Properties

Label 740.2.k.b.339.1
Level $740$
Weight $2$
Character 740.339
Analytic conductor $5.909$
Analytic rank $0$
Dimension $2$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [740,2,Mod(179,740)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(740, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("740.179"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 740 = 2^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 740.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.90892974957\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 339.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 740.339
Dual form 740.2.k.b.179.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.00000i) q^{2} +2.00000i q^{4} +(2.00000 - 1.00000i) q^{5} +(-2.00000 + 2.00000i) q^{8} +3.00000 q^{9} +(3.00000 + 1.00000i) q^{10} +(5.00000 - 5.00000i) q^{13} -4.00000 q^{16} +(-3.00000 + 3.00000i) q^{17} +(3.00000 + 3.00000i) q^{18} +(2.00000 + 4.00000i) q^{20} +(3.00000 - 4.00000i) q^{25} +10.0000 q^{26} +(-7.00000 + 7.00000i) q^{29} +(-4.00000 - 4.00000i) q^{32} -6.00000 q^{34} +6.00000i q^{36} +(6.00000 + 1.00000i) q^{37} +(-2.00000 + 6.00000i) q^{40} +10.0000i q^{41} +(6.00000 - 3.00000i) q^{45} -7.00000 q^{49} +(7.00000 - 1.00000i) q^{50} +(10.0000 + 10.0000i) q^{52} -14.0000i q^{53} -14.0000 q^{58} +(-1.00000 + 1.00000i) q^{61} -8.00000i q^{64} +(5.00000 - 15.0000i) q^{65} +(-6.00000 - 6.00000i) q^{68} +(-6.00000 + 6.00000i) q^{72} -16.0000 q^{73} +(5.00000 + 7.00000i) q^{74} +(-8.00000 + 4.00000i) q^{80} +9.00000 q^{81} +(-10.0000 + 10.0000i) q^{82} +(-3.00000 + 9.00000i) q^{85} +(-3.00000 + 3.00000i) q^{89} +(9.00000 + 3.00000i) q^{90} +(5.00000 - 5.00000i) q^{97} +(-7.00000 - 7.00000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 4 q^{5} - 4 q^{8} + 6 q^{9} + 6 q^{10} + 10 q^{13} - 8 q^{16} - 6 q^{17} + 6 q^{18} + 4 q^{20} + 6 q^{25} + 20 q^{26} - 14 q^{29} - 8 q^{32} - 12 q^{34} + 12 q^{37} - 4 q^{40} + 12 q^{45}+ \cdots - 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/740\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\) \(371\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.00000i 0.707107 + 0.707107i
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) 2.00000i 1.00000i
\(5\) 2.00000 1.00000i 0.894427 0.447214i
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) −2.00000 + 2.00000i −0.707107 + 0.707107i
\(9\) 3.00000 1.00000
\(10\) 3.00000 + 1.00000i 0.948683 + 0.316228i
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 5.00000 5.00000i 1.38675 1.38675i 0.554700 0.832050i \(-0.312833\pi\)
0.832050 0.554700i \(-0.187167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) −3.00000 + 3.00000i −0.727607 + 0.727607i −0.970143 0.242536i \(-0.922021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 3.00000 + 3.00000i 0.707107 + 0.707107i
\(19\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(20\) 2.00000 + 4.00000i 0.447214 + 0.894427i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(24\) 0 0
\(25\) 3.00000 4.00000i 0.600000 0.800000i
\(26\) 10.0000 1.96116
\(27\) 0 0
\(28\) 0 0
\(29\) −7.00000 + 7.00000i −1.29987 + 1.29987i −0.371391 + 0.928477i \(0.621119\pi\)
−0.928477 + 0.371391i \(0.878881\pi\)
\(30\) 0 0
\(31\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(32\) −4.00000 4.00000i −0.707107 0.707107i
\(33\) 0 0
\(34\) −6.00000 −1.02899
\(35\) 0 0
\(36\) 6.00000i 1.00000i
\(37\) 6.00000 + 1.00000i 0.986394 + 0.164399i
\(38\) 0 0
\(39\) 0 0
\(40\) −2.00000 + 6.00000i −0.316228 + 0.948683i
\(41\) 10.0000i 1.56174i 0.624695 + 0.780869i \(0.285223\pi\)
−0.624695 + 0.780869i \(0.714777\pi\)
\(42\) 0 0
\(43\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(44\) 0 0
\(45\) 6.00000 3.00000i 0.894427 0.447214i
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 7.00000 1.00000i 0.989949 0.141421i
\(51\) 0 0
\(52\) 10.0000 + 10.0000i 1.38675 + 1.38675i
\(53\) 14.0000i 1.92305i −0.274721 0.961524i \(-0.588586\pi\)
0.274721 0.961524i \(-0.411414\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −14.0000 −1.83829
\(59\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(60\) 0 0
\(61\) −1.00000 + 1.00000i −0.128037 + 0.128037i −0.768221 0.640184i \(-0.778858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) 5.00000 15.0000i 0.620174 1.86052i
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) −6.00000 6.00000i −0.727607 0.727607i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −6.00000 + 6.00000i −0.707107 + 0.707107i
\(73\) −16.0000 −1.87266 −0.936329 0.351123i \(-0.885800\pi\)
−0.936329 + 0.351123i \(0.885800\pi\)
\(74\) 5.00000 + 7.00000i 0.581238 + 0.813733i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(80\) −8.00000 + 4.00000i −0.894427 + 0.447214i
\(81\) 9.00000 1.00000
\(82\) −10.0000 + 10.0000i −1.10432 + 1.10432i
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) −3.00000 + 9.00000i −0.325396 + 0.976187i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −3.00000 + 3.00000i −0.317999 + 0.317999i −0.847998 0.529999i \(-0.822192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 9.00000 + 3.00000i 0.948683 + 0.316228i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 5.00000 5.00000i 0.507673 0.507673i −0.406138 0.913812i \(-0.633125\pi\)
0.913812 + 0.406138i \(0.133125\pi\)
\(98\) −7.00000 7.00000i −0.707107 0.707107i
\(99\) 0 0
\(100\) 8.00000 + 6.00000i 0.800000 + 0.600000i
\(101\) 2.00000i 0.199007i −0.995037 0.0995037i \(-0.968274\pi\)
0.995037 0.0995037i \(-0.0317255\pi\)
\(102\) 0 0
\(103\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(104\) 20.0000i 1.96116i
\(105\) 0 0
\(106\) 14.0000 14.0000i 1.35980 1.35980i
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) −13.0000 13.0000i −1.24517 1.24517i −0.957826 0.287348i \(-0.907226\pi\)
−0.287348 0.957826i \(-0.592774\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.00000 + 1.00000i 0.0940721 + 0.0940721i 0.752577 0.658505i \(-0.228811\pi\)
−0.658505 + 0.752577i \(0.728811\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −14.0000 14.0000i −1.29987 1.29987i
\(117\) 15.0000 15.0000i 1.38675 1.38675i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) −2.00000 −0.181071
\(123\) 0 0
\(124\) 0 0
\(125\) 2.00000 11.0000i 0.178885 0.983870i
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 8.00000 8.00000i 0.707107 0.707107i
\(129\) 0 0
\(130\) 20.0000 10.0000i 1.75412 0.877058i
\(131\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 12.0000i 1.02899i
\(137\) 22.0000i 1.87959i −0.341743 0.939793i \(-0.611017\pi\)
0.341743 0.939793i \(-0.388983\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −12.0000 −1.00000
\(145\) −7.00000 + 21.0000i −0.581318 + 1.74396i
\(146\) −16.0000 16.0000i −1.32417 1.32417i
\(147\) 0 0
\(148\) −2.00000 + 12.0000i −0.164399 + 0.986394i
\(149\) 14.0000 1.14692 0.573462 0.819232i \(-0.305600\pi\)
0.573462 + 0.819232i \(0.305600\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) −9.00000 + 9.00000i −0.727607 + 0.727607i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 12.0000i 0.957704i 0.877896 + 0.478852i \(0.158947\pi\)
−0.877896 + 0.478852i \(0.841053\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −12.0000 4.00000i −0.948683 0.316228i
\(161\) 0 0
\(162\) 9.00000 + 9.00000i 0.707107 + 0.707107i
\(163\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(164\) −20.0000 −1.56174
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(168\) 0 0
\(169\) 37.0000i 2.84615i
\(170\) −12.0000 + 6.00000i −0.920358 + 0.460179i
\(171\) 0 0
\(172\) 0 0
\(173\) −26.0000 −1.97674 −0.988372 0.152057i \(-0.951410\pi\)
−0.988372 + 0.152057i \(0.951410\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) −6.00000 −0.449719
\(179\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(180\) 6.00000 + 12.0000i 0.447214 + 0.894427i
\(181\) 20.0000 1.48659 0.743294 0.668965i \(-0.233262\pi\)
0.743294 + 0.668965i \(0.233262\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 13.0000 4.00000i 0.955779 0.294086i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(192\) 0 0
\(193\) 19.0000 19.0000i 1.36765 1.36765i 0.503871 0.863779i \(-0.331909\pi\)
0.863779 0.503871i \(-0.168091\pi\)
\(194\) 10.0000 0.717958
\(195\) 0 0
\(196\) 14.0000i 1.00000i
\(197\) 28.0000i 1.99492i 0.0712470 + 0.997459i \(0.477302\pi\)
−0.0712470 + 0.997459i \(0.522698\pi\)
\(198\) 0 0
\(199\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(200\) 2.00000 + 14.0000i 0.141421 + 0.989949i
\(201\) 0 0
\(202\) 2.00000 2.00000i 0.140720 0.140720i
\(203\) 0 0
\(204\) 0 0
\(205\) 10.0000 + 20.0000i 0.698430 + 1.39686i
\(206\) 0 0
\(207\) 0 0
\(208\) −20.0000 + 20.0000i −1.38675 + 1.38675i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 28.0000 1.92305
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 26.0000i 1.76094i
\(219\) 0 0
\(220\) 0 0
\(221\) 30.0000i 2.01802i
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 9.00000 12.0000i 0.600000 0.800000i
\(226\) 2.00000i 0.133038i
\(227\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(228\) 0 0
\(229\) −30.0000 −1.98246 −0.991228 0.132164i \(-0.957808\pi\)
−0.991228 + 0.132164i \(0.957808\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 28.0000i 1.83829i
\(233\) −16.0000 −1.04819 −0.524097 0.851658i \(-0.675597\pi\)
−0.524097 + 0.851658i \(0.675597\pi\)
\(234\) 30.0000 1.96116
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(240\) 0 0
\(241\) 11.0000 + 11.0000i 0.708572 + 0.708572i 0.966235 0.257663i \(-0.0829523\pi\)
−0.257663 + 0.966235i \(0.582952\pi\)
\(242\) −11.0000 11.0000i −0.707107 0.707107i
\(243\) 0 0
\(244\) −2.00000 2.00000i −0.128037 0.128037i
\(245\) −14.0000 + 7.00000i −0.894427 + 0.447214i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 13.0000 9.00000i 0.822192 0.569210i
\(251\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) −17.0000 + 17.0000i −1.06043 + 1.06043i −0.0623783 + 0.998053i \(0.519869\pi\)
−0.998053 + 0.0623783i \(0.980131\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 30.0000 + 10.0000i 1.86052 + 0.620174i
\(261\) −21.0000 + 21.0000i −1.29987 + 1.29987i
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) −14.0000 28.0000i −0.860013 1.72003i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 26.0000 1.58525 0.792624 0.609711i \(-0.208714\pi\)
0.792624 + 0.609711i \(0.208714\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 12.0000 12.0000i 0.727607 0.727607i
\(273\) 0 0
\(274\) 22.0000 22.0000i 1.32907 1.32907i
\(275\) 0 0
\(276\) 0 0
\(277\) −5.00000 5.00000i −0.300421 0.300421i 0.540758 0.841178i \(-0.318138\pi\)
−0.841178 + 0.540758i \(0.818138\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 21.0000 + 21.0000i 1.25275 + 1.25275i 0.954480 + 0.298275i \(0.0964112\pi\)
0.298275 + 0.954480i \(0.403589\pi\)
\(282\) 0 0
\(283\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −12.0000 12.0000i −0.707107 0.707107i
\(289\) 1.00000i 0.0588235i
\(290\) −28.0000 + 14.0000i −1.64422 + 0.822108i
\(291\) 0 0
\(292\) 32.0000i 1.87266i
\(293\) 34.0000i 1.98630i 0.116841 + 0.993151i \(0.462723\pi\)
−0.116841 + 0.993151i \(0.537277\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −14.0000 + 10.0000i −0.813733 + 0.581238i
\(297\) 0 0
\(298\) 14.0000 + 14.0000i 0.810998 + 0.810998i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.00000 + 3.00000i −0.0572598 + 0.171780i
\(306\) −18.0000 −1.02899
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(312\) 0 0
\(313\) −1.00000 + 1.00000i −0.0565233 + 0.0565233i −0.734803 0.678280i \(-0.762726\pi\)
0.678280 + 0.734803i \(0.262726\pi\)
\(314\) −12.0000 + 12.0000i −0.677199 + 0.677199i
\(315\) 0 0
\(316\) 0 0
\(317\) 22.0000 1.23564 0.617822 0.786318i \(-0.288015\pi\)
0.617822 + 0.786318i \(0.288015\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −8.00000 16.0000i −0.447214 0.894427i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 18.0000i 1.00000i
\(325\) −5.00000 35.0000i −0.277350 1.94145i
\(326\) 0 0
\(327\) 0 0
\(328\) −20.0000 20.0000i −1.10432 1.10432i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(332\) 0 0
\(333\) 18.0000 + 3.00000i 0.986394 + 0.164399i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −32.0000 −1.74315 −0.871576 0.490261i \(-0.836901\pi\)
−0.871576 + 0.490261i \(0.836901\pi\)
\(338\) 37.0000 37.0000i 2.01253 2.01253i
\(339\) 0 0
\(340\) −18.0000 6.00000i −0.976187 0.325396i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −26.0000 26.0000i −1.39777 1.39777i
\(347\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(348\) 0 0
\(349\) 36.0000 1.92704 0.963518 0.267644i \(-0.0862451\pi\)
0.963518 + 0.267644i \(0.0862451\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −25.0000 25.0000i −1.33062 1.33062i −0.904819 0.425797i \(-0.859994\pi\)
−0.425797 0.904819i \(-0.640006\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −6.00000 6.00000i −0.317999 0.317999i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) −6.00000 + 18.0000i −0.316228 + 0.948683i
\(361\) 19.0000i 1.00000i
\(362\) 20.0000 + 20.0000i 1.05118 + 1.05118i
\(363\) 0 0
\(364\) 0 0
\(365\) −32.0000 + 16.0000i −1.67496 + 0.837478i
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 30.0000i 1.56174i
\(370\) 17.0000 + 9.00000i 0.883788 + 0.467888i
\(371\) 0 0
\(372\) 0 0
\(373\) −14.0000 −0.724893 −0.362446 0.932005i \(-0.618058\pi\)
−0.362446 + 0.932005i \(0.618058\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 70.0000i 3.60518i
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 38.0000 1.93415
\(387\) 0 0
\(388\) 10.0000 + 10.0000i 0.507673 + 0.507673i
\(389\) 27.0000 + 27.0000i 1.36895 + 1.36895i 0.861934 + 0.507020i \(0.169253\pi\)
0.507020 + 0.861934i \(0.330747\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 14.0000 14.0000i 0.707107 0.707107i
\(393\) 0 0
\(394\) −28.0000 + 28.0000i −1.41062 + 1.41062i
\(395\) 0 0
\(396\) 0 0
\(397\) −12.0000 −0.602263 −0.301131 0.953583i \(-0.597364\pi\)
−0.301131 + 0.953583i \(0.597364\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −12.0000 + 16.0000i −0.600000 + 0.800000i
\(401\) −19.0000 + 19.0000i −0.948815 + 0.948815i −0.998752 0.0499376i \(-0.984098\pi\)
0.0499376 + 0.998752i \(0.484098\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 4.00000 0.199007
\(405\) 18.0000 9.00000i 0.894427 0.447214i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 17.0000 17.0000i 0.840596 0.840596i −0.148340 0.988936i \(-0.547393\pi\)
0.988936 + 0.148340i \(0.0473931\pi\)
\(410\) −10.0000 + 30.0000i −0.493865 + 1.48159i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −40.0000 −1.96116
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 1.00000 1.00000i 0.0487370 0.0487370i −0.682318 0.731055i \(-0.739028\pi\)
0.731055 + 0.682318i \(0.239028\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 28.0000 + 28.0000i 1.35980 + 1.35980i
\(425\) 3.00000 + 21.0000i 0.145521 + 1.01865i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(432\) 0 0
\(433\) 34.0000i 1.63394i 0.576683 + 0.816968i \(0.304347\pi\)
−0.576683 + 0.816968i \(0.695653\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 26.0000 26.0000i 1.24517 1.24517i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(440\) 0 0
\(441\) −21.0000 −1.00000
\(442\) −30.0000 + 30.0000i −1.42695 + 1.42695i
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) −3.00000 + 9.00000i −0.142214 + 0.426641i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −27.0000 27.0000i −1.27421 1.27421i −0.943858 0.330350i \(-0.892833\pi\)
−0.330350 0.943858i \(-0.607167\pi\)
\(450\) 21.0000 3.00000i 0.989949 0.141421i
\(451\) 0 0
\(452\) −2.00000 + 2.00000i −0.0940721 + 0.0940721i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 25.0000 25.0000i 1.16945 1.16945i 0.187112 0.982339i \(-0.440087\pi\)
0.982339 0.187112i \(-0.0599128\pi\)
\(458\) −30.0000 30.0000i −1.40181 1.40181i
\(459\) 0 0
\(460\) 0 0
\(461\) 9.00000 + 9.00000i 0.419172 + 0.419172i 0.884918 0.465746i \(-0.154214\pi\)
−0.465746 + 0.884918i \(0.654214\pi\)
\(462\) 0 0
\(463\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(464\) 28.0000 28.0000i 1.29987 1.29987i
\(465\) 0 0
\(466\) −16.0000 16.0000i −0.741186 0.741186i
\(467\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(468\) 30.0000 + 30.0000i 1.38675 + 1.38675i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 42.0000i 1.92305i
\(478\) 0 0
\(479\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(480\) 0 0
\(481\) 35.0000 25.0000i 1.59586 1.13990i
\(482\) 22.0000i 1.00207i
\(483\) 0 0
\(484\) 22.0000i 1.00000i
\(485\) 5.00000 15.0000i 0.227038 0.681115i
\(486\) 0 0
\(487\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(488\) 4.00000i 0.181071i
\(489\) 0 0
\(490\) −21.0000 7.00000i −0.948683 0.316228i
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 42.0000i 1.89158i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(500\) 22.0000 + 4.00000i 0.983870 + 0.178885i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(504\) 0 0
\(505\) −2.00000 4.00000i −0.0889988 0.177998i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 44.0000i 1.95027i 0.221621 + 0.975133i \(0.428865\pi\)
−0.221621 + 0.975133i \(0.571135\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 16.0000 + 16.0000i 0.707107 + 0.707107i
\(513\) 0 0
\(514\) −34.0000 −1.49968
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 20.0000 + 40.0000i 0.877058 + 1.75412i
\(521\) 22.0000i 0.963837i −0.876216 0.481919i \(-0.839940\pi\)
0.876216 0.481919i \(-0.160060\pi\)
\(522\) −42.0000 −1.83829
\(523\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 23.0000i 1.00000i
\(530\) 14.0000 42.0000i 0.608121 1.82436i
\(531\) 0 0
\(532\) 0 0
\(533\) 50.0000 + 50.0000i 2.16574 + 2.16574i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 26.0000 + 26.0000i 1.12094 + 1.12094i
\(539\) 0 0
\(540\) 0 0
\(541\) 31.0000 + 31.0000i 1.33279 + 1.33279i 0.902861 + 0.429934i \(0.141463\pi\)
0.429934 + 0.902861i \(0.358537\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 24.0000 1.02899
\(545\) −39.0000 13.0000i −1.67058 0.556859i
\(546\) 0 0
\(547\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(548\) 44.0000 1.87959
\(549\) −3.00000 + 3.00000i −0.128037 + 0.128037i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 10.0000i 0.424859i
\(555\) 0 0
\(556\) 0 0
\(557\) −5.00000 5.00000i −0.211857 0.211857i 0.593199 0.805056i \(-0.297865\pi\)
−0.805056 + 0.593199i \(0.797865\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 42.0000i 1.77166i
\(563\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(564\) 0 0
\(565\) 3.00000 + 1.00000i 0.126211 + 0.0420703i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 33.0000 33.0000i 1.38343 1.38343i 0.544988 0.838444i \(-0.316534\pi\)
0.838444 0.544988i \(-0.183466\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 24.0000i 1.00000i
\(577\) 23.0000 23.0000i 0.957503 0.957503i −0.0416305 0.999133i \(-0.513255\pi\)
0.999133 + 0.0416305i \(0.0132552\pi\)
\(578\) 1.00000 1.00000i 0.0415945 0.0415945i
\(579\) 0 0
\(580\) −42.0000 14.0000i −1.74396 0.581318i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 32.0000 32.0000i 1.32417 1.32417i
\(585\) 15.0000 45.0000i 0.620174 1.86052i
\(586\) −34.0000 + 34.0000i −1.40453 + 1.40453i
\(587\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −24.0000 4.00000i −0.986394 0.164399i
\(593\) 16.0000i 0.657041i −0.944497 0.328521i \(-0.893450\pi\)
0.944497 0.328521i \(-0.106550\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 28.0000i 1.14692i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) −10.0000 −0.407909 −0.203954 0.978980i \(-0.565379\pi\)
−0.203954 + 0.978980i \(0.565379\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −22.0000 + 11.0000i −0.894427 + 0.447214i
\(606\) 0 0
\(607\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −4.00000 + 2.00000i −0.161955 + 0.0809776i
\(611\) 0 0
\(612\) −18.0000 18.0000i −0.727607 0.727607i
\(613\) 36.0000 1.45403 0.727013 0.686624i \(-0.240908\pi\)
0.727013 + 0.686624i \(0.240908\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 38.0000 1.52982 0.764911 0.644136i \(-0.222783\pi\)
0.764911 + 0.644136i \(0.222783\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) −2.00000 −0.0799361
\(627\) 0 0
\(628\) −24.0000 −0.957704
\(629\) −21.0000 + 15.0000i −0.837325 + 0.598089i
\(630\) 0 0
\(631\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 22.0000 + 22.0000i 0.873732 + 0.873732i
\(635\) 0 0
\(636\) 0 0
\(637\) −35.0000 + 35.0000i −1.38675 + 1.38675i
\(638\) 0 0
\(639\) 0 0
\(640\) 8.00000 24.0000i 0.316228 0.948683i
\(641\) −50.0000 −1.97488 −0.987441 0.157991i \(-0.949498\pi\)
−0.987441 + 0.157991i \(0.949498\pi\)
\(642\) 0 0
\(643\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(648\) −18.0000 + 18.0000i −0.707107 + 0.707107i
\(649\) 0 0
\(650\) 30.0000 40.0000i 1.17670 1.56893i
\(651\) 0 0
\(652\) 0 0
\(653\) 35.0000 + 35.0000i 1.36966 + 1.36966i 0.860927 + 0.508729i \(0.169885\pi\)
0.508729 + 0.860927i \(0.330115\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 40.0000i 1.56174i
\(657\) −48.0000 −1.87266
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −31.0000 + 31.0000i −1.20576 + 1.20576i −0.233373 + 0.972387i \(0.574976\pi\)
−0.972387 + 0.233373i \(0.925024\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 15.0000 + 21.0000i 0.581238 + 0.813733i
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 24.0000i 0.925132i −0.886585 0.462566i \(-0.846929\pi\)
0.886585 0.462566i \(-0.153071\pi\)
\(674\) −32.0000 32.0000i −1.23259 1.23259i
\(675\) 0 0
\(676\) 74.0000 2.84615
\(677\) 2.00000 0.0768662 0.0384331 0.999261i \(-0.487763\pi\)
0.0384331 + 0.999261i \(0.487763\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −12.0000 24.0000i −0.460179 0.920358i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(684\) 0 0
\(685\) −22.0000 44.0000i −0.840577 1.68115i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −70.0000 70.0000i −2.66679 2.66679i
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 52.0000i 1.97674i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −30.0000 30.0000i −1.13633 1.13633i
\(698\) 36.0000 + 36.0000i 1.36262 + 1.36262i
\(699\) 0 0
\(700\) 0 0
\(701\) 21.0000 + 21.0000i 0.793159 + 0.793159i 0.982006 0.188847i \(-0.0604752\pi\)
−0.188847 + 0.982006i \(0.560475\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 50.0000i 1.88177i
\(707\) 0 0
\(708\) 0 0
\(709\) −37.0000 37.0000i −1.38956 1.38956i −0.826227 0.563337i \(-0.809517\pi\)
−0.563337 0.826227i \(-0.690483\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 12.0000i 0.449719i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) −24.0000 + 12.0000i −0.894427 + 0.447214i
\(721\) 0 0
\(722\) −19.0000 + 19.0000i −0.707107 + 0.707107i
\(723\) 0 0
\(724\) 40.0000i 1.48659i
\(725\) 7.00000 + 49.0000i 0.259973 + 1.81981i
\(726\) 0 0
\(727\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) −48.0000 16.0000i −1.77656 0.592187i
\(731\) 0 0
\(732\) 0 0
\(733\) −4.00000 −0.147743 −0.0738717 0.997268i \(-0.523536\pi\)
−0.0738717 + 0.997268i \(0.523536\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) −30.0000 + 30.0000i −1.10432 + 1.10432i
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 8.00000 + 26.0000i 0.294086 + 0.955779i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) 28.0000 14.0000i 1.02584 0.512920i
\(746\) −14.0000 14.0000i −0.512576 0.512576i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −70.0000 + 70.0000i −2.54925 + 2.54925i
\(755\) 0 0
\(756\) 0 0
\(757\) 35.0000 35.0000i 1.27210 1.27210i 0.327111 0.944986i \(-0.393925\pi\)
0.944986 0.327111i \(-0.106075\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 40.0000i 1.45000i −0.688749 0.724999i \(-0.741840\pi\)
0.688749 0.724999i \(-0.258160\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −9.00000 + 27.0000i −0.325396 + 0.976187i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −37.0000 + 37.0000i −1.33425 + 1.33425i −0.432731 + 0.901523i \(0.642450\pi\)
−0.901523 + 0.432731i \(0.857550\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 38.0000 + 38.0000i 1.36765 + 1.36765i
\(773\) 44.0000i 1.58257i −0.611448 0.791285i \(-0.709412\pi\)
0.611448 0.791285i \(-0.290588\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 20.0000i 0.717958i
\(777\) 0 0
\(778\) 54.0000i 1.93599i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 28.0000 1.00000
\(785\) 12.0000 + 24.0000i 0.428298 + 0.856597i
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) −56.0000 −1.99492
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 10.0000i 0.355110i
\(794\) −12.0000 12.0000i −0.425864 0.425864i
\(795\) 0 0
\(796\) 0 0
\(797\) −15.0000 15.0000i −0.531327 0.531327i 0.389640 0.920967i \(-0.372599\pi\)
−0.920967 + 0.389640i \(0.872599\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −28.0000 + 4.00000i −0.989949 + 0.141421i
\(801\) −9.00000 + 9.00000i −0.317999 + 0.317999i
\(802\) −38.0000 −1.34183
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 4.00000 + 4.00000i 0.140720 + 0.140720i
\(809\) 23.0000 23.0000i 0.808637 0.808637i −0.175791 0.984428i \(-0.556248\pi\)
0.984428 + 0.175791i \(0.0562482\pi\)
\(810\) 27.0000 + 9.00000i 0.948683 + 0.316228i
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 34.0000 1.18878
\(819\) 0 0
\(820\) −40.0000 + 20.0000i −1.39686 + 0.698430i
\(821\) 28.0000 0.977207 0.488603 0.872506i \(-0.337507\pi\)
0.488603 + 0.872506i \(0.337507\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(828\) 0 0
\(829\) 37.0000 37.0000i 1.28506 1.28506i 0.347314 0.937749i \(-0.387094\pi\)
0.937749 0.347314i \(-0.112906\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −40.0000 40.0000i −1.38675 1.38675i
\(833\) 21.0000 21.0000i 0.727607 0.727607i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 69.0000i 2.37931i
\(842\) 2.00000 0.0689246
\(843\) 0 0
\(844\) 0 0
\(845\) −37.0000 74.0000i −1.27284 2.54568i
\(846\) 0 0
\(847\) 0 0
\(848\) 56.0000i 1.92305i
\(849\) 0 0
\(850\) −18.0000 + 24.0000i −0.617395 + 0.823193i
\(851\) 0 0
\(852\) 0 0
\(853\) 5.00000 + 5.00000i 0.171197 + 0.171197i 0.787505 0.616308i \(-0.211372\pi\)
−0.616308 + 0.787505i \(0.711372\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 25.0000 25.0000i 0.853984 0.853984i −0.136637 0.990621i \(-0.543630\pi\)
0.990621 + 0.136637i \(0.0436295\pi\)
\(858\) 0 0
\(859\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) −52.0000 + 26.0000i −1.76805 + 0.884027i
\(866\) −34.0000 + 34.0000i −1.15537 + 1.15537i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 52.0000 1.76094
\(873\) 15.0000 15.0000i 0.507673 0.507673i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 12.0000i 0.405211i 0.979260 + 0.202606i \(0.0649409\pi\)
−0.979260 + 0.202606i \(0.935059\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 32.0000i 1.07811i −0.842271 0.539054i \(-0.818782\pi\)
0.842271 0.539054i \(-0.181218\pi\)
\(882\) −21.0000 21.0000i −0.707107 0.707107i
\(883\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(884\) −60.0000 −2.01802
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −12.0000 + 6.00000i −0.402241 + 0.201120i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 54.0000i 1.80200i
\(899\) 0 0
\(900\) 24.0000 + 18.0000i 0.800000 + 0.600000i
\(901\) 42.0000 + 42.0000i 1.39922 + 1.39922i
\(902\) 0 0
\(903\) 0 0
\(904\) −4.00000 −0.133038
\(905\) 40.0000 20.0000i 1.32964 0.664822i
\(906\) 0 0
\(907\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(908\) 0 0
\(909\) 6.00000i 0.199007i
\(910\) 0 0
\(911\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 50.0000 1.65385
\(915\) 0 0
\(916\) 60.0000i 1.98246i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 18.0000i 0.592798i
\(923\) 0 0
\(924\) 0 0
\(925\) 22.0000 21.0000i 0.723356 0.690476i
\(926\) 0 0
\(927\) 0 0
\(928\) 56.0000 1.83829
\(929\) 46.0000i 1.50921i 0.656179 + 0.754606i \(0.272172\pi\)
−0.656179 + 0.754606i \(0.727828\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 32.0000i 1.04819i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 60.0000i 1.96116i
\(937\) 38.0000i 1.24141i −0.784046 0.620703i \(-0.786847\pi\)
0.784046 0.620703i \(-0.213153\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 20.0000 0.651981 0.325991 0.945373i \(-0.394302\pi\)
0.325991 + 0.945373i \(0.394302\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(948\) 0 0
\(949\) −80.0000 + 80.0000i −2.59691 + 2.59691i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −26.0000 −0.842223 −0.421111 0.907009i \(-0.638360\pi\)
−0.421111 + 0.907009i \(0.638360\pi\)
\(954\) 42.0000 42.0000i 1.35980 1.35980i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 31.0000i 1.00000i
\(962\) 60.0000 + 10.0000i 1.93448 + 0.322413i
\(963\) 0 0
\(964\) −22.0000 + 22.0000i −0.708572 + 0.708572i
\(965\) 19.0000 57.0000i 0.611632 1.83489i
\(966\) 0 0
\(967\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(968\) 22.0000 22.0000i 0.707107 0.707107i
\(969\) 0 0
\(970\) 20.0000 10.0000i 0.642161 0.321081i
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 4.00000 4.00000i 0.128037 0.128037i
\(977\) 27.0000 + 27.0000i 0.863807 + 0.863807i 0.991778 0.127971i \(-0.0408466\pi\)
−0.127971 + 0.991778i \(0.540847\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −14.0000 28.0000i −0.447214 0.894427i
\(981\) −39.0000 39.0000i −1.24517 1.24517i
\(982\) 0 0
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 28.0000 + 56.0000i 0.892154 + 1.78431i
\(986\) 42.0000 42.0000i 1.33755 1.33755i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −25.0000 + 25.0000i −0.791758 + 0.791758i −0.981780 0.190022i \(-0.939144\pi\)
0.190022 + 0.981780i \(0.439144\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 740.2.k.b.339.1 yes 2
4.3 odd 2 CM 740.2.k.b.339.1 yes 2
5.4 even 2 740.2.k.a.339.1 yes 2
20.19 odd 2 740.2.k.a.339.1 yes 2
37.31 odd 4 740.2.k.a.179.1 2
148.31 even 4 740.2.k.a.179.1 2
185.179 odd 4 inner 740.2.k.b.179.1 yes 2
740.179 even 4 inner 740.2.k.b.179.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.k.a.179.1 2 37.31 odd 4
740.2.k.a.179.1 2 148.31 even 4
740.2.k.a.339.1 yes 2 5.4 even 2
740.2.k.a.339.1 yes 2 20.19 odd 2
740.2.k.b.179.1 yes 2 185.179 odd 4 inner
740.2.k.b.179.1 yes 2 740.179 even 4 inner
740.2.k.b.339.1 yes 2 1.1 even 1 trivial
740.2.k.b.339.1 yes 2 4.3 odd 2 CM