Properties

Label 240.4.v.c.113.3
Level $240$
Weight $4$
Character 240.113
Analytic conductor $14.160$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [240,4,Mod(17,240)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(240, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 2, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("240.17"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 240.v (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.1604584014\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.28356903014400.8
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 209x^{4} + 1600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 113.3
Root \(-2.66260 + 2.66260i\) of defining polynomial
Character \(\chi\) \(=\) 240.113
Dual form 240.4.v.c.17.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.80471 + 4.37420i) q^{3} +(-9.55729 + 5.80157i) q^{5} +(-9.35782 + 9.35782i) q^{7} +(-11.2672 + 24.5367i) q^{9} -34.1375i q^{11} +(2.82109 + 2.82109i) q^{13} +(-52.1826 - 25.5337i) q^{15} +(-64.2384 - 64.2384i) q^{17} -19.0735i q^{19} +(-67.1789 - 14.6869i) q^{21} +(-51.4018 + 51.4018i) q^{23} +(57.6836 - 110.895i) q^{25} +(-138.930 + 19.5337i) q^{27} -50.5042 q^{29} +93.3673 q^{31} +(149.324 - 95.7458i) q^{33} +(35.1454 - 143.725i) q^{35} +(-161.537 + 161.537i) q^{37} +(-4.42765 + 20.2524i) q^{39} -88.7935i q^{41} +(-176.399 - 176.399i) q^{43} +(-34.6678 - 299.872i) q^{45} +(38.2843 + 38.2843i) q^{47} +167.863i q^{49} +(100.821 - 461.162i) q^{51} +(-344.569 + 344.569i) q^{53} +(198.051 + 326.262i) q^{55} +(83.4310 - 53.4956i) q^{57} -421.133 q^{59} +2.00000 q^{61} +(-124.174 - 335.046i) q^{63} +(-43.3287 - 10.5952i) q^{65} +(-430.987 + 430.987i) q^{67} +(-369.009 - 80.6742i) q^{69} +733.866i q^{71} +(-348.073 - 348.073i) q^{73} +(646.860 - 58.7079i) q^{75} +(319.452 + 319.452i) q^{77} -588.019i q^{79} +(-475.102 - 552.919i) q^{81} +(-217.997 + 217.997i) q^{83} +(986.629 + 241.262i) q^{85} +(-141.650 - 220.915i) q^{87} +1272.00 q^{89} -52.7985 q^{91} +(261.868 + 408.407i) q^{93} +(110.656 + 182.291i) q^{95} +(-432.111 + 432.111i) q^{97} +(837.622 + 384.633i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{3} + 16 q^{7} + 68 q^{13} - 90 q^{15} - 492 q^{21} - 220 q^{25} - 702 q^{27} - 616 q^{31} - 240 q^{33} - 1156 q^{37} - 548 q^{43} + 180 q^{45} + 852 q^{51} - 460 q^{55} + 684 q^{57} + 16 q^{61}+ \cdots + 1904 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/240\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(181\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.80471 + 4.37420i 0.539767 + 0.841814i
\(4\) 0 0
\(5\) −9.55729 + 5.80157i −0.854830 + 0.518908i
\(6\) 0 0
\(7\) −9.35782 + 9.35782i −0.505275 + 0.505275i −0.913072 0.407798i \(-0.866297\pi\)
0.407798 + 0.913072i \(0.366297\pi\)
\(8\) 0 0
\(9\) −11.2672 + 24.5367i −0.417303 + 0.908768i
\(10\) 0 0
\(11\) 34.1375i 0.935712i −0.883805 0.467856i \(-0.845027\pi\)
0.883805 0.467856i \(-0.154973\pi\)
\(12\) 0 0
\(13\) 2.82109 + 2.82109i 0.0601869 + 0.0601869i 0.736560 0.676373i \(-0.236449\pi\)
−0.676373 + 0.736560i \(0.736449\pi\)
\(14\) 0 0
\(15\) −52.1826 25.5337i −0.898233 0.439519i
\(16\) 0 0
\(17\) −64.2384 64.2384i −0.916477 0.916477i 0.0802942 0.996771i \(-0.474414\pi\)
−0.996771 + 0.0802942i \(0.974414\pi\)
\(18\) 0 0
\(19\) 19.0735i 0.230303i −0.993348 0.115151i \(-0.963265\pi\)
0.993348 0.115151i \(-0.0367353\pi\)
\(20\) 0 0
\(21\) −67.1789 14.6869i −0.698078 0.152617i
\(22\) 0 0
\(23\) −51.4018 + 51.4018i −0.466001 + 0.466001i −0.900616 0.434616i \(-0.856884\pi\)
0.434616 + 0.900616i \(0.356884\pi\)
\(24\) 0 0
\(25\) 57.6836 110.895i 0.461469 0.887156i
\(26\) 0 0
\(27\) −138.930 + 19.5337i −0.990260 + 0.139232i
\(28\) 0 0
\(29\) −50.5042 −0.323393 −0.161697 0.986841i \(-0.551697\pi\)
−0.161697 + 0.986841i \(0.551697\pi\)
\(30\) 0 0
\(31\) 93.3673 0.540944 0.270472 0.962728i \(-0.412820\pi\)
0.270472 + 0.962728i \(0.412820\pi\)
\(32\) 0 0
\(33\) 149.324 95.7458i 0.787696 0.505067i
\(34\) 0 0
\(35\) 35.1454 143.725i 0.169733 0.694115i
\(36\) 0 0
\(37\) −161.537 + 161.537i −0.717743 + 0.717743i −0.968142 0.250400i \(-0.919438\pi\)
0.250400 + 0.968142i \(0.419438\pi\)
\(38\) 0 0
\(39\) −4.42765 + 20.2524i −0.0181793 + 0.0831531i
\(40\) 0 0
\(41\) 88.7935i 0.338225i −0.985597 0.169112i \(-0.945910\pi\)
0.985597 0.169112i \(-0.0540901\pi\)
\(42\) 0 0
\(43\) −176.399 176.399i −0.625596 0.625596i 0.321361 0.946957i \(-0.395860\pi\)
−0.946957 + 0.321361i \(0.895860\pi\)
\(44\) 0 0
\(45\) −34.6678 299.872i −0.114844 0.993384i
\(46\) 0 0
\(47\) 38.2843 + 38.2843i 0.118816 + 0.118816i 0.764015 0.645199i \(-0.223225\pi\)
−0.645199 + 0.764015i \(0.723225\pi\)
\(48\) 0 0
\(49\) 167.863i 0.489395i
\(50\) 0 0
\(51\) 100.821 461.162i 0.276819 1.26619i
\(52\) 0 0
\(53\) −344.569 + 344.569i −0.893022 + 0.893022i −0.994806 0.101784i \(-0.967545\pi\)
0.101784 + 0.994806i \(0.467545\pi\)
\(54\) 0 0
\(55\) 198.051 + 326.262i 0.485549 + 0.799875i
\(56\) 0 0
\(57\) 83.4310 53.4956i 0.193872 0.124310i
\(58\) 0 0
\(59\) −421.133 −0.929268 −0.464634 0.885503i \(-0.653814\pi\)
−0.464634 + 0.885503i \(0.653814\pi\)
\(60\) 0 0
\(61\) 2.00000 0.00419793 0.00209897 0.999998i \(-0.499332\pi\)
0.00209897 + 0.999998i \(0.499332\pi\)
\(62\) 0 0
\(63\) −124.174 335.046i −0.248325 0.670030i
\(64\) 0 0
\(65\) −43.3287 10.5952i −0.0826811 0.0202181i
\(66\) 0 0
\(67\) −430.987 + 430.987i −0.785872 + 0.785872i −0.980815 0.194943i \(-0.937548\pi\)
0.194943 + 0.980815i \(0.437548\pi\)
\(68\) 0 0
\(69\) −369.009 80.6742i −0.643818 0.140754i
\(70\) 0 0
\(71\) 733.866i 1.22667i 0.789822 + 0.613337i \(0.210173\pi\)
−0.789822 + 0.613337i \(0.789827\pi\)
\(72\) 0 0
\(73\) −348.073 348.073i −0.558067 0.558067i 0.370690 0.928757i \(-0.379121\pi\)
−0.928757 + 0.370690i \(0.879121\pi\)
\(74\) 0 0
\(75\) 646.860 58.7079i 0.995907 0.0903867i
\(76\) 0 0
\(77\) 319.452 + 319.452i 0.472792 + 0.472792i
\(78\) 0 0
\(79\) 588.019i 0.837434i −0.908117 0.418717i \(-0.862480\pi\)
0.908117 0.418717i \(-0.137520\pi\)
\(80\) 0 0
\(81\) −475.102 552.919i −0.651717 0.758462i
\(82\) 0 0
\(83\) −217.997 + 217.997i −0.288293 + 0.288293i −0.836405 0.548112i \(-0.815347\pi\)
0.548112 + 0.836405i \(0.315347\pi\)
\(84\) 0 0
\(85\) 986.629 + 241.262i 1.25900 + 0.307865i
\(86\) 0 0
\(87\) −141.650 220.915i −0.174557 0.272237i
\(88\) 0 0
\(89\) 1272.00 1.51497 0.757483 0.652855i \(-0.226429\pi\)
0.757483 + 0.652855i \(0.226429\pi\)
\(90\) 0 0
\(91\) −52.7985 −0.0608219
\(92\) 0 0
\(93\) 261.868 + 408.407i 0.291984 + 0.455374i
\(94\) 0 0
\(95\) 110.656 + 182.291i 0.119506 + 0.196870i
\(96\) 0 0
\(97\) −432.111 + 432.111i −0.452312 + 0.452312i −0.896121 0.443809i \(-0.853627\pi\)
0.443809 + 0.896121i \(0.353627\pi\)
\(98\) 0 0
\(99\) 837.622 + 384.633i 0.850345 + 0.390475i
\(100\) 0 0
\(101\) 1662.30i 1.63767i 0.574029 + 0.818835i \(0.305380\pi\)
−0.574029 + 0.818835i \(0.694620\pi\)
\(102\) 0 0
\(103\) 774.495 + 774.495i 0.740906 + 0.740906i 0.972752 0.231847i \(-0.0744768\pi\)
−0.231847 + 0.972752i \(0.574477\pi\)
\(104\) 0 0
\(105\) 727.256 249.376i 0.675932 0.231777i
\(106\) 0 0
\(107\) 1170.26 + 1170.26i 1.05732 + 1.05732i 0.998254 + 0.0590633i \(0.0188114\pi\)
0.0590633 + 0.998254i \(0.481189\pi\)
\(108\) 0 0
\(109\) 1264.60i 1.11125i −0.831432 0.555627i \(-0.812478\pi\)
0.831432 0.555627i \(-0.187522\pi\)
\(110\) 0 0
\(111\) −1159.66 253.529i −0.991620 0.216792i
\(112\) 0 0
\(113\) 381.173 381.173i 0.317325 0.317325i −0.530414 0.847739i \(-0.677963\pi\)
0.847739 + 0.530414i \(0.177963\pi\)
\(114\) 0 0
\(115\) 193.051 789.473i 0.156540 0.640163i
\(116\) 0 0
\(117\) −101.006 + 37.4346i −0.0798121 + 0.0295798i
\(118\) 0 0
\(119\) 1202.26 0.926145
\(120\) 0 0
\(121\) 165.633 0.124442
\(122\) 0 0
\(123\) 388.400 249.040i 0.284722 0.182563i
\(124\) 0 0
\(125\) 92.0630 + 1394.51i 0.0658749 + 0.997828i
\(126\) 0 0
\(127\) 439.588 439.588i 0.307142 0.307142i −0.536658 0.843800i \(-0.680313\pi\)
0.843800 + 0.536658i \(0.180313\pi\)
\(128\) 0 0
\(129\) 276.856 1266.35i 0.188959 0.864312i
\(130\) 0 0
\(131\) 1399.28i 0.933247i 0.884456 + 0.466623i \(0.154530\pi\)
−0.884456 + 0.466623i \(0.845470\pi\)
\(132\) 0 0
\(133\) 178.486 + 178.486i 0.116366 + 0.116366i
\(134\) 0 0
\(135\) 1214.46 992.698i 0.774255 0.632873i
\(136\) 0 0
\(137\) 1092.28 + 1092.28i 0.681169 + 0.681169i 0.960264 0.279095i \(-0.0900344\pi\)
−0.279095 + 0.960264i \(0.590034\pi\)
\(138\) 0 0
\(139\) 2498.43i 1.52456i −0.647245 0.762282i \(-0.724079\pi\)
0.647245 0.762282i \(-0.275921\pi\)
\(140\) 0 0
\(141\) −60.0866 + 274.840i −0.0358880 + 0.164154i
\(142\) 0 0
\(143\) 96.3049 96.3049i 0.0563177 0.0563177i
\(144\) 0 0
\(145\) 482.684 293.004i 0.276446 0.167811i
\(146\) 0 0
\(147\) −734.264 + 470.806i −0.411980 + 0.264159i
\(148\) 0 0
\(149\) −3570.40 −1.96308 −0.981538 0.191270i \(-0.938739\pi\)
−0.981538 + 0.191270i \(0.938739\pi\)
\(150\) 0 0
\(151\) −2687.14 −1.44819 −0.724094 0.689701i \(-0.757742\pi\)
−0.724094 + 0.689701i \(0.757742\pi\)
\(152\) 0 0
\(153\) 2299.99 852.415i 1.21531 0.450416i
\(154\) 0 0
\(155\) −892.338 + 541.676i −0.462415 + 0.280700i
\(156\) 0 0
\(157\) −1810.48 + 1810.48i −0.920333 + 0.920333i −0.997053 0.0767201i \(-0.975555\pi\)
0.0767201 + 0.997053i \(0.475555\pi\)
\(158\) 0 0
\(159\) −2473.63 540.795i −1.23378 0.269735i
\(160\) 0 0
\(161\) 962.017i 0.470916i
\(162\) 0 0
\(163\) 2679.06 + 2679.06i 1.28736 + 1.28736i 0.936382 + 0.350982i \(0.114152\pi\)
0.350982 + 0.936382i \(0.385848\pi\)
\(164\) 0 0
\(165\) −871.657 + 1781.38i −0.411263 + 0.840488i
\(166\) 0 0
\(167\) −139.543 139.543i −0.0646597 0.0646597i 0.674037 0.738697i \(-0.264559\pi\)
−0.738697 + 0.674037i \(0.764559\pi\)
\(168\) 0 0
\(169\) 2181.08i 0.992755i
\(170\) 0 0
\(171\) 468.000 + 214.904i 0.209292 + 0.0961059i
\(172\) 0 0
\(173\) −881.613 + 881.613i −0.387444 + 0.387444i −0.873775 0.486331i \(-0.838335\pi\)
0.486331 + 0.873775i \(0.338335\pi\)
\(174\) 0 0
\(175\) 497.938 + 1577.52i 0.215089 + 0.681426i
\(176\) 0 0
\(177\) −1181.16 1842.12i −0.501588 0.782271i
\(178\) 0 0
\(179\) −2512.87 −1.04928 −0.524638 0.851325i \(-0.675799\pi\)
−0.524638 + 0.851325i \(0.675799\pi\)
\(180\) 0 0
\(181\) 269.796 0.110795 0.0553973 0.998464i \(-0.482357\pi\)
0.0553973 + 0.998464i \(0.482357\pi\)
\(182\) 0 0
\(183\) 5.60943 + 8.74839i 0.00226591 + 0.00353388i
\(184\) 0 0
\(185\) 606.687 2481.02i 0.241106 0.985990i
\(186\) 0 0
\(187\) −2192.94 + 2192.94i −0.857559 + 0.857559i
\(188\) 0 0
\(189\) 1117.29 1482.87i 0.430003 0.570703i
\(190\) 0 0
\(191\) 2420.22i 0.916864i −0.888729 0.458432i \(-0.848411\pi\)
0.888729 0.458432i \(-0.151589\pi\)
\(192\) 0 0
\(193\) 1965.28 + 1965.28i 0.732973 + 0.732973i 0.971208 0.238234i \(-0.0765686\pi\)
−0.238234 + 0.971208i \(0.576569\pi\)
\(194\) 0 0
\(195\) −75.1791 219.245i −0.0276086 0.0805152i
\(196\) 0 0
\(197\) −832.602 832.602i −0.301119 0.301119i 0.540333 0.841452i \(-0.318298\pi\)
−0.841452 + 0.540333i \(0.818298\pi\)
\(198\) 0 0
\(199\) 1540.54i 0.548775i −0.961619 0.274387i \(-0.911525\pi\)
0.961619 0.274387i \(-0.0884750\pi\)
\(200\) 0 0
\(201\) −3094.02 676.426i −1.08575 0.237370i
\(202\) 0 0
\(203\) 472.609 472.609i 0.163402 0.163402i
\(204\) 0 0
\(205\) 515.142 + 848.625i 0.175508 + 0.289125i
\(206\) 0 0
\(207\) −682.079 1840.38i −0.229023 0.617949i
\(208\) 0 0
\(209\) −651.119 −0.215497
\(210\) 0 0
\(211\) 10.9380 0.00356874 0.00178437 0.999998i \(-0.499432\pi\)
0.00178437 + 0.999998i \(0.499432\pi\)
\(212\) 0 0
\(213\) −3210.07 + 2058.28i −1.03263 + 0.662118i
\(214\) 0 0
\(215\) 2709.29 + 662.507i 0.859405 + 0.210152i
\(216\) 0 0
\(217\) −873.714 + 873.714i −0.273325 + 0.273325i
\(218\) 0 0
\(219\) 546.295 2498.79i 0.168563 0.771016i
\(220\) 0 0
\(221\) 362.445i 0.110320i
\(222\) 0 0
\(223\) −831.512 831.512i −0.249696 0.249696i 0.571150 0.820846i \(-0.306497\pi\)
−0.820846 + 0.571150i \(0.806497\pi\)
\(224\) 0 0
\(225\) 2071.06 + 2664.83i 0.613647 + 0.789581i
\(226\) 0 0
\(227\) −3441.18 3441.18i −1.00616 1.00616i −0.999981 0.00618314i \(-0.998032\pi\)
−0.00618314 0.999981i \(-0.501968\pi\)
\(228\) 0 0
\(229\) 1680.38i 0.484903i −0.970164 0.242451i \(-0.922049\pi\)
0.970164 0.242451i \(-0.0779515\pi\)
\(230\) 0 0
\(231\) −501.375 + 2293.32i −0.142805 + 0.653200i
\(232\) 0 0
\(233\) 2106.74 2106.74i 0.592348 0.592348i −0.345917 0.938265i \(-0.612432\pi\)
0.938265 + 0.345917i \(0.112432\pi\)
\(234\) 0 0
\(235\) −588.004 143.785i −0.163222 0.0399129i
\(236\) 0 0
\(237\) 2572.11 1649.22i 0.704964 0.452019i
\(238\) 0 0
\(239\) 261.125 0.0706728 0.0353364 0.999375i \(-0.488750\pi\)
0.0353364 + 0.999375i \(0.488750\pi\)
\(240\) 0 0
\(241\) −6001.45 −1.60410 −0.802048 0.597259i \(-0.796256\pi\)
−0.802048 + 0.597259i \(0.796256\pi\)
\(242\) 0 0
\(243\) 1086.05 3628.97i 0.286709 0.958018i
\(244\) 0 0
\(245\) −973.866 1604.31i −0.253951 0.418350i
\(246\) 0 0
\(247\) 53.8080 53.8080i 0.0138612 0.0138612i
\(248\) 0 0
\(249\) −1564.98 342.143i −0.398300 0.0870781i
\(250\) 0 0
\(251\) 3044.59i 0.765630i −0.923825 0.382815i \(-0.874955\pi\)
0.923825 0.382815i \(-0.125045\pi\)
\(252\) 0 0
\(253\) 1754.73 + 1754.73i 0.436042 + 0.436042i
\(254\) 0 0
\(255\) 1711.89 + 4992.38i 0.420402 + 1.22602i
\(256\) 0 0
\(257\) −946.317 946.317i −0.229687 0.229687i 0.582875 0.812562i \(-0.301928\pi\)
−0.812562 + 0.582875i \(0.801928\pi\)
\(258\) 0 0
\(259\) 3023.26i 0.725314i
\(260\) 0 0
\(261\) 569.040 1239.21i 0.134953 0.293889i
\(262\) 0 0
\(263\) −67.0257 + 67.0257i −0.0157148 + 0.0157148i −0.714921 0.699206i \(-0.753537\pi\)
0.699206 + 0.714921i \(0.253537\pi\)
\(264\) 0 0
\(265\) 1294.11 5292.18i 0.299986 1.22678i
\(266\) 0 0
\(267\) 3567.60 + 5563.99i 0.817729 + 1.27532i
\(268\) 0 0
\(269\) 2658.15 0.602492 0.301246 0.953546i \(-0.402597\pi\)
0.301246 + 0.953546i \(0.402597\pi\)
\(270\) 0 0
\(271\) −145.673 −0.0326530 −0.0163265 0.999867i \(-0.505197\pi\)
−0.0163265 + 0.999867i \(0.505197\pi\)
\(272\) 0 0
\(273\) −148.085 230.951i −0.0328296 0.0512007i
\(274\) 0 0
\(275\) −3785.66 1969.17i −0.830123 0.431802i
\(276\) 0 0
\(277\) −1074.57 + 1074.57i −0.233085 + 0.233085i −0.813979 0.580894i \(-0.802703\pi\)
0.580894 + 0.813979i \(0.302703\pi\)
\(278\) 0 0
\(279\) −1051.98 + 2290.93i −0.225737 + 0.491592i
\(280\) 0 0
\(281\) 2020.29i 0.428898i 0.976735 + 0.214449i \(0.0687956\pi\)
−0.976735 + 0.214449i \(0.931204\pi\)
\(282\) 0 0
\(283\) 2400.34 + 2400.34i 0.504189 + 0.504189i 0.912737 0.408548i \(-0.133965\pi\)
−0.408548 + 0.912737i \(0.633965\pi\)
\(284\) 0 0
\(285\) −487.016 + 995.303i −0.101222 + 0.206866i
\(286\) 0 0
\(287\) 830.913 + 830.913i 0.170896 + 0.170896i
\(288\) 0 0
\(289\) 3340.15i 0.679860i
\(290\) 0 0
\(291\) −3102.09 678.191i −0.624906 0.136619i
\(292\) 0 0
\(293\) 2533.13 2533.13i 0.505075 0.505075i −0.407936 0.913011i \(-0.633751\pi\)
0.913011 + 0.407936i \(0.133751\pi\)
\(294\) 0 0
\(295\) 4024.89 2443.23i 0.794366 0.482204i
\(296\) 0 0
\(297\) 666.830 + 4742.71i 0.130281 + 0.926598i
\(298\) 0 0
\(299\) −290.018 −0.0560943
\(300\) 0 0
\(301\) 3301.42 0.632196
\(302\) 0 0
\(303\) −7271.21 + 4662.27i −1.37861 + 0.883961i
\(304\) 0 0
\(305\) −19.1146 + 11.6031i −0.00358852 + 0.00217834i
\(306\) 0 0
\(307\) −3159.93 + 3159.93i −0.587449 + 0.587449i −0.936940 0.349491i \(-0.886355\pi\)
0.349491 + 0.936940i \(0.386355\pi\)
\(308\) 0 0
\(309\) −1215.56 + 5560.03i −0.223788 + 1.02362i
\(310\) 0 0
\(311\) 7206.19i 1.31391i 0.753931 + 0.656954i \(0.228155\pi\)
−0.753931 + 0.656954i \(0.771845\pi\)
\(312\) 0 0
\(313\) 2029.31 + 2029.31i 0.366464 + 0.366464i 0.866186 0.499722i \(-0.166564\pi\)
−0.499722 + 0.866186i \(0.666564\pi\)
\(314\) 0 0
\(315\) 3130.56 + 2481.73i 0.559959 + 0.443904i
\(316\) 0 0
\(317\) −689.223 689.223i −0.122116 0.122116i 0.643408 0.765524i \(-0.277520\pi\)
−0.765524 + 0.643408i \(0.777520\pi\)
\(318\) 0 0
\(319\) 1724.09i 0.302603i
\(320\) 0 0
\(321\) −1836.70 + 8401.16i −0.319360 + 1.46077i
\(322\) 0 0
\(323\) −1225.25 + 1225.25i −0.211067 + 0.211067i
\(324\) 0 0
\(325\) 475.574 150.113i 0.0811696 0.0256208i
\(326\) 0 0
\(327\) 5531.60 3546.84i 0.935469 0.599818i
\(328\) 0 0
\(329\) −716.516 −0.120069
\(330\) 0 0
\(331\) 8226.53 1.36608 0.683038 0.730383i \(-0.260658\pi\)
0.683038 + 0.730383i \(0.260658\pi\)
\(332\) 0 0
\(333\) −2143.52 5783.64i −0.352745 0.951777i
\(334\) 0 0
\(335\) 1618.67 6619.47i 0.263992 1.07958i
\(336\) 0 0
\(337\) 1777.34 1777.34i 0.287294 0.287294i −0.548715 0.836009i \(-0.684883\pi\)
0.836009 + 0.548715i \(0.184883\pi\)
\(338\) 0 0
\(339\) 2736.41 + 598.245i 0.438411 + 0.0958472i
\(340\) 0 0
\(341\) 3187.32i 0.506168i
\(342\) 0 0
\(343\) −4780.56 4780.56i −0.752554 0.752554i
\(344\) 0 0
\(345\) 3994.76 1369.80i 0.623393 0.213761i
\(346\) 0 0
\(347\) 1715.22 + 1715.22i 0.265354 + 0.265354i 0.827225 0.561871i \(-0.189918\pi\)
−0.561871 + 0.827225i \(0.689918\pi\)
\(348\) 0 0
\(349\) 8603.96i 1.31965i −0.751417 0.659827i \(-0.770629\pi\)
0.751417 0.659827i \(-0.229371\pi\)
\(350\) 0 0
\(351\) −447.039 336.827i −0.0679806 0.0512208i
\(352\) 0 0
\(353\) −5425.13 + 5425.13i −0.817990 + 0.817990i −0.985816 0.167827i \(-0.946325\pi\)
0.167827 + 0.985816i \(0.446325\pi\)
\(354\) 0 0
\(355\) −4257.57 7013.77i −0.636531 1.04860i
\(356\) 0 0
\(357\) 3372.00 + 5258.93i 0.499903 + 0.779642i
\(358\) 0 0
\(359\) 11418.9 1.67874 0.839370 0.543560i \(-0.182924\pi\)
0.839370 + 0.543560i \(0.182924\pi\)
\(360\) 0 0
\(361\) 6495.20 0.946961
\(362\) 0 0
\(363\) 464.552 + 724.510i 0.0671699 + 0.104757i
\(364\) 0 0
\(365\) 5346.01 + 1307.27i 0.766638 + 0.187467i
\(366\) 0 0
\(367\) −6554.73 + 6554.73i −0.932299 + 0.932299i −0.997849 0.0655499i \(-0.979120\pi\)
0.0655499 + 0.997849i \(0.479120\pi\)
\(368\) 0 0
\(369\) 2178.70 + 1000.45i 0.307368 + 0.141142i
\(370\) 0 0
\(371\) 6448.83i 0.902443i
\(372\) 0 0
\(373\) −5967.46 5967.46i −0.828374 0.828374i 0.158918 0.987292i \(-0.449199\pi\)
−0.987292 + 0.158918i \(0.949199\pi\)
\(374\) 0 0
\(375\) −5841.64 + 4313.89i −0.804429 + 0.594049i
\(376\) 0 0
\(377\) −142.477 142.477i −0.0194640 0.0194640i
\(378\) 0 0
\(379\) 1680.48i 0.227758i 0.993495 + 0.113879i \(0.0363276\pi\)
−0.993495 + 0.113879i \(0.963672\pi\)
\(380\) 0 0
\(381\) 3155.76 + 689.925i 0.424342 + 0.0927715i
\(382\) 0 0
\(383\) 7493.42 7493.42i 0.999728 0.999728i −0.000271480 1.00000i \(-0.500086\pi\)
1.00000 0.000271480i \(8.64148e-5\pi\)
\(384\) 0 0
\(385\) −4906.42 1199.77i −0.649492 0.158821i
\(386\) 0 0
\(387\) 6315.78 2340.74i 0.829584 0.307459i
\(388\) 0 0
\(389\) 7966.97 1.03841 0.519205 0.854650i \(-0.326228\pi\)
0.519205 + 0.854650i \(0.326228\pi\)
\(390\) 0 0
\(391\) 6603.94 0.854158
\(392\) 0 0
\(393\) −6120.71 + 3924.57i −0.785620 + 0.503736i
\(394\) 0 0
\(395\) 3411.43 + 5619.87i 0.434551 + 0.715864i
\(396\) 0 0
\(397\) −8188.88 + 8188.88i −1.03523 + 1.03523i −0.0358786 + 0.999356i \(0.511423\pi\)
−0.999356 + 0.0358786i \(0.988577\pi\)
\(398\) 0 0
\(399\) −280.130 + 1281.33i −0.0351480 + 0.160769i
\(400\) 0 0
\(401\) 5167.66i 0.643542i −0.946817 0.321771i \(-0.895722\pi\)
0.946817 0.321771i \(-0.104278\pi\)
\(402\) 0 0
\(403\) 263.398 + 263.398i 0.0325577 + 0.0325577i
\(404\) 0 0
\(405\) 7748.48 + 2528.07i 0.950679 + 0.310175i
\(406\) 0 0
\(407\) 5514.46 + 5514.46i 0.671601 + 0.671601i
\(408\) 0 0
\(409\) 8514.82i 1.02941i 0.857366 + 0.514707i \(0.172099\pi\)
−0.857366 + 0.514707i \(0.827901\pi\)
\(410\) 0 0
\(411\) −1714.32 + 7841.41i −0.205745 + 0.941090i
\(412\) 0 0
\(413\) 3940.88 3940.88i 0.469535 0.469535i
\(414\) 0 0
\(415\) 818.738 3348.19i 0.0968440 0.396039i
\(416\) 0 0
\(417\) 10928.6 7007.39i 1.28340 0.822910i
\(418\) 0 0
\(419\) −11939.7 −1.39211 −0.696053 0.717990i \(-0.745062\pi\)
−0.696053 + 0.717990i \(0.745062\pi\)
\(420\) 0 0
\(421\) 10873.3 1.25875 0.629373 0.777103i \(-0.283312\pi\)
0.629373 + 0.777103i \(0.283312\pi\)
\(422\) 0 0
\(423\) −1370.73 + 508.016i −0.157558 + 0.0583938i
\(424\) 0 0
\(425\) −10829.2 + 3418.19i −1.23598 + 0.390133i
\(426\) 0 0
\(427\) −18.7156 + 18.7156i −0.00212111 + 0.00212111i
\(428\) 0 0
\(429\) 691.364 + 151.149i 0.0778074 + 0.0170106i
\(430\) 0 0
\(431\) 7603.48i 0.849760i −0.905250 0.424880i \(-0.860316\pi\)
0.905250 0.424880i \(-0.139684\pi\)
\(432\) 0 0
\(433\) 4681.19 + 4681.19i 0.519547 + 0.519547i 0.917434 0.397887i \(-0.130257\pi\)
−0.397887 + 0.917434i \(0.630257\pi\)
\(434\) 0 0
\(435\) 2635.44 + 1289.56i 0.290483 + 0.142137i
\(436\) 0 0
\(437\) 980.409 + 980.409i 0.107321 + 0.107321i
\(438\) 0 0
\(439\) 8608.08i 0.935857i 0.883766 + 0.467929i \(0.155000\pi\)
−0.883766 + 0.467929i \(0.845000\pi\)
\(440\) 0 0
\(441\) −4118.80 1891.34i −0.444746 0.204226i
\(442\) 0 0
\(443\) −6466.81 + 6466.81i −0.693561 + 0.693561i −0.963014 0.269453i \(-0.913157\pi\)
0.269453 + 0.963014i \(0.413157\pi\)
\(444\) 0 0
\(445\) −12156.9 + 7379.61i −1.29504 + 0.786128i
\(446\) 0 0
\(447\) −10013.9 15617.6i −1.05960 1.65254i
\(448\) 0 0
\(449\) 356.370 0.0374569 0.0187284 0.999825i \(-0.494038\pi\)
0.0187284 + 0.999825i \(0.494038\pi\)
\(450\) 0 0
\(451\) −3031.19 −0.316481
\(452\) 0 0
\(453\) −7536.66 11754.1i −0.781685 1.21911i
\(454\) 0 0
\(455\) 504.611 306.314i 0.0519923 0.0315609i
\(456\) 0 0
\(457\) 1512.80 1512.80i 0.154849 0.154849i −0.625431 0.780280i \(-0.715077\pi\)
0.780280 + 0.625431i \(0.215077\pi\)
\(458\) 0 0
\(459\) 10179.4 + 7669.81i 1.03515 + 0.779948i
\(460\) 0 0
\(461\) 13307.9i 1.34449i −0.740327 0.672246i \(-0.765330\pi\)
0.740327 0.672246i \(-0.234670\pi\)
\(462\) 0 0
\(463\) 1237.43 + 1237.43i 0.124208 + 0.124208i 0.766478 0.642270i \(-0.222007\pi\)
−0.642270 + 0.766478i \(0.722007\pi\)
\(464\) 0 0
\(465\) −4872.15 2384.01i −0.485894 0.237755i
\(466\) 0 0
\(467\) −8201.87 8201.87i −0.812713 0.812713i 0.172327 0.985040i \(-0.444872\pi\)
−0.985040 + 0.172327i \(0.944872\pi\)
\(468\) 0 0
\(469\) 8066.19i 0.794162i
\(470\) 0 0
\(471\) −12997.3 2841.52i −1.27151 0.277984i
\(472\) 0 0
\(473\) −6021.83 + 6021.83i −0.585378 + 0.585378i
\(474\) 0 0
\(475\) −2115.14 1100.23i −0.204314 0.106278i
\(476\) 0 0
\(477\) −4572.28 12336.9i −0.438889 1.18421i
\(478\) 0 0
\(479\) −11419.1 −1.08926 −0.544629 0.838677i \(-0.683329\pi\)
−0.544629 + 0.838677i \(0.683329\pi\)
\(480\) 0 0
\(481\) −911.420 −0.0863974
\(482\) 0 0
\(483\) 4208.05 2698.18i 0.396424 0.254185i
\(484\) 0 0
\(485\) 1622.89 6636.73i 0.151942 0.621358i
\(486\) 0 0
\(487\) 6066.93 6066.93i 0.564515 0.564515i −0.366071 0.930587i \(-0.619297\pi\)
0.930587 + 0.366071i \(0.119297\pi\)
\(488\) 0 0
\(489\) −4204.74 + 19232.7i −0.388845 + 1.77860i
\(490\) 0 0
\(491\) 8978.88i 0.825277i 0.910895 + 0.412639i \(0.135393\pi\)
−0.910895 + 0.412639i \(0.864607\pi\)
\(492\) 0 0
\(493\) 3244.31 + 3244.31i 0.296382 + 0.296382i
\(494\) 0 0
\(495\) −10236.9 + 1183.47i −0.929521 + 0.107461i
\(496\) 0 0
\(497\) −6867.38 6867.38i −0.619807 0.619807i
\(498\) 0 0
\(499\) 7674.34i 0.688478i 0.938882 + 0.344239i \(0.111863\pi\)
−0.938882 + 0.344239i \(0.888137\pi\)
\(500\) 0 0
\(501\) 219.010 1001.77i 0.0195303 0.0893326i
\(502\) 0 0
\(503\) 4044.23 4044.23i 0.358496 0.358496i −0.504762 0.863258i \(-0.668420\pi\)
0.863258 + 0.504762i \(0.168420\pi\)
\(504\) 0 0
\(505\) −9643.93 15887.1i −0.849800 1.39993i
\(506\) 0 0
\(507\) 9540.48 6117.31i 0.835715 0.535857i
\(508\) 0 0
\(509\) −12532.5 −1.09134 −0.545672 0.837999i \(-0.683725\pi\)
−0.545672 + 0.837999i \(0.683725\pi\)
\(510\) 0 0
\(511\) 6514.42 0.563955
\(512\) 0 0
\(513\) 372.574 + 2649.87i 0.0320654 + 0.228059i
\(514\) 0 0
\(515\) −11895.4 2908.79i −1.01781 0.248887i
\(516\) 0 0
\(517\) 1306.93 1306.93i 0.111177 0.111177i
\(518\) 0 0
\(519\) −6329.02 1383.68i −0.535285 0.117026i
\(520\) 0 0
\(521\) 19201.8i 1.61468i 0.590089 + 0.807338i \(0.299093\pi\)
−0.590089 + 0.807338i \(0.700907\pi\)
\(522\) 0 0
\(523\) −5472.69 5472.69i −0.457560 0.457560i 0.440294 0.897854i \(-0.354874\pi\)
−0.897854 + 0.440294i \(0.854874\pi\)
\(524\) 0 0
\(525\) −5503.82 + 6602.58i −0.457536 + 0.548877i
\(526\) 0 0
\(527\) −5997.77 5997.77i −0.495762 0.495762i
\(528\) 0 0
\(529\) 6882.71i 0.565687i
\(530\) 0 0
\(531\) 4744.97 10333.2i 0.387786 0.844488i
\(532\) 0 0
\(533\) 250.495 250.495i 0.0203567 0.0203567i
\(534\) 0 0
\(535\) −17973.8 4395.16i −1.45248 0.355176i
\(536\) 0 0
\(537\) −7047.87 10991.8i −0.566365 0.883295i
\(538\) 0 0
\(539\) 5730.40 0.457933
\(540\) 0 0
\(541\) 12778.2 1.01548 0.507741 0.861510i \(-0.330481\pi\)
0.507741 + 0.861510i \(0.330481\pi\)
\(542\) 0 0
\(543\) 756.702 + 1180.14i 0.0598033 + 0.0932684i
\(544\) 0 0
\(545\) 7336.66 + 12086.1i 0.576638 + 0.949933i
\(546\) 0 0
\(547\) 2414.12 2414.12i 0.188702 0.188702i −0.606433 0.795135i \(-0.707400\pi\)
0.795135 + 0.606433i \(0.207400\pi\)
\(548\) 0 0
\(549\) −22.5343 + 49.0735i −0.00175181 + 0.00381494i
\(550\) 0 0
\(551\) 963.290i 0.0744783i
\(552\) 0 0
\(553\) 5502.57 + 5502.57i 0.423134 + 0.423134i
\(554\) 0 0
\(555\) 12554.0 4304.78i 0.960162 0.329239i
\(556\) 0 0
\(557\) 5573.05 + 5573.05i 0.423946 + 0.423946i 0.886560 0.462614i \(-0.153088\pi\)
−0.462614 + 0.886560i \(0.653088\pi\)
\(558\) 0 0
\(559\) 995.277i 0.0753054i
\(560\) 0 0
\(561\) −15742.9 3441.78i −1.18479 0.259023i
\(562\) 0 0
\(563\) −3488.75 + 3488.75i −0.261160 + 0.261160i −0.825525 0.564365i \(-0.809121\pi\)
0.564365 + 0.825525i \(0.309121\pi\)
\(564\) 0 0
\(565\) −1431.58 + 5854.39i −0.106597 + 0.435922i
\(566\) 0 0
\(567\) 9620.03 + 728.199i 0.712528 + 0.0539356i
\(568\) 0 0
\(569\) −4924.15 −0.362796 −0.181398 0.983410i \(-0.558062\pi\)
−0.181398 + 0.983410i \(0.558062\pi\)
\(570\) 0 0
\(571\) 5642.12 0.413512 0.206756 0.978393i \(-0.433709\pi\)
0.206756 + 0.978393i \(0.433709\pi\)
\(572\) 0 0
\(573\) 10586.5 6788.02i 0.771829 0.494893i
\(574\) 0 0
\(575\) 2735.14 + 8665.22i 0.198371 + 0.628460i
\(576\) 0 0
\(577\) 8505.39 8505.39i 0.613663 0.613663i −0.330235 0.943899i \(-0.607128\pi\)
0.943899 + 0.330235i \(0.107128\pi\)
\(578\) 0 0
\(579\) −3084.47 + 14108.6i −0.221392 + 1.01266i
\(580\) 0 0
\(581\) 4079.96i 0.291334i
\(582\) 0 0
\(583\) 11762.7 + 11762.7i 0.835612 + 0.835612i
\(584\) 0 0
\(585\) 748.165 943.767i 0.0528766 0.0667008i
\(586\) 0 0
\(587\) 1464.72 + 1464.72i 0.102990 + 0.102990i 0.756724 0.653734i \(-0.226798\pi\)
−0.653734 + 0.756724i \(0.726798\pi\)
\(588\) 0 0
\(589\) 1780.84i 0.124581i
\(590\) 0 0
\(591\) 1306.75 5977.17i 0.0909521 0.416020i
\(592\) 0 0
\(593\) 18086.4 18086.4i 1.25248 1.25248i 0.297871 0.954606i \(-0.403723\pi\)
0.954606 0.297871i \(-0.0962766\pi\)
\(594\) 0 0
\(595\) −11490.4 + 6975.01i −0.791697 + 0.480584i
\(596\) 0 0
\(597\) 6738.63 4320.78i 0.461966 0.296211i
\(598\) 0 0
\(599\) 21899.3 1.49379 0.746897 0.664940i \(-0.231543\pi\)
0.746897 + 0.664940i \(0.231543\pi\)
\(600\) 0 0
\(601\) −12431.8 −0.843766 −0.421883 0.906650i \(-0.638631\pi\)
−0.421883 + 0.906650i \(0.638631\pi\)
\(602\) 0 0
\(603\) −5719.00 15431.0i −0.386229 1.04212i
\(604\) 0 0
\(605\) −1583.00 + 960.930i −0.106377 + 0.0645741i
\(606\) 0 0
\(607\) −8237.79 + 8237.79i −0.550843 + 0.550843i −0.926684 0.375841i \(-0.877354\pi\)
0.375841 + 0.926684i \(0.377354\pi\)
\(608\) 0 0
\(609\) 3392.82 + 741.752i 0.225754 + 0.0493552i
\(610\) 0 0
\(611\) 216.007i 0.0143023i
\(612\) 0 0
\(613\) −8913.02 8913.02i −0.587265 0.587265i 0.349625 0.936890i \(-0.386309\pi\)
−0.936890 + 0.349625i \(0.886309\pi\)
\(614\) 0 0
\(615\) −2267.23 + 4633.48i −0.148656 + 0.303805i
\(616\) 0 0
\(617\) 1378.18 + 1378.18i 0.0899244 + 0.0899244i 0.750638 0.660714i \(-0.229746\pi\)
−0.660714 + 0.750638i \(0.729746\pi\)
\(618\) 0 0
\(619\) 18926.2i 1.22893i −0.788945 0.614464i \(-0.789372\pi\)
0.788945 0.614464i \(-0.210628\pi\)
\(620\) 0 0
\(621\) 6137.16 8145.29i 0.396580 0.526344i
\(622\) 0 0
\(623\) −11903.2 + 11903.2i −0.765474 + 0.765474i
\(624\) 0 0
\(625\) −8970.20 12793.6i −0.574093 0.818790i
\(626\) 0 0
\(627\) −1826.20 2848.12i −0.116318 0.181408i
\(628\) 0 0
\(629\) 20753.7 1.31559
\(630\) 0 0
\(631\) 26118.8 1.64782 0.823909 0.566723i \(-0.191789\pi\)
0.823909 + 0.566723i \(0.191789\pi\)
\(632\) 0 0
\(633\) 30.6780 + 47.8450i 0.00192629 + 0.00300421i
\(634\) 0 0
\(635\) −1650.97 + 6751.56i −0.103176 + 0.421933i
\(636\) 0 0
\(637\) −473.556 + 473.556i −0.0294552 + 0.0294552i
\(638\) 0 0
\(639\) −18006.7 8268.59i −1.11476 0.511894i
\(640\) 0 0
\(641\) 15846.5i 0.976442i 0.872720 + 0.488221i \(0.162354\pi\)
−0.872720 + 0.488221i \(0.837646\pi\)
\(642\) 0 0
\(643\) −89.9404 89.9404i −0.00551618 0.00551618i 0.704343 0.709859i \(-0.251242\pi\)
−0.709859 + 0.704343i \(0.751242\pi\)
\(644\) 0 0
\(645\) 4700.85 + 13709.1i 0.286970 + 0.836893i
\(646\) 0 0
\(647\) 20057.0 + 20057.0i 1.21874 + 1.21874i 0.968074 + 0.250665i \(0.0806492\pi\)
0.250665 + 0.968074i \(0.419351\pi\)
\(648\) 0 0
\(649\) 14376.4i 0.869527i
\(650\) 0 0
\(651\) −6272.31 1371.28i −0.377621 0.0825570i
\(652\) 0 0
\(653\) −20478.4 + 20478.4i −1.22723 + 1.22723i −0.262225 + 0.965007i \(0.584456\pi\)
−0.965007 + 0.262225i \(0.915544\pi\)
\(654\) 0 0
\(655\) −8117.99 13373.3i −0.484269 0.797767i
\(656\) 0 0
\(657\) 12462.4 4618.78i 0.740036 0.274271i
\(658\) 0 0
\(659\) −1169.87 −0.0691529 −0.0345765 0.999402i \(-0.511008\pi\)
−0.0345765 + 0.999402i \(0.511008\pi\)
\(660\) 0 0
\(661\) 19622.6 1.15466 0.577329 0.816511i \(-0.304095\pi\)
0.577329 + 0.816511i \(0.304095\pi\)
\(662\) 0 0
\(663\) 1585.41 1016.55i 0.0928688 0.0595471i
\(664\) 0 0
\(665\) −2741.34 670.343i −0.159856 0.0390899i
\(666\) 0 0
\(667\) 2596.01 2596.01i 0.150701 0.150701i
\(668\) 0 0
\(669\) 1305.04 5969.35i 0.0754199 0.344975i
\(670\) 0 0
\(671\) 68.2750i 0.00392806i
\(672\) 0 0
\(673\) 15256.3 + 15256.3i 0.873830 + 0.873830i 0.992887 0.119057i \(-0.0379872\pi\)
−0.119057 + 0.992887i \(0.537987\pi\)
\(674\) 0 0
\(675\) −5847.79 + 16533.3i −0.333454 + 0.942766i
\(676\) 0 0
\(677\) −16.1429 16.1429i −0.000916428 0.000916428i 0.706648 0.707565i \(-0.250206\pi\)
−0.707565 + 0.706648i \(0.750206\pi\)
\(678\) 0 0
\(679\) 8087.23i 0.457083i
\(680\) 0 0
\(681\) 5400.87 24703.9i 0.303909 1.39010i
\(682\) 0 0
\(683\) 3894.05 3894.05i 0.218157 0.218157i −0.589564 0.807722i \(-0.700700\pi\)
0.807722 + 0.589564i \(0.200700\pi\)
\(684\) 0 0
\(685\) −16776.2 4102.32i −0.935747 0.228820i
\(686\) 0 0
\(687\) 7350.31 4712.99i 0.408198 0.261735i
\(688\) 0 0
\(689\) −1944.12 −0.107497
\(690\) 0 0
\(691\) 1041.11 0.0573163 0.0286581 0.999589i \(-0.490877\pi\)
0.0286581 + 0.999589i \(0.490877\pi\)
\(692\) 0 0
\(693\) −11437.6 + 4238.99i −0.626955 + 0.232361i
\(694\) 0 0
\(695\) 14494.8 + 23878.3i 0.791108 + 1.30324i
\(696\) 0 0
\(697\) −5703.96 + 5703.96i −0.309975 + 0.309975i
\(698\) 0 0
\(699\) 15124.1 + 3306.49i 0.818378 + 0.178917i
\(700\) 0 0
\(701\) 29885.3i 1.61020i 0.593138 + 0.805101i \(0.297889\pi\)
−0.593138 + 0.805101i \(0.702111\pi\)
\(702\) 0 0
\(703\) 3081.06 + 3081.06i 0.165298 + 0.165298i
\(704\) 0 0
\(705\) −1020.24 2975.32i −0.0545026 0.158946i
\(706\) 0 0
\(707\) −15555.5 15555.5i −0.827473 0.827473i
\(708\) 0 0
\(709\) 12115.0i 0.641734i 0.947124 + 0.320867i \(0.103974\pi\)
−0.947124 + 0.320867i \(0.896026\pi\)
\(710\) 0 0
\(711\) 14428.1 + 6625.31i 0.761033 + 0.349463i
\(712\) 0 0
\(713\) −4799.24 + 4799.24i −0.252080 + 0.252080i
\(714\) 0 0
\(715\) −361.695 + 1479.13i −0.0189183 + 0.0773657i
\(716\) 0 0
\(717\) 732.381 + 1142.21i 0.0381468 + 0.0594933i
\(718\) 0 0
\(719\) 6371.24 0.330469 0.165234 0.986254i \(-0.447162\pi\)
0.165234 + 0.986254i \(0.447162\pi\)
\(720\) 0 0
\(721\) −14495.2 −0.748722
\(722\) 0 0
\(723\) −16832.3 26251.5i −0.865839 1.35035i
\(724\) 0 0
\(725\) −2913.27 + 5600.64i −0.149236 + 0.286900i
\(726\) 0 0
\(727\) −15771.9 + 15771.9i −0.804604 + 0.804604i −0.983811 0.179207i \(-0.942647\pi\)
0.179207 + 0.983811i \(0.442647\pi\)
\(728\) 0 0
\(729\) 18919.9 5427.61i 0.961229 0.275751i
\(730\) 0 0
\(731\) 22663.2i 1.14669i
\(732\) 0 0
\(733\) −5626.05 5626.05i −0.283496 0.283496i 0.551005 0.834502i \(-0.314244\pi\)
−0.834502 + 0.551005i \(0.814244\pi\)
\(734\) 0 0
\(735\) 4286.16 8759.51i 0.215098 0.439591i
\(736\) 0 0
\(737\) 14712.8 + 14712.8i 0.735350 + 0.735350i
\(738\) 0 0
\(739\) 30340.1i 1.51026i 0.655577 + 0.755129i \(0.272426\pi\)
−0.655577 + 0.755129i \(0.727574\pi\)
\(740\) 0 0
\(741\) 386.282 + 84.4506i 0.0191504 + 0.00418674i
\(742\) 0 0
\(743\) 2368.77 2368.77i 0.116961 0.116961i −0.646204 0.763165i \(-0.723645\pi\)
0.763165 + 0.646204i \(0.223645\pi\)
\(744\) 0 0
\(745\) 34123.3 20713.9i 1.67810 1.01866i
\(746\) 0 0
\(747\) −2892.73 7805.16i −0.141686 0.382297i
\(748\) 0 0
\(749\) −21902.1 −1.06847
\(750\) 0 0
\(751\) −10606.2 −0.515346 −0.257673 0.966232i \(-0.582956\pi\)
−0.257673 + 0.966232i \(0.582956\pi\)
\(752\) 0 0
\(753\) 13317.6 8539.21i 0.644518 0.413262i
\(754\) 0 0
\(755\) 25681.8 15589.6i 1.23796 0.751477i
\(756\) 0 0
\(757\) −18470.4 + 18470.4i −0.886812 + 0.886812i −0.994215 0.107404i \(-0.965746\pi\)
0.107404 + 0.994215i \(0.465746\pi\)
\(758\) 0 0
\(759\) −2754.01 + 12597.0i −0.131705 + 0.602428i
\(760\) 0 0
\(761\) 13568.0i 0.646307i −0.946347 0.323153i \(-0.895257\pi\)
0.946347 0.323153i \(-0.104743\pi\)
\(762\) 0 0
\(763\) 11833.9 + 11833.9i 0.561488 + 0.561488i
\(764\) 0 0
\(765\) −17036.3 + 21490.3i −0.805161 + 1.01566i
\(766\) 0 0
\(767\) −1188.05 1188.05i −0.0559298 0.0559298i
\(768\) 0 0
\(769\) 11029.1i 0.517190i −0.965986 0.258595i \(-0.916741\pi\)
0.965986 0.258595i \(-0.0832594\pi\)
\(770\) 0 0
\(771\) 1485.23 6793.52i 0.0693764 0.317332i
\(772\) 0 0
\(773\) −7090.94 + 7090.94i −0.329940 + 0.329940i −0.852563 0.522624i \(-0.824953\pi\)
0.522624 + 0.852563i \(0.324953\pi\)
\(774\) 0 0
\(775\) 5385.76 10353.9i 0.249629 0.479902i
\(776\) 0 0
\(777\) 13224.3 8479.38i 0.610580 0.391501i
\(778\) 0 0
\(779\) −1693.60 −0.0778940
\(780\) 0 0
\(781\) 25052.3 1.14781
\(782\) 0 0
\(783\) 7016.53 986.533i 0.320243 0.0450266i
\(784\) 0 0
\(785\) 6799.67 27806.9i 0.309160 1.26430i
\(786\) 0 0
\(787\) 17915.0 17915.0i 0.811437 0.811437i −0.173412 0.984849i \(-0.555479\pi\)
0.984849 + 0.173412i \(0.0554793\pi\)
\(788\) 0 0
\(789\) −481.172 105.196i −0.0217112 0.00474660i
\(790\) 0 0
\(791\) 7133.90i 0.320673i
\(792\) 0 0
\(793\) 5.64218 + 5.64218i 0.000252661 + 0.000252661i
\(794\) 0 0
\(795\) 26778.6 9182.39i 1.19464 0.409643i
\(796\) 0 0
\(797\) 6043.79 + 6043.79i 0.268610 + 0.268610i 0.828540 0.559930i \(-0.189172\pi\)
−0.559930 + 0.828540i \(0.689172\pi\)
\(798\) 0 0
\(799\) 4918.65i 0.217784i
\(800\) 0 0
\(801\) −14331.9 + 31210.8i −0.632199 + 1.37675i
\(802\) 0 0
\(803\) −11882.3 + 11882.3i −0.522191 + 0.522191i
\(804\) 0 0
\(805\) 5581.21 + 9194.28i 0.244362 + 0.402554i
\(806\) 0 0
\(807\) 7455.35 + 11627.3i 0.325205 + 0.507186i
\(808\) 0 0
\(809\) 35063.4 1.52381 0.761905 0.647689i \(-0.224264\pi\)
0.761905 + 0.647689i \(0.224264\pi\)
\(810\) 0 0
\(811\) −24621.3 −1.06605 −0.533027 0.846098i \(-0.678946\pi\)
−0.533027 + 0.846098i \(0.678946\pi\)
\(812\) 0 0
\(813\) −408.570 637.200i −0.0176250 0.0274878i
\(814\) 0 0
\(815\) −41147.3 10061.8i −1.76850 0.432454i
\(816\) 0 0
\(817\) −3364.54 + 3364.54i −0.144076 + 0.144076i
\(818\) 0 0
\(819\) 594.890 1295.50i 0.0253811 0.0552729i
\(820\) 0 0
\(821\) 14268.3i 0.606538i −0.952905 0.303269i \(-0.901922\pi\)
0.952905 0.303269i \(-0.0980781\pi\)
\(822\) 0 0
\(823\) −13764.1 13764.1i −0.582972 0.582972i 0.352747 0.935719i \(-0.385248\pi\)
−0.935719 + 0.352747i \(0.885248\pi\)
\(824\) 0 0
\(825\) −2004.14 22082.2i −0.0845760 0.931882i
\(826\) 0 0
\(827\) 27442.5 + 27442.5i 1.15389 + 1.15389i 0.985765 + 0.168128i \(0.0537721\pi\)
0.168128 + 0.985765i \(0.446228\pi\)
\(828\) 0 0
\(829\) 12176.9i 0.510159i −0.966920 0.255080i \(-0.917898\pi\)
0.966920 0.255080i \(-0.0821016\pi\)
\(830\) 0 0
\(831\) −7714.23 1686.52i −0.322026 0.0704027i
\(832\) 0 0
\(833\) 10783.2 10783.2i 0.448519 0.448519i
\(834\) 0 0
\(835\) 2143.22 + 524.085i 0.0888255 + 0.0217206i
\(836\) 0 0
\(837\) −12971.5 + 1823.80i −0.535675 + 0.0753165i
\(838\) 0 0
\(839\) −13942.3 −0.573710 −0.286855 0.957974i \(-0.592610\pi\)
−0.286855 + 0.957974i \(0.592610\pi\)
\(840\) 0 0
\(841\) −21838.3 −0.895417
\(842\) 0 0
\(843\) −8837.14 + 5666.33i −0.361053 + 0.231505i
\(844\) 0 0
\(845\) 12653.7 + 20845.2i 0.515149 + 0.848637i
\(846\) 0 0
\(847\) −1549.96 + 1549.96i −0.0628776 + 0.0628776i
\(848\) 0 0
\(849\) −3767.30 + 17231.8i −0.152289 + 0.696579i
\(850\) 0 0
\(851\) 16606.6i 0.668937i
\(852\) 0 0
\(853\) −32654.2 32654.2i −1.31074 1.31074i −0.920871 0.389866i \(-0.872521\pi\)
−0.389866 0.920871i \(-0.627479\pi\)
\(854\) 0 0
\(855\) −5719.59 + 661.235i −0.228779 + 0.0264489i
\(856\) 0 0
\(857\) −10358.9 10358.9i −0.412898 0.412898i 0.469849 0.882747i \(-0.344308\pi\)
−0.882747 + 0.469849i \(0.844308\pi\)
\(858\) 0 0
\(859\) 14100.5i 0.560072i −0.959990 0.280036i \(-0.909654\pi\)
0.959990 0.280036i \(-0.0903464\pi\)
\(860\) 0 0
\(861\) −1304.10 + 5965.05i −0.0516187 + 0.236107i
\(862\) 0 0
\(863\) 16830.6 16830.6i 0.663872 0.663872i −0.292419 0.956290i \(-0.594460\pi\)
0.956290 + 0.292419i \(0.0944601\pi\)
\(864\) 0 0
\(865\) 3311.09 13540.6i 0.130151 0.532246i
\(866\) 0 0
\(867\) −14610.5 + 9368.17i −0.572316 + 0.366966i
\(868\) 0 0
\(869\) −20073.5 −0.783597
\(870\) 0 0
\(871\) −2431.71 −0.0945984
\(872\) 0 0
\(873\) −5733.92 15471.3i −0.222295 0.599797i
\(874\) 0 0
\(875\) −13911.0 12188.0i −0.537462 0.470892i
\(876\) 0 0
\(877\) 9832.57 9832.57i 0.378589 0.378589i −0.492004 0.870593i \(-0.663736\pi\)
0.870593 + 0.492004i \(0.163736\pi\)
\(878\) 0 0
\(879\) 18185.1 + 3975.70i 0.697802 + 0.152556i
\(880\) 0 0
\(881\) 41729.4i 1.59580i −0.602789 0.797900i \(-0.705944\pi\)
0.602789 0.797900i \(-0.294056\pi\)
\(882\) 0 0
\(883\) 11757.3 + 11757.3i 0.448090 + 0.448090i 0.894719 0.446629i \(-0.147376\pi\)
−0.446629 + 0.894719i \(0.647376\pi\)
\(884\) 0 0
\(885\) 21975.8 + 10753.1i 0.834699 + 0.408431i
\(886\) 0 0
\(887\) −24303.5 24303.5i −0.919989 0.919989i 0.0770388 0.997028i \(-0.475453\pi\)
−0.997028 + 0.0770388i \(0.975453\pi\)
\(888\) 0 0
\(889\) 8227.16i 0.310383i
\(890\) 0 0
\(891\) −18875.3 + 16218.8i −0.709702 + 0.609820i
\(892\) 0 0
\(893\) 730.214 730.214i 0.0273636 0.0273636i
\(894\) 0 0
\(895\) 24016.2 14578.6i 0.896953 0.544478i
\(896\) 0 0
\(897\) −813.418 1268.60i −0.0302779 0.0472210i
\(898\) 0 0
\(899\) −4715.44 −0.174937
\(900\) 0 0
\(901\) 44269.1 1.63687
\(902\) 0 0
\(903\) 9259.55 + 14441.1i 0.341239 + 0.532191i
\(904\) 0 0
\(905\) −2578.52 + 1565.24i −0.0947105 + 0.0574922i
\(906\) 0 0
\(907\) −1017.75 + 1017.75i −0.0372589 + 0.0372589i −0.725491 0.688232i \(-0.758387\pi\)
0.688232 + 0.725491i \(0.258387\pi\)
\(908\) 0 0
\(909\) −40787.3 18729.4i −1.48826 0.683404i
\(910\) 0 0
\(911\) 33165.2i 1.20616i −0.797681 0.603080i \(-0.793940\pi\)
0.797681 0.603080i \(-0.206060\pi\)
\(912\) 0 0
\(913\) 7441.88 + 7441.88i 0.269759 + 0.269759i
\(914\) 0 0
\(915\) −104.365 51.0675i −0.00377072 0.00184507i
\(916\) 0 0
\(917\) −13094.2 13094.2i −0.471546 0.471546i
\(918\) 0 0
\(919\) 2162.18i 0.0776103i −0.999247 0.0388051i \(-0.987645\pi\)
0.999247 0.0388051i \(-0.0123552\pi\)
\(920\) 0 0
\(921\) −22684.9 4959.46i −0.811609 0.177437i
\(922\) 0 0
\(923\) −2070.30 + 2070.30i −0.0738297 + 0.0738297i
\(924\) 0 0
\(925\) 8595.52 + 27231.6i 0.305534 + 0.967966i
\(926\) 0 0
\(927\) −27729.9 + 10277.2i −0.982493 + 0.364129i
\(928\) 0 0
\(929\) −17695.1 −0.624929 −0.312464 0.949930i \(-0.601154\pi\)
−0.312464 + 0.949930i \(0.601154\pi\)
\(930\) 0 0
\(931\) 3201.72 0.112709
\(932\) 0 0
\(933\) −31521.3 + 20211.3i −1.10607 + 0.709204i
\(934\) 0 0
\(935\) 8236.07 33681.0i 0.288073 1.17806i
\(936\) 0 0
\(937\) −30208.0 + 30208.0i −1.05320 + 1.05320i −0.0547017 + 0.998503i \(0.517421\pi\)
−0.998503 + 0.0547017i \(0.982579\pi\)
\(938\) 0 0
\(939\) −3184.96 + 14568.2i −0.110689 + 0.506300i
\(940\) 0 0
\(941\) 1499.59i 0.0519503i 0.999663 + 0.0259752i \(0.00826908\pi\)
−0.999663 + 0.0259752i \(0.991731\pi\)
\(942\) 0 0
\(943\) 4564.14 + 4564.14i 0.157613 + 0.157613i
\(944\) 0 0
\(945\) −2075.25 + 20654.2i −0.0714369 + 0.710986i
\(946\) 0 0
\(947\) −13763.8 13763.8i −0.472294 0.472294i 0.430362 0.902656i \(-0.358386\pi\)
−0.902656 + 0.430362i \(0.858386\pi\)
\(948\) 0 0
\(949\) 1963.89i 0.0671767i
\(950\) 0 0
\(951\) 1081.72 4947.87i 0.0368847 0.168713i
\(952\) 0 0
\(953\) 14570.7 14570.7i 0.495268 0.495268i −0.414693 0.909961i \(-0.636111\pi\)
0.909961 + 0.414693i \(0.136111\pi\)
\(954\) 0 0
\(955\) 14041.1 + 23130.8i 0.475768 + 0.783763i
\(956\) 0 0
\(957\) −7541.49 + 4835.57i −0.254735 + 0.163335i
\(958\) 0 0
\(959\) −20442.8 −0.688355
\(960\) 0 0
\(961\) −21073.6 −0.707380
\(962\) 0 0
\(963\) −41899.7 + 15528.8i −1.40208 + 0.519635i
\(964\) 0 0
\(965\) −30184.4 7381.04i −1.00691 0.246222i
\(966\) 0 0
\(967\) −28409.1 + 28409.1i −0.944752 + 0.944752i −0.998552 0.0538000i \(-0.982867\pi\)
0.0538000 + 0.998552i \(0.482867\pi\)
\(968\) 0 0
\(969\) −8795.95 1923.01i −0.291606 0.0637522i
\(970\) 0 0
\(971\) 18059.4i 0.596864i −0.954431 0.298432i \(-0.903536\pi\)
0.954431 0.298432i \(-0.0964637\pi\)
\(972\) 0 0
\(973\) 23379.9 + 23379.9i 0.770323 + 0.770323i
\(974\) 0 0
\(975\) 1990.47 + 1659.23i 0.0653807 + 0.0545005i
\(976\) 0 0
\(977\) −31166.3 31166.3i −1.02057 1.02057i −0.999784 0.0207872i \(-0.993383\pi\)
−0.0207872 0.999784i \(-0.506617\pi\)
\(978\) 0 0
\(979\) 43422.9i 1.41757i
\(980\) 0 0
\(981\) 31029.1 + 14248.5i 1.00987 + 0.463729i
\(982\) 0 0
\(983\) −13839.4 + 13839.4i −0.449042 + 0.449042i −0.895036 0.445994i \(-0.852850\pi\)
0.445994 + 0.895036i \(0.352850\pi\)
\(984\) 0 0
\(985\) 12787.8 + 3127.02i 0.413659 + 0.101153i
\(986\) 0 0
\(987\) −2009.62 3134.18i −0.0648095 0.101076i
\(988\) 0 0
\(989\) 18134.5 0.583056
\(990\) 0 0
\(991\) −17820.9 −0.571242 −0.285621 0.958343i \(-0.592200\pi\)
−0.285621 + 0.958343i \(0.592200\pi\)
\(992\) 0 0
\(993\) 23073.1 + 35984.5i 0.737363 + 1.14998i
\(994\) 0 0
\(995\) 8937.56 + 14723.4i 0.284764 + 0.469109i
\(996\) 0 0
\(997\) −36985.0 + 36985.0i −1.17485 + 1.17485i −0.193814 + 0.981038i \(0.562086\pi\)
−0.981038 + 0.193814i \(0.937914\pi\)
\(998\) 0 0
\(999\) 19286.8 25597.6i 0.610819 0.810684i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 240.4.v.c.113.3 8
3.2 odd 2 inner 240.4.v.c.113.4 8
4.3 odd 2 15.4.e.a.8.4 yes 8
5.2 odd 4 inner 240.4.v.c.17.4 8
12.11 even 2 15.4.e.a.8.1 yes 8
15.2 even 4 inner 240.4.v.c.17.3 8
20.3 even 4 75.4.e.c.32.4 8
20.7 even 4 15.4.e.a.2.1 8
20.19 odd 2 75.4.e.c.68.1 8
60.23 odd 4 75.4.e.c.32.1 8
60.47 odd 4 15.4.e.a.2.4 yes 8
60.59 even 2 75.4.e.c.68.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.4.e.a.2.1 8 20.7 even 4
15.4.e.a.2.4 yes 8 60.47 odd 4
15.4.e.a.8.1 yes 8 12.11 even 2
15.4.e.a.8.4 yes 8 4.3 odd 2
75.4.e.c.32.1 8 60.23 odd 4
75.4.e.c.32.4 8 20.3 even 4
75.4.e.c.68.1 8 20.19 odd 2
75.4.e.c.68.4 8 60.59 even 2
240.4.v.c.17.3 8 15.2 even 4 inner
240.4.v.c.17.4 8 5.2 odd 4 inner
240.4.v.c.113.3 8 1.1 even 1 trivial
240.4.v.c.113.4 8 3.2 odd 2 inner