0899244i 0.660714 0.750638i \(-0.270254\pi\)
−0.750638 + 0.660714i \(0.770254\pi\)
\(618\) 18040.7 11567.6i 1.17428 0.752941i
\(619\) 18926.2i 1.22893i 0.788945 + 0.614464i \(0.210628\pi\)
−0.788945 + 0.614464i \(0.789372\pi\)
\(620\) 0 0
\(621\) 6137.16 8145.29i 0.396580 0.526344i
\(622\) −19187.2 + 19187.2i −1.23688 + 1.23688i
\(623\) −11903.2 + 11903.2i −0.765474 + 0.765474i
\(624\) 333.191 1524.04i 0.0213755 0.0977730i
\(625\) 0 0
\(626\) 10806.5i 0.689959i
\(627\) −1826.20 2848.12i −0.116318 0.181408i
\(628\) 11186.8 + 11186.8i 0.710831 + 0.710831i
\(629\) 20753.7 1.31559
\(630\) 0 0
\(631\) −26118.8 −1.64782 −0.823909 0.566723i \(-0.808211\pi\)
−0.823909 + 0.566723i \(0.808211\pi\)
\(632\) −2851.21 2851.21i −0.179454 0.179454i
\(633\) −30.6780 47.8450i −0.00192629 0.00300421i
\(634\) 3670.26i 0.229912i
\(635\) 0 0
\(636\) −3341.52 + 15284.3i −0.208333 + 0.952929i
\(637\) 473.556 473.556i 0.0294552 0.0294552i
\(638\) −4590.56 + 4590.56i −0.284862 + 0.284862i
\(639\) 18006.7 + 8268.59i 1.11476 + 0.511894i
\(640\) 0 0
\(641\) 15846.5i 0.976442i 0.872720 + 0.488221i \(0.162354\pi\)
−0.872720 + 0.488221i \(0.837646\pi\)
\(642\) 27259.4 17478.6i 1.67577 1.07449i
\(643\) −89.9404 89.9404i −0.00551618 0.00551618i 0.704343 0.709859i \(-0.251242\pi\)
−0.709859 + 0.704343i \(0.751242\pi\)
\(644\) 5944.21 0.363719
\(645\) 0 0
\(646\) 6524.70 0.397385
\(647\) 20057.0 + 20057.0i 1.21874 + 1.21874i 0.968074 + 0.250665i \(0.0806492\pi\)
0.250665 + 0.968074i \(0.419351\pi\)
\(648\) 4984.71 + 377.323i 0.302188 + 0.0228745i
\(649\) 14376.4i 0.869527i
\(650\) 0 0
\(651\) 6272.31 + 1371.28i 0.377621 + 0.0825570i
\(652\) −16553.7 + 16553.7i −0.994313 + 0.994313i
\(653\) 20478.4 20478.4i 1.22723 1.22723i 0.262225 0.965007i \(-0.415544\pi\)
0.965007 0.262225i \(-0.0844562\pi\)
\(654\) −24172.3 5284.64i −1.44528 0.315972i
\(655\) 0 0
\(656\) 6681.92i 0.397691i
\(657\) −12462.4 + 4618.78i −0.740036 + 0.274271i
\(658\) 1907.80 + 1907.80i 0.113030 + 0.113030i
\(659\) 1169.87 0.0691529 0.0345765 0.999402i \(-0.488992\pi\)
0.0345765 + 0.999402i \(0.488992\pi\)
\(660\) 0 0
\(661\) 19622.6 1.15466 0.577329 0.816511i \(-0.304095\pi\)
0.577329 + 0.816511i \(0.304095\pi\)
\(662\) 21904.0 + 21904.0i 1.28599 + 1.28599i
\(663\) 1585.41 1016.55i 0.0928688 0.0595471i
\(664\) 2114.07i 0.123557i
\(665\) 0 0
\(666\) 9692.20 21106.9i 0.563912 1.22804i
\(667\) 2596.01 2596.01i 0.150701 0.150701i
\(668\) 862.224 862.224i 0.0499408 0.0499408i
\(669\) 1305.04 5969.35i 0.0754199 0.344975i
\(670\) 0 0
\(671\) 68.2750i 0.00392806i
\(672\) 8481.46 + 13227.6i 0.486874 + 0.759323i
\(673\) −15256.3 15256.3i −0.873830 0.873830i 0.119057 0.992887i \(-0.462013\pi\)
−0.992887 + 0.119057i \(0.962013\pi\)
\(674\) 9464.72 0.540901
\(675\) 0 0
\(676\) 13476.7 0.766768
\(677\) 16.1429 + 16.1429i 0.000916428 + 0.000916428i 0.707565 0.706648i \(-0.249794\pi\)
−0.706648 + 0.707565i \(0.749794\pi\)
\(678\) 5693.08 + 8878.86i 0.322480 + 0.502936i
\(679\) 8087.23i 0.457083i
\(680\) 0 0
\(681\) 5400.87 24703.9i 0.303909 1.39010i
\(682\) −8486.57 + 8486.57i −0.476492 + 0.476492i
\(683\) 3894.05 3894.05i 0.218157 0.218157i −0.589564 0.807722i \(-0.700700\pi\)
0.807722 + 0.589564i \(0.200700\pi\)
\(684\) 1327.87 2891.73i 0.0742287 0.161649i
\(685\) 0 0
\(686\) 25457.5i 1.41687i
\(687\) 7350.31 4712.99i 0.408198 0.261735i
\(688\) −13274.5 13274.5i −0.735587 0.735587i
\(689\) −1944.12 −0.107497
\(690\) 0 0
\(691\) −1041.11 −0.0573163 −0.0286581 0.999589i \(-0.509123\pi\)
−0.0286581 + 0.999589i \(0.509123\pi\)
\(692\) 5447.40 + 5447.40i 0.299247 + 0.299247i
\(693\) 11437.6 4238.99i 0.626955 0.232361i
\(694\) 9133.91i 0.499594i
\(695\) 0 0
\(696\) 1758.02 + 384.346i 0.0957438 + 0.0209319i
\(697\) 5703.96 5703.96i 0.309975 0.309975i
\(698\) −22908.9 + 22908.9i −1.24229 + 1.24229i
\(699\) −15124.1 3306.49i −0.818378 0.178917i
\(700\) 0 0
\(701\) 29885.3i 1.61020i 0.593138 + 0.805101i \(0.297889\pi\)
−0.593138 + 0.805101i \(0.702111\pi\)
\(702\) −293.452 2087.12i −0.0157773 0.112213i
\(703\) 3081.06 + 3081.06i 0.165298 + 0.165298i
\(704\) −8821.42 −0.472258
\(705\) 0 0
\(706\) −28889.9 −1.54007
\(707\) −15555.5 15555.5i −0.827473 0.827473i
\(708\) −11382.3 + 7298.26i −0.604198 + 0.387409i
\(709\) 12115.0i 0.641734i 0.947124 + 0.320867i \(0.103974\pi\)
−0.947124 + 0.320867i \(0.896026\pi\)
\(710\) 0 0
\(711\) −14428.1 6625.31i −0.761033 0.349463i
\(712\) −6167.74 + 6167.74i −0.324643 + 0.324643i
\(713\) 4799.24 4799.24i 0.252080 0.252080i
\(714\) −5024.15 + 22980.8i −0.263339 + 1.20453i
\(715\) 0 0
\(716\) 15526.8i 0.810422i
\(717\) −732.381 1142.21i −0.0381468 0.0594933i
\(718\) 30404.1 + 30404.1i 1.58032 + 1.58032i
\(719\) −6371.24 −0.330469 −0.165234 0.986254i \(-0.552838\pi\)
−0.165234 + 0.986254i \(0.552838\pi\)
\(720\) 0 0
\(721\) −14495.2 −0.748722
\(722\) −17294.1 17294.1i −0.891443 0.891443i
\(723\) −16832.3 26251.5i −0.865839 1.35035i
\(724\) 1667.05i 0.0855737i
\(725\) 0 0
\(726\) 692.164 3166.00i 0.0353838 0.161848i
\(727\) −15771.9 + 15771.9i −0.804604 + 0.804604i −0.983811 0.179207i \(-0.942647\pi\)
0.179207 + 0.983811i \(0.442647\pi\)
\(728\) −256.012 + 256.012i −0.0130336 + 0.0130336i
\(729\) 18919.9 5427.61i 0.961229 0.275751i
\(730\) 0 0
\(731\) 22663.2i 1.14669i
\(732\) −54.0555 + 34.6601i −0.00272944 + 0.00175010i
\(733\) 5626.05 + 5626.05i 0.283496 + 0.283496i 0.834502 0.551005i \(-0.185756\pi\)
−0.551005 + 0.834502i \(0.685756\pi\)
\(734\) 34905.3 1.75528
\(735\) 0 0
\(736\) 16610.6 0.831897
\(737\) −14712.8 14712.8i −0.735350 0.735350i
\(738\) −3137.21 8464.82i −0.156480 0.422215i
\(739\) 30340.1i 1.51026i −0.655577 0.755129i \(-0.727574\pi\)
0.655577 0.755129i \(-0.272426\pi\)
\(740\) 0 0
\(741\) 386.282 + 84.4506i 0.0191504 + 0.00418674i
\(742\) 17170.7 17170.7i 0.849535 0.849535i
\(743\) 2368.77 2368.77i 0.116961 0.116961i −0.646204 0.763165i \(-0.723645\pi\)
0.763165 + 0.646204i \(0.223645\pi\)
\(744\) 3250.06 + 710.541i 0.160152 + 0.0350130i
\(745\) 0 0
\(746\) 31778.0i 1.55962i
\(747\) −2892.73 7805.16i −0.141686 0.382297i
\(748\) −13550.0 13550.0i −0.662347 0.662347i
\(749\) −21902.1 −1.06847
\(750\) 0 0
\(751\) 10606.2 0.515346 0.257673 0.966232i \(-0.417044\pi\)
0.257673 + 0.966232i \(0.417044\pi\)
\(752\) 2880.99 + 2880.99i 0.139706 + 0.139706i
\(753\) −13317.6 + 8539.21i −0.644518 + 0.413262i
\(754\) 758.720i 0.0366458i
\(755\) 0 0
\(756\) 9162.52 + 6903.60i 0.440790 + 0.332119i
\(757\) 18470.4 18470.4i 0.886812 0.886812i −0.107404 0.994215i \(-0.534254\pi\)
0.994215 + 0.107404i \(0.0342538\pi\)
\(758\) −4474.44 + 4474.44i −0.214405 + 0.214405i
\(759\) 2754.01 12597.0i 0.131705 0.602428i
\(760\) 0 0
\(761\) 13568.0i 0.646307i −0.946347 0.323153i \(-0.895257\pi\)
0.946347 0.323153i \(-0.104743\pi\)
\(762\) −6565.54 10239.5i −0.312132 0.486797i
\(763\) 11833.9 + 11833.9i 0.561488 + 0.561488i
\(764\) −14954.3 −0.708152
\(765\) 0 0
\(766\) −39904.0 −1.88223
\(767\) −1188.05 1188.05i −0.0559298 0.0559298i
\(768\) 14827.8 + 23125.2i 0.696682 + 1.08654i
\(769\) 11029.1i 0.517190i −0.965986 0.258595i \(-0.916741\pi\)
0.965986 0.258595i \(-0.0832594\pi\)
\(770\) 0 0
\(771\) −1485.23 + 6793.52i −0.0693764 + 0.317332i
\(772\) 12143.3 12143.3i 0.566122 0.566122i
\(773\) 7090.94 7090.94i 0.329940 0.329940i −0.522624 0.852563i \(-0.675047\pi\)
0.852563 + 0.522624i \(0.175047\pi\)
\(774\) −23048.9 10584.0i −1.07038 0.491515i
\(775\) 0 0
\(776\) 4190.48i 0.193852i
\(777\) −13224.3 + 8479.38i −0.610580 + 0.391501i
\(778\) −21212.9 21212.9i −0.977530 0.977530i
\(779\) 1693.60 0.0778940
\(780\) 0 0
\(781\) 25052.3 1.14781
\(782\) 17583.7 + 17583.7i 0.804080 + 0.804080i
\(783\) 7016.53 986.533i 0.320243 0.0450266i
\(784\) 12632.1i 0.575440i
\(785\) 0 0
\(786\) −26746.6 5847.45i −1.21376 0.265358i
\(787\) 17915.0 17915.0i 0.811437 0.811437i −0.173412 0.984849i \(-0.555479\pi\)
0.984849 + 0.173412i \(0.0554793\pi\)
\(788\) −5144.57 + 5144.57i −0.232573 + 0.232573i
\(789\) −481.172 105.196i −0.0217112 0.00474660i
\(790\) 0 0
\(791\) 7133.90i 0.320673i
\(792\) 5926.52 2196.47i 0.265896 0.0985458i
\(793\) −5.64218 5.64218i −0.000252661 0.000252661i
\(794\) −43607.5 −1.94908
\(795\) 0 0
\(796\) −9518.87 −0.423854
\(797\) −6043.79 6043.79i −0.268610 0.268610i 0.559930 0.828540i \(-0.310828\pi\)
−0.828540 + 0.559930i \(0.810828\pi\)
\(798\) −4157.56 + 2665.81i −0.184431 + 0.118256i
\(799\) 4918.65i 0.217784i
\(800\) 0 0
\(801\) −14331.9 + 31210.8i −0.632199 + 1.37675i
\(802\) −13759.4 + 13759.4i −0.605813 + 0.605813i
\(803\) −11882.3 + 11882.3i −0.522191 + 0.522191i
\(804\) 4179.58 19117.6i 0.183336 0.838591i
\(805\) 0 0
\(806\) 1402.65i 0.0612979i
\(807\) 7455.35 + 11627.3i 0.325205 + 0.507186i
\(808\) −8060.22 8060.22i −0.350937 0.350937i
\(809\) 35063.4 1.52381 0.761905 0.647689i \(-0.224264\pi\)
0.761905 + 0.647689i \(0.224264\pi\)
\(810\) 0 0
\(811\) 24621.3 1.06605 0.533027 0.846098i \(-0.321054\pi\)
0.533027 + 0.846098i \(0.321054\pi\)
\(812\) 2920.21 + 2920.21i 0.126206 + 0.126206i
\(813\) 408.570 + 637.200i 0.0176250 + 0.0274878i
\(814\) 29365.6i 1.26445i
\(815\) 0 0
\(816\) −7587.02 + 34703.5i −0.325489 + 1.48881i
\(817\) 3364.54 3364.54i 0.144076 0.144076i
\(818\) 22671.6 22671.6i 0.969063 0.969063i
\(819\) −594.890 + 1295.50i −0.0253811 + 0.0552729i
\(820\) 0 0
\(821\) 14268.3i 0.606538i −0.952905 0.303269i \(-0.901922\pi\)
0.952905 0.303269i \(-0.0980781\pi\)
\(822\) −25443.1 + 16314.0i −1.07960 + 0.692234i
\(823\) −13764.1 13764.1i −0.582972 0.582972i 0.352747 0.935719i \(-0.385248\pi\)
−0.935719 + 0.352747i \(0.885248\pi\)
\(824\) −7510.81 −0.317538
\(825\) 0 0
\(826\) 20986.0 0.884015
\(827\) 27442.5 + 27442.5i 1.15389 + 1.15389i 0.985765 + 0.168128i \(0.0537721\pi\)
0.168128 + 0.985765i \(0.446228\pi\)
\(828\) 11371.6 4214.50i 0.477282 0.176889i
\(829\) 12176.9i 0.510159i −0.966920 0.255080i \(-0.917898\pi\)
0.966920 0.255080i \(-0.0821016\pi\)
\(830\) 0 0
\(831\) 7714.23 + 1686.52i 0.322026 + 0.0704027i
\(832\) 728.995 728.995i 0.0303766 0.0303766i
\(833\) −10783.2 + 10783.2i −0.448519 + 0.448519i
\(834\) 47756.5 + 10440.7i 1.98282 + 0.433492i
\(835\) 0 0
\(836\) 4023.21i 0.166442i
\(837\) 12971.5 1823.80i 0.535675 0.0753165i
\(838\) −31790.7 31790.7i −1.31049 1.31049i
\(839\) 13942.3 0.573710 0.286855 0.957974i \(-0.407390\pi\)
0.286855 + 0.957974i \(0.407390\pi\)
\(840\) 0 0
\(841\) −21838.3 −0.895417
\(842\) −28951.3 28951.3i −1.18495 1.18495i
\(843\) −8837.14 + 5666.33i −0.361053 + 0.231505i
\(844\) 67.5849i 0.00275636i
\(845\) 0 0
\(846\) 5002.35 + 2297.06i 0.203291 + 0.0933505i
\(847\) −1549.96 + 1549.96i −0.0628776 + 0.0628776i
\(848\) 25929.6 25929.6i 1.05003 1.05003i
\(849\) −3767.30 + 17231.8i −0.152289 + 0.696579i
\(850\) 0 0
\(851\) 16606.6i 0.668937i
\(852\) 12717.9 + 19834.7i 0.511396 + 0.797567i
\(853\) 32654.2 + 32654.2i 1.31074 + 1.31074i 0.920871 + 0.389866i \(0.127479\pi\)
0.389866 + 0.920871i \(0.372521\pi\)
\(854\) 99.6646 0.00399350
\(855\) 0 0
\(856\) −11348.8 −0.453147
\(857\) 10358.9 + 10358.9i 0.412898 + 0.412898i 0.882747 0.469849i \(-0.155692\pi\)
−0.469849 + 0.882747i \(0.655692\pi\)
\(858\) −1438.38 2243.28i −0.0572325 0.0892590i
\(859\) 14100.5i 0.560072i 0.959990 + 0.280036i \(0.0903464\pi\)
−0.959990 + 0.280036i \(0.909654\pi\)
\(860\) 0 0
\(861\) −1304.10 + 5965.05i −0.0516187 + 0.236107i
\(862\) 20245.0 20245.0i 0.799941 0.799941i
\(863\) 16830.6 16830.6i 0.663872 0.663872i −0.292419 0.956290i \(-0.594460\pi\)
0.956290 + 0.292419i \(0.0944601\pi\)
\(864\) 25603.9 + 19291.6i 1.00818 + 0.759621i
\(865\) 0 0
\(866\) 24928.3i 0.978174i
\(867\) −14610.5 + 9368.17i −0.572316 + 0.366966i
\(868\) 5398.60 + 5398.60i 0.211106 + 0.211106i
\(869\) −20073.5 −0.783597
\(870\) 0 0
\(871\) 2431.71 0.0945984
\(872\) 6131.84 + 6131.84i 0.238131 + 0.238131i
\(873\) 5733.92 + 15471.3i 0.222295 + 0.599797i
\(874\) 5220.88i 0.202058i
\(875\) 0 0
\(876\) −15439.8 3375.51i −0.595504 0.130192i
\(877\) −9832.57 + 9832.57i −0.378589 + 0.378589i −0.870593 0.492004i \(-0.836264\pi\)
0.492004 + 0.870593i \(0.336264\pi\)
\(878\) −22919.9 + 22919.9i −0.880990 + 0.880990i
\(879\) −18185.1 3975.70i −0.697802 0.152556i
\(880\) 0 0
\(881\) 41729.4i 1.59580i −0.602789 0.797900i \(-0.705944\pi\)
0.602789 0.797900i \(-0.294056\pi\)
\(882\) 5930.84 + 16002.6i 0.226419 + 0.610925i
\(883\) 11757.3 + 11757.3i 0.448090 + 0.448090i 0.894719 0.446629i \(-0.147376\pi\)
−0.446629 + 0.894719i \(0.647376\pi\)
\(884\) 2239.51 0.0852070
\(885\) 0 0
\(886\) 34437.1 1.30580
\(887\) −24303.5 24303.5i −0.919989 0.919989i 0.0770388 0.997028i \(-0.475453\pi\)
−0.997028 + 0.0770388i \(0.975453\pi\)
\(888\) −6852.32 + 4393.67i −0.258951 + 0.166038i
\(889\) 8227.16i 0.310383i
\(890\) 0 0
\(891\) 18875.3 16218.8i 0.709702 0.609820i
\(892\) 5137.84 5137.84i 0.192856 0.192856i
\(893\) −730.214 + 730.214i −0.0273636 + 0.0273636i
\(894\) −14920.4 + 68246.6i −0.558178 + 2.55314i
\(895\) 0 0
\(896\) 11314.9i 0.421881i
\(897\) 813.418 + 1268.60i 0.0302779 + 0.0472210i
\(898\) −948.871 948.871i −0.0352609 0.0352609i
\(899\) 4715.44 0.174937
\(900\) 0 0
\(901\) 44269.1 1.63687
\(902\) −8070.84 8070.84i −0.297927 0.297927i
\(903\) 9259.55 + 14441.1i 0.341239 + 0.532191i
\(904\) 3696.50i 0.136000i
\(905\) 0 0
\(906\) 11229.3 51363.6i 0.411776 1.88349i
\(907\) −1017.75 + 1017.75i −0.0372589 + 0.0372589i −0.725491 0.688232i \(-0.758387\pi\)
0.688232 + 0.725491i \(0.258387\pi\)
\(908\) 21262.7 21262.7i 0.777124 0.777124i
\(909\) −40787.3 18729.4i −1.48826 0.683404i
\(910\) 0 0
\(911\) 33165.2i 1.20616i 0.797681 + 0.603080i \(0.206060\pi\)
−0.797681 + 0.603080i \(0.793940\pi\)
\(912\) −6278.38 + 4025.67i −0.227958 + 0.146166i
\(913\) −7441.88 7441.88i −0.269759 0.269759i
\(914\) 8056.00 0.291541
\(915\) 0 0
\(916\) 10382.9 0.374521
\(917\) 13094.2 + 13094.2i 0.471546 + 0.471546i
\(918\) 6682.13 + 47525.4i 0.240243 + 1.70869i
\(919\) 2162.18i 0.0776103i 0.999247 + 0.0388051i \(0.0123552\pi\)
−0.999247 + 0.0388051i \(0.987645\pi\)
\(920\) 0 0
\(921\) −22684.9 4959.46i −0.811609 0.177437i
\(922\) −35433.7 + 35433.7i −1.26567 + 1.26567i
\(923\) −2070.30 + 2070.30i −0.0738297 + 0.0738297i
\(924\) 14170.2 + 3097.95i 0.504508 + 0.110298i
\(925\) 0 0
\(926\) 6589.59i 0.233852i
\(927\) −27729.9 + 10277.2i −0.982493 + 0.364129i
\(928\) 8160.29 + 8160.29i 0.288658 + 0.288658i
\(929\) −17695.1 −0.624929 −0.312464 0.949930i \(-0.601154\pi\)
−0.312464 + 0.949930i \(0.601154\pi\)
\(930\) 0 0
\(931\) −3201.72 −0.112709
\(932\) −13017.4 13017.4i −0.457508 0.457508i
\(933\) 31521.3 20211.3i 1.10607 0.709204i
\(934\) 43676.6i 1.53013i
\(935\) 0 0
\(936\) −308.248 + 671.277i −0.0107643 + 0.0234417i
\(937\) 30208.0 30208.0i 1.05320 1.05320i 0.0547017 0.998503i \(-0.482579\pi\)
0.998503 0.0547017i \(-0.0174208\pi\)
\(938\) −21477.1 + 21477.1i −0.747602 + 0.747602i
\(939\) 3184.96 14568.2i 0.110689 0.506300i
\(940\) 0 0
\(941\) 1499.59i 0.0519503i 0.999663 + 0.0259752i \(0.00826908\pi\)
−0.999663 + 0.0259752i \(0.991731\pi\)
\(942\) −27040.8 42172.4i −0.935282 1.45865i
\(943\) 4564.14 + 4564.14i 0.157613 + 0.157613i
\(944\) 31691.2 1.09265
\(945\) 0 0
\(946\) −32067.5 −1.10212
\(947\) −13763.8 13763.8i −0.472294 0.472294i 0.430362 0.902656i \(-0.358386\pi\)
−0.902656 + 0.430362i \(0.858386\pi\)
\(948\) −10190.4 15892.8i −0.349123 0.544488i
\(949\) 1963.89i 0.0671767i
\(950\) 0 0
\(951\) −1081.72 + 4947.87i −0.0368847 + 0.168713i
\(952\) 5829.59 5829.59i 0.198464 0.198464i
\(953\) −14570.7 + 14570.7i −0.495268 + 0.495268i −0.909961 0.414693i \(-0.863889\pi\)
0.414693 + 0.909961i \(0.363889\pi\)
\(954\) 20674.1 45022.4i 0.701625 1.52794i
\(955\) 0 0
\(956\) 1613.47i 0.0545851i
\(957\) 7541.49 4835.57i 0.254735 0.163335i
\(958\) −30404.7 30404.7i −1.02540 1.02540i
\(959\) 20442.8 0.688355
\(960\) 0 0
\(961\) −21073.6 −0.707380
\(962\) 2426.75 + 2426.75i 0.0813322 + 0.0813322i
\(963\) −41899.7 + 15528.8i −1.40208 + 0.519635i
\(964\) 37082.4i 1.23895i
\(965\) 0 0
\(966\) −18388.6 4020.18i −0.612466 0.133900i
\(967\) −28409.1 + 28409.1i −0.944752 + 0.944752i −0.998552 0.0538000i \(-0.982867\pi\)
0.0538000 + 0.998552i \(0.482867\pi\)
\(968\) −803.127 + 803.127i −0.0266668 + 0.0266668i
\(969\) −8795.95 1923.01i −0.291606 0.0637522i
\(970\) 0 0
\(971\) 18059.4i 0.596864i 0.954431 + 0.298432i \(0.0964637\pi\)
−0.954431 + 0.298432i \(0.903536\pi\)
\(972\) 22423.1 + 6710.61i 0.739938 + 0.221443i
\(973\) −23379.9 23379.9i −0.770323 0.770323i
\(974\) −32307.7 −1.06284
\(975\) 0 0
\(976\) 150.505 0.00493600
\(977\) 31166.3 + 31166.3i 1.02057 + 1.02057i 0.999784 + 0.0207872i \(0.00661725\pi\)
0.0207872 + 0.999784i \(0.493383\pi\)
\(978\) 62404.7 40013.6i 2.04037 1.30828i
\(979\) 43422.9i 1.41757i
\(980\) 0 0
\(981\) 31029.1 + 14248.5i 1.00987 + 0.463729i
\(982\) −23907.2 + 23907.2i −0.776893 + 0.776893i
\(983\) −13839.4 + 13839.4i −0.449042 + 0.449042i −0.895036 0.445994i \(-0.852850\pi\)
0.445994 + 0.895036i \(0.352850\pi\)
\(984\) −675.734 + 3090.85i −0.0218919 + 0.100135i
\(985\) 0 0
\(986\) 17276.6i 0.558012i
\(987\) −2009.62 3134.18i −0.0648095 0.101076i
\(988\) 332.474 + 332.474i 0.0107059 + 0.0107059i
\(989\) 18134.5 0.583056
\(990\) 0 0
\(991\) 17820.9 0.571242 0.285621 0.958343i \(-0.407800\pi\)
0.285621 + 0.958343i \(0.407800\pi\)
\(992\) 15085.9 + 15085.9i 0.482842 + 0.482842i
\(993\) −23073.1 35984.5i −0.737363 1.14998i
\(994\) 36570.2i 1.16694i
\(995\) 0 0
\(996\) 2114.07 9669.89i 0.0672559 0.307633i
\(997\) 36985.0 36985.0i 1.17485 1.17485i 0.193814 0.981038i \(-0.437914\pi\)
0.981038 0.193814i \(-0.0620857\pi\)
\(998\) −20433.7 + 20433.7i −0.648114 + 0.648114i
\(999\) −19286.8 + 25597.6i −0.610819 + 0.810684i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 75.4.e.c.68.1 8
3.2 odd 2 inner 75.4.e.c.68.4 8
5.2 odd 4 inner 75.4.e.c.32.4 8
5.3 odd 4 15.4.e.a.2.1 8
5.4 even 2 15.4.e.a.8.4 yes 8
15.2 even 4 inner 75.4.e.c.32.1 8
15.8 even 4 15.4.e.a.2.4 yes 8
15.14 odd 2 15.4.e.a.8.1 yes 8
20.3 even 4 240.4.v.c.17.4 8
20.19 odd 2 240.4.v.c.113.3 8
60.23 odd 4 240.4.v.c.17.3 8
60.59 even 2 240.4.v.c.113.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.4.e.a.2.1 8 5.3 odd 4
15.4.e.a.2.4 yes 8 15.8 even 4
15.4.e.a.8.1 yes 8 15.14 odd 2
15.4.e.a.8.4 yes 8 5.4 even 2
75.4.e.c.32.1 8 15.2 even 4 inner
75.4.e.c.32.4 8 5.2 odd 4 inner
75.4.e.c.68.1 8 1.1 even 1 trivial
75.4.e.c.68.4 8 3.2 odd 2 inner
240.4.v.c.17.3 8 60.23 odd 4
240.4.v.c.17.4 8 20.3 even 4
240.4.v.c.113.3 8 20.19 odd 2
240.4.v.c.113.4 8 60.59 even 2