# Properties

 Label 7488.2.a.ct Level $7488$ Weight $2$ Character orbit 7488.a Self dual yes Analytic conductor $59.792$ Analytic rank $0$ Dimension $2$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [7488,2,Mod(1,7488)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(7488, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("7488.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$7488 = 2^{6} \cdot 3^{2} \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 7488.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$59.7919810335$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{5})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - x - 1$$ x^2 - x - 1 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 1248) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \sqrt{5}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + (\beta + 1) q^{5} + (\beta + 1) q^{7}+O(q^{10})$$ q + (b + 1) * q^5 + (b + 1) * q^7 $$q + (\beta + 1) q^{5} + (\beta + 1) q^{7} + 2 q^{11} + q^{13} + 2 \beta q^{17} + (\beta - 3) q^{19} + ( - 2 \beta - 2) q^{23} + (2 \beta + 1) q^{25} - 2 \beta q^{29} + ( - 3 \beta + 1) q^{31} + (2 \beta + 6) q^{35} + (2 \beta + 4) q^{37} + (\beta + 1) q^{41} + (2 \beta - 2) q^{43} + (4 \beta + 2) q^{47} + (2 \beta - 1) q^{49} + ( - 2 \beta + 4) q^{53} + (2 \beta + 2) q^{55} + ( - 2 \beta + 4) q^{59} + ( - 2 \beta + 8) q^{61} + (\beta + 1) q^{65} + ( - \beta - 9) q^{67} + 2 \beta q^{71} + ( - 2 \beta - 4) q^{73} + (2 \beta + 2) q^{77} + 4 \beta q^{79} + (2 \beta + 12) q^{83} + (2 \beta + 10) q^{85} + ( - 5 \beta - 1) q^{89} + (\beta + 1) q^{91} + ( - 2 \beta + 2) q^{95} + 2 \beta q^{97} +O(q^{100})$$ q + (b + 1) * q^5 + (b + 1) * q^7 + 2 * q^11 + q^13 + 2*b * q^17 + (b - 3) * q^19 + (-2*b - 2) * q^23 + (2*b + 1) * q^25 - 2*b * q^29 + (-3*b + 1) * q^31 + (2*b + 6) * q^35 + (2*b + 4) * q^37 + (b + 1) * q^41 + (2*b - 2) * q^43 + (4*b + 2) * q^47 + (2*b - 1) * q^49 + (-2*b + 4) * q^53 + (2*b + 2) * q^55 + (-2*b + 4) * q^59 + (-2*b + 8) * q^61 + (b + 1) * q^65 + (-b - 9) * q^67 + 2*b * q^71 + (-2*b - 4) * q^73 + (2*b + 2) * q^77 + 4*b * q^79 + (2*b + 12) * q^83 + (2*b + 10) * q^85 + (-5*b - 1) * q^89 + (b + 1) * q^91 + (-2*b + 2) * q^95 + 2*b * q^97 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 2 q^{5} + 2 q^{7}+O(q^{10})$$ 2 * q + 2 * q^5 + 2 * q^7 $$2 q + 2 q^{5} + 2 q^{7} + 4 q^{11} + 2 q^{13} - 6 q^{19} - 4 q^{23} + 2 q^{25} + 2 q^{31} + 12 q^{35} + 8 q^{37} + 2 q^{41} - 4 q^{43} + 4 q^{47} - 2 q^{49} + 8 q^{53} + 4 q^{55} + 8 q^{59} + 16 q^{61} + 2 q^{65} - 18 q^{67} - 8 q^{73} + 4 q^{77} + 24 q^{83} + 20 q^{85} - 2 q^{89} + 2 q^{91} + 4 q^{95}+O(q^{100})$$ 2 * q + 2 * q^5 + 2 * q^7 + 4 * q^11 + 2 * q^13 - 6 * q^19 - 4 * q^23 + 2 * q^25 + 2 * q^31 + 12 * q^35 + 8 * q^37 + 2 * q^41 - 4 * q^43 + 4 * q^47 - 2 * q^49 + 8 * q^53 + 4 * q^55 + 8 * q^59 + 16 * q^61 + 2 * q^65 - 18 * q^67 - 8 * q^73 + 4 * q^77 + 24 * q^83 + 20 * q^85 - 2 * q^89 + 2 * q^91 + 4 * q^95

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −0.618034 1.61803
0 0 0 −1.23607 0 −1.23607 0 0 0
1.2 0 0 0 3.23607 0 3.23607 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$13$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7488.2.a.ct 2
3.b odd 2 1 2496.2.a.be 2
4.b odd 2 1 7488.2.a.cs 2
8.b even 2 1 3744.2.a.s 2
8.d odd 2 1 3744.2.a.r 2
12.b even 2 1 2496.2.a.bh 2
24.f even 2 1 1248.2.a.l 2
24.h odd 2 1 1248.2.a.n yes 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1248.2.a.l 2 24.f even 2 1
1248.2.a.n yes 2 24.h odd 2 1
2496.2.a.be 2 3.b odd 2 1
2496.2.a.bh 2 12.b even 2 1
3744.2.a.r 2 8.d odd 2 1
3744.2.a.s 2 8.b even 2 1
7488.2.a.cs 2 4.b odd 2 1
7488.2.a.ct 2 1.a even 1 1 trivial

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(7488))$$:

 $$T_{5}^{2} - 2T_{5} - 4$$ T5^2 - 2*T5 - 4 $$T_{7}^{2} - 2T_{7} - 4$$ T7^2 - 2*T7 - 4 $$T_{11} - 2$$ T11 - 2 $$T_{17}^{2} - 20$$ T17^2 - 20 $$T_{19}^{2} + 6T_{19} + 4$$ T19^2 + 6*T19 + 4 $$T_{29}^{2} - 20$$ T29^2 - 20

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$T^{2} - 2T - 4$$
$7$ $$T^{2} - 2T - 4$$
$11$ $$(T - 2)^{2}$$
$13$ $$(T - 1)^{2}$$
$17$ $$T^{2} - 20$$
$19$ $$T^{2} + 6T + 4$$
$23$ $$T^{2} + 4T - 16$$
$29$ $$T^{2} - 20$$
$31$ $$T^{2} - 2T - 44$$
$37$ $$T^{2} - 8T - 4$$
$41$ $$T^{2} - 2T - 4$$
$43$ $$T^{2} + 4T - 16$$
$47$ $$T^{2} - 4T - 76$$
$53$ $$T^{2} - 8T - 4$$
$59$ $$T^{2} - 8T - 4$$
$61$ $$T^{2} - 16T + 44$$
$67$ $$T^{2} + 18T + 76$$
$71$ $$T^{2} - 20$$
$73$ $$T^{2} + 8T - 4$$
$79$ $$T^{2} - 80$$
$83$ $$T^{2} - 24T + 124$$
$89$ $$T^{2} + 2T - 124$$
$97$ $$T^{2} - 20$$