Properties

Label 26.2.a.b
Level $26$
Weight $2$
Character orbit 26.a
Self dual yes
Analytic conductor $0.208$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 26 = 2 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 26.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(0.207611045255\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} - 3 q^{3} + q^{4} - q^{5} - 3 q^{6} + q^{7} + q^{8} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} - 3 q^{3} + q^{4} - q^{5} - 3 q^{6} + q^{7} + q^{8} + 6 q^{9} - q^{10} - 2 q^{11} - 3 q^{12} - q^{13} + q^{14} + 3 q^{15} + q^{16} - 3 q^{17} + 6 q^{18} + 6 q^{19} - q^{20} - 3 q^{21} - 2 q^{22} - 4 q^{23} - 3 q^{24} - 4 q^{25} - q^{26} - 9 q^{27} + q^{28} + 2 q^{29} + 3 q^{30} + 4 q^{31} + q^{32} + 6 q^{33} - 3 q^{34} - q^{35} + 6 q^{36} + 3 q^{37} + 6 q^{38} + 3 q^{39} - q^{40} - 3 q^{42} - 5 q^{43} - 2 q^{44} - 6 q^{45} - 4 q^{46} + 13 q^{47} - 3 q^{48} - 6 q^{49} - 4 q^{50} + 9 q^{51} - q^{52} + 12 q^{53} - 9 q^{54} + 2 q^{55} + q^{56} - 18 q^{57} + 2 q^{58} - 10 q^{59} + 3 q^{60} - 8 q^{61} + 4 q^{62} + 6 q^{63} + q^{64} + q^{65} + 6 q^{66} - 2 q^{67} - 3 q^{68} + 12 q^{69} - q^{70} - 5 q^{71} + 6 q^{72} - 10 q^{73} + 3 q^{74} + 12 q^{75} + 6 q^{76} - 2 q^{77} + 3 q^{78} - 4 q^{79} - q^{80} + 9 q^{81} - 3 q^{84} + 3 q^{85} - 5 q^{86} - 6 q^{87} - 2 q^{88} + 6 q^{89} - 6 q^{90} - q^{91} - 4 q^{92} - 12 q^{93} + 13 q^{94} - 6 q^{95} - 3 q^{96} + 14 q^{97} - 6 q^{98} - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 −3.00000 1.00000 −1.00000 −3.00000 1.00000 1.00000 6.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(13\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 26.2.a.b 1
3.b odd 2 1 234.2.a.b 1
4.b odd 2 1 208.2.a.d 1
5.b even 2 1 650.2.a.g 1
5.c odd 4 2 650.2.b.a 2
7.b odd 2 1 1274.2.a.o 1
7.c even 3 2 1274.2.f.l 2
7.d odd 6 2 1274.2.f.a 2
8.b even 2 1 832.2.a.j 1
8.d odd 2 1 832.2.a.a 1
9.c even 3 2 2106.2.e.h 2
9.d odd 6 2 2106.2.e.t 2
11.b odd 2 1 3146.2.a.a 1
12.b even 2 1 1872.2.a.m 1
13.b even 2 1 338.2.a.a 1
13.c even 3 2 338.2.c.c 2
13.d odd 4 2 338.2.b.a 2
13.e even 6 2 338.2.c.g 2
13.f odd 12 4 338.2.e.d 4
15.d odd 2 1 5850.2.a.bn 1
15.e even 4 2 5850.2.e.v 2
16.e even 4 2 3328.2.b.g 2
16.f odd 4 2 3328.2.b.k 2
17.b even 2 1 7514.2.a.i 1
19.b odd 2 1 9386.2.a.f 1
20.d odd 2 1 5200.2.a.c 1
24.f even 2 1 7488.2.a.v 1
24.h odd 2 1 7488.2.a.w 1
39.d odd 2 1 3042.2.a.l 1
39.f even 4 2 3042.2.b.f 2
52.b odd 2 1 2704.2.a.n 1
52.f even 4 2 2704.2.f.j 2
65.d even 2 1 8450.2.a.y 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.2.a.b 1 1.a even 1 1 trivial
208.2.a.d 1 4.b odd 2 1
234.2.a.b 1 3.b odd 2 1
338.2.a.a 1 13.b even 2 1
338.2.b.a 2 13.d odd 4 2
338.2.c.c 2 13.c even 3 2
338.2.c.g 2 13.e even 6 2
338.2.e.d 4 13.f odd 12 4
650.2.a.g 1 5.b even 2 1
650.2.b.a 2 5.c odd 4 2
832.2.a.a 1 8.d odd 2 1
832.2.a.j 1 8.b even 2 1
1274.2.a.o 1 7.b odd 2 1
1274.2.f.a 2 7.d odd 6 2
1274.2.f.l 2 7.c even 3 2
1872.2.a.m 1 12.b even 2 1
2106.2.e.h 2 9.c even 3 2
2106.2.e.t 2 9.d odd 6 2
2704.2.a.n 1 52.b odd 2 1
2704.2.f.j 2 52.f even 4 2
3042.2.a.l 1 39.d odd 2 1
3042.2.b.f 2 39.f even 4 2
3146.2.a.a 1 11.b odd 2 1
3328.2.b.g 2 16.e even 4 2
3328.2.b.k 2 16.f odd 4 2
5200.2.a.c 1 20.d odd 2 1
5850.2.a.bn 1 15.d odd 2 1
5850.2.e.v 2 15.e even 4 2
7488.2.a.v 1 24.f even 2 1
7488.2.a.w 1 24.h odd 2 1
7514.2.a.i 1 17.b even 2 1
8450.2.a.y 1 65.d even 2 1
9386.2.a.f 1 19.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} + 3 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(26))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T + 3 \) Copy content Toggle raw display
$5$ \( T + 1 \) Copy content Toggle raw display
$7$ \( T - 1 \) Copy content Toggle raw display
$11$ \( T + 2 \) Copy content Toggle raw display
$13$ \( T + 1 \) Copy content Toggle raw display
$17$ \( T + 3 \) Copy content Toggle raw display
$19$ \( T - 6 \) Copy content Toggle raw display
$23$ \( T + 4 \) Copy content Toggle raw display
$29$ \( T - 2 \) Copy content Toggle raw display
$31$ \( T - 4 \) Copy content Toggle raw display
$37$ \( T - 3 \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T + 5 \) Copy content Toggle raw display
$47$ \( T - 13 \) Copy content Toggle raw display
$53$ \( T - 12 \) Copy content Toggle raw display
$59$ \( T + 10 \) Copy content Toggle raw display
$61$ \( T + 8 \) Copy content Toggle raw display
$67$ \( T + 2 \) Copy content Toggle raw display
$71$ \( T + 5 \) Copy content Toggle raw display
$73$ \( T + 10 \) Copy content Toggle raw display
$79$ \( T + 4 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T - 6 \) Copy content Toggle raw display
$97$ \( T - 14 \) Copy content Toggle raw display
show more
show less