# Properties

 Label 26.2.a.b Level $26$ Weight $2$ Character orbit 26.a Self dual yes Analytic conductor $0.208$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [26,2,Mod(1,26)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(26, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("26.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$26 = 2 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 26.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$0.207611045255$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + q^{2} - 3 q^{3} + q^{4} - q^{5} - 3 q^{6} + q^{7} + q^{8} + 6 q^{9}+O(q^{10})$$ q + q^2 - 3 * q^3 + q^4 - q^5 - 3 * q^6 + q^7 + q^8 + 6 * q^9 $$q + q^{2} - 3 q^{3} + q^{4} - q^{5} - 3 q^{6} + q^{7} + q^{8} + 6 q^{9} - q^{10} - 2 q^{11} - 3 q^{12} - q^{13} + q^{14} + 3 q^{15} + q^{16} - 3 q^{17} + 6 q^{18} + 6 q^{19} - q^{20} - 3 q^{21} - 2 q^{22} - 4 q^{23} - 3 q^{24} - 4 q^{25} - q^{26} - 9 q^{27} + q^{28} + 2 q^{29} + 3 q^{30} + 4 q^{31} + q^{32} + 6 q^{33} - 3 q^{34} - q^{35} + 6 q^{36} + 3 q^{37} + 6 q^{38} + 3 q^{39} - q^{40} - 3 q^{42} - 5 q^{43} - 2 q^{44} - 6 q^{45} - 4 q^{46} + 13 q^{47} - 3 q^{48} - 6 q^{49} - 4 q^{50} + 9 q^{51} - q^{52} + 12 q^{53} - 9 q^{54} + 2 q^{55} + q^{56} - 18 q^{57} + 2 q^{58} - 10 q^{59} + 3 q^{60} - 8 q^{61} + 4 q^{62} + 6 q^{63} + q^{64} + q^{65} + 6 q^{66} - 2 q^{67} - 3 q^{68} + 12 q^{69} - q^{70} - 5 q^{71} + 6 q^{72} - 10 q^{73} + 3 q^{74} + 12 q^{75} + 6 q^{76} - 2 q^{77} + 3 q^{78} - 4 q^{79} - q^{80} + 9 q^{81} - 3 q^{84} + 3 q^{85} - 5 q^{86} - 6 q^{87} - 2 q^{88} + 6 q^{89} - 6 q^{90} - q^{91} - 4 q^{92} - 12 q^{93} + 13 q^{94} - 6 q^{95} - 3 q^{96} + 14 q^{97} - 6 q^{98} - 12 q^{99}+O(q^{100})$$ q + q^2 - 3 * q^3 + q^4 - q^5 - 3 * q^6 + q^7 + q^8 + 6 * q^9 - q^10 - 2 * q^11 - 3 * q^12 - q^13 + q^14 + 3 * q^15 + q^16 - 3 * q^17 + 6 * q^18 + 6 * q^19 - q^20 - 3 * q^21 - 2 * q^22 - 4 * q^23 - 3 * q^24 - 4 * q^25 - q^26 - 9 * q^27 + q^28 + 2 * q^29 + 3 * q^30 + 4 * q^31 + q^32 + 6 * q^33 - 3 * q^34 - q^35 + 6 * q^36 + 3 * q^37 + 6 * q^38 + 3 * q^39 - q^40 - 3 * q^42 - 5 * q^43 - 2 * q^44 - 6 * q^45 - 4 * q^46 + 13 * q^47 - 3 * q^48 - 6 * q^49 - 4 * q^50 + 9 * q^51 - q^52 + 12 * q^53 - 9 * q^54 + 2 * q^55 + q^56 - 18 * q^57 + 2 * q^58 - 10 * q^59 + 3 * q^60 - 8 * q^61 + 4 * q^62 + 6 * q^63 + q^64 + q^65 + 6 * q^66 - 2 * q^67 - 3 * q^68 + 12 * q^69 - q^70 - 5 * q^71 + 6 * q^72 - 10 * q^73 + 3 * q^74 + 12 * q^75 + 6 * q^76 - 2 * q^77 + 3 * q^78 - 4 * q^79 - q^80 + 9 * q^81 - 3 * q^84 + 3 * q^85 - 5 * q^86 - 6 * q^87 - 2 * q^88 + 6 * q^89 - 6 * q^90 - q^91 - 4 * q^92 - 12 * q^93 + 13 * q^94 - 6 * q^95 - 3 * q^96 + 14 * q^97 - 6 * q^98 - 12 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
1.00000 −3.00000 1.00000 −1.00000 −3.00000 1.00000 1.00000 6.00000 −1.00000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$13$$ $$+1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 26.2.a.b 1
3.b odd 2 1 234.2.a.b 1
4.b odd 2 1 208.2.a.d 1
5.b even 2 1 650.2.a.g 1
5.c odd 4 2 650.2.b.a 2
7.b odd 2 1 1274.2.a.o 1
7.c even 3 2 1274.2.f.l 2
7.d odd 6 2 1274.2.f.a 2
8.b even 2 1 832.2.a.j 1
8.d odd 2 1 832.2.a.a 1
9.c even 3 2 2106.2.e.h 2
9.d odd 6 2 2106.2.e.t 2
11.b odd 2 1 3146.2.a.a 1
12.b even 2 1 1872.2.a.m 1
13.b even 2 1 338.2.a.a 1
13.c even 3 2 338.2.c.c 2
13.d odd 4 2 338.2.b.a 2
13.e even 6 2 338.2.c.g 2
13.f odd 12 4 338.2.e.d 4
15.d odd 2 1 5850.2.a.bn 1
15.e even 4 2 5850.2.e.v 2
16.e even 4 2 3328.2.b.g 2
16.f odd 4 2 3328.2.b.k 2
17.b even 2 1 7514.2.a.i 1
19.b odd 2 1 9386.2.a.f 1
20.d odd 2 1 5200.2.a.c 1
24.f even 2 1 7488.2.a.v 1
24.h odd 2 1 7488.2.a.w 1
39.d odd 2 1 3042.2.a.l 1
39.f even 4 2 3042.2.b.f 2
52.b odd 2 1 2704.2.a.n 1
52.f even 4 2 2704.2.f.j 2
65.d even 2 1 8450.2.a.y 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.2.a.b 1 1.a even 1 1 trivial
208.2.a.d 1 4.b odd 2 1
234.2.a.b 1 3.b odd 2 1
338.2.a.a 1 13.b even 2 1
338.2.b.a 2 13.d odd 4 2
338.2.c.c 2 13.c even 3 2
338.2.c.g 2 13.e even 6 2
338.2.e.d 4 13.f odd 12 4
650.2.a.g 1 5.b even 2 1
650.2.b.a 2 5.c odd 4 2
832.2.a.a 1 8.d odd 2 1
832.2.a.j 1 8.b even 2 1
1274.2.a.o 1 7.b odd 2 1
1274.2.f.a 2 7.d odd 6 2
1274.2.f.l 2 7.c even 3 2
1872.2.a.m 1 12.b even 2 1
2106.2.e.h 2 9.c even 3 2
2106.2.e.t 2 9.d odd 6 2
2704.2.a.n 1 52.b odd 2 1
2704.2.f.j 2 52.f even 4 2
3042.2.a.l 1 39.d odd 2 1
3042.2.b.f 2 39.f even 4 2
3146.2.a.a 1 11.b odd 2 1
3328.2.b.g 2 16.e even 4 2
3328.2.b.k 2 16.f odd 4 2
5200.2.a.c 1 20.d odd 2 1
5850.2.a.bn 1 15.d odd 2 1
5850.2.e.v 2 15.e even 4 2
7488.2.a.v 1 24.f even 2 1
7488.2.a.w 1 24.h odd 2 1
7514.2.a.i 1 17.b even 2 1
8450.2.a.y 1 65.d even 2 1
9386.2.a.f 1 19.b odd 2 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{3} + 3$$ acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(26))$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T - 1$$
$3$ $$T + 3$$
$5$ $$T + 1$$
$7$ $$T - 1$$
$11$ $$T + 2$$
$13$ $$T + 1$$
$17$ $$T + 3$$
$19$ $$T - 6$$
$23$ $$T + 4$$
$29$ $$T - 2$$
$31$ $$T - 4$$
$37$ $$T - 3$$
$41$ $$T$$
$43$ $$T + 5$$
$47$ $$T - 13$$
$53$ $$T - 12$$
$59$ $$T + 10$$
$61$ $$T + 8$$
$67$ $$T + 2$$
$71$ $$T + 5$$
$73$ $$T + 10$$
$79$ $$T + 4$$
$83$ $$T$$
$89$ $$T - 6$$
$97$ $$T - 14$$