Defining parameters
Level: | \( N \) | \(=\) | \( 740 = 2^{2} \cdot 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 740.k (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 740 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(228\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(3\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(740, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 236 | 236 | 0 |
Cusp forms | 220 | 220 | 0 |
Eisenstein series | 16 | 16 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(740, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
740.2.k.a | $2$ | $5.909$ | \(\Q(\sqrt{-1}) \) | \(\Q(\sqrt{-1}) \) | \(-2\) | \(0\) | \(-2\) | \(0\) | \(q+(i-1)q^{2}-2 i q^{4}+(-2 i-1)q^{5}+\cdots\) |
740.2.k.b | $2$ | $5.909$ | \(\Q(\sqrt{-1}) \) | \(\Q(\sqrt{-1}) \) | \(2\) | \(0\) | \(4\) | \(0\) | \(q+(-i+1)q^{2}-2 i q^{4}+(i+2)q^{5}+\cdots\) |
740.2.k.c | $216$ | $5.909$ | None | \(0\) | \(0\) | \(-8\) | \(0\) |