Defining parameters
Level: | \( N \) | \(=\) | \( 7488 = 2^{6} \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 7488.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 82 \) | ||
Sturm bound: | \(2688\) | ||
Trace bound: | \(29\) | ||
Distinguishing \(T_p\): | \(5\), \(7\), \(11\), \(17\), \(19\), \(29\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(7488))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1392 | 120 | 1272 |
Cusp forms | 1297 | 120 | 1177 |
Eisenstein series | 95 | 0 | 95 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(168\) | \(10\) | \(158\) | \(157\) | \(10\) | \(147\) | \(11\) | \(0\) | \(11\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(176\) | \(14\) | \(162\) | \(164\) | \(14\) | \(150\) | \(12\) | \(0\) | \(12\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(180\) | \(19\) | \(161\) | \(168\) | \(19\) | \(149\) | \(12\) | \(0\) | \(12\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(172\) | \(17\) | \(155\) | \(160\) | \(17\) | \(143\) | \(12\) | \(0\) | \(12\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(180\) | \(14\) | \(166\) | \(168\) | \(14\) | \(154\) | \(12\) | \(0\) | \(12\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(172\) | \(10\) | \(162\) | \(160\) | \(10\) | \(150\) | \(12\) | \(0\) | \(12\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(168\) | \(17\) | \(151\) | \(156\) | \(17\) | \(139\) | \(12\) | \(0\) | \(12\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(176\) | \(19\) | \(157\) | \(164\) | \(19\) | \(145\) | \(12\) | \(0\) | \(12\) | |||
Plus space | \(+\) | \(680\) | \(54\) | \(626\) | \(633\) | \(54\) | \(579\) | \(47\) | \(0\) | \(47\) | |||||
Minus space | \(-\) | \(712\) | \(66\) | \(646\) | \(664\) | \(66\) | \(598\) | \(48\) | \(0\) | \(48\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(7488))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(7488))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(7488)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 14}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 15}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(96))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(117))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(144))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(156))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(192))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(208))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(234))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(288))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(312))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(416))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(468))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(576))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(624))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(832))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(936))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1248))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1872))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2496))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3744))\)\(^{\oplus 2}\)