Properties

Label 740.2.k.b
Level $740$
Weight $2$
Character orbit 740.k
Analytic conductor $5.909$
Analytic rank $0$
Dimension $2$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [740,2,Mod(179,740)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(740, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("740.179");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 740 = 2^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 740.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.90892974957\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - i + 1) q^{2} - 2 i q^{4} + (i + 2) q^{5} + ( - 2 i - 2) q^{8} + 3 q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + ( - i + 1) q^{2} - 2 i q^{4} + (i + 2) q^{5} + ( - 2 i - 2) q^{8} + 3 q^{9} + ( - i + 3) q^{10} + (5 i + 5) q^{13} - 4 q^{16} + ( - 3 i - 3) q^{17} + ( - 3 i + 3) q^{18} + ( - 4 i + 2) q^{20} + (4 i + 3) q^{25} + 10 q^{26} + ( - 7 i - 7) q^{29} + (4 i - 4) q^{32} - 6 q^{34} - 6 i q^{36} + ( - i + 6) q^{37} + ( - 6 i - 2) q^{40} - 10 i q^{41} + (3 i + 6) q^{45} - 7 q^{49} + (i + 7) q^{50} + ( - 10 i + 10) q^{52} + 14 i q^{53} - 14 q^{58} + ( - i - 1) q^{61} + 8 i q^{64} + (15 i + 5) q^{65} + (6 i - 6) q^{68} + ( - 6 i - 6) q^{72} - 16 q^{73} + ( - 7 i + 5) q^{74} + ( - 4 i - 8) q^{80} + 9 q^{81} + ( - 10 i - 10) q^{82} + ( - 9 i - 3) q^{85} + ( - 3 i - 3) q^{89} + ( - 3 i + 9) q^{90} + (5 i + 5) q^{97} + (7 i - 7) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 4 q^{5} - 4 q^{8} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} + 4 q^{5} - 4 q^{8} + 6 q^{9} + 6 q^{10} + 10 q^{13} - 8 q^{16} - 6 q^{17} + 6 q^{18} + 4 q^{20} + 6 q^{25} + 20 q^{26} - 14 q^{29} - 8 q^{32} - 12 q^{34} + 12 q^{37} - 4 q^{40} + 12 q^{45} - 14 q^{49} + 14 q^{50} + 20 q^{52} - 28 q^{58} - 2 q^{61} + 10 q^{65} - 12 q^{68} - 12 q^{72} - 32 q^{73} + 10 q^{74} - 16 q^{80} + 18 q^{81} - 20 q^{82} - 6 q^{85} - 6 q^{89} + 18 q^{90} + 10 q^{97} - 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/740\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\) \(371\)
\(\chi(n)\) \(i\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
179.1
1.00000i
1.00000i
1.00000 1.00000i 0 2.00000i 2.00000 + 1.00000i 0 0 −2.00000 2.00000i 3.00000 3.00000 1.00000i
339.1 1.00000 + 1.00000i 0 2.00000i 2.00000 1.00000i 0 0 −2.00000 + 2.00000i 3.00000 3.00000 + 1.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
185.j odd 4 1 inner
740.k even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 740.2.k.b yes 2
4.b odd 2 1 CM 740.2.k.b yes 2
5.b even 2 1 740.2.k.a 2
20.d odd 2 1 740.2.k.a 2
37.d odd 4 1 740.2.k.a 2
148.g even 4 1 740.2.k.a 2
185.j odd 4 1 inner 740.2.k.b yes 2
740.k even 4 1 inner 740.2.k.b yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
740.2.k.a 2 5.b even 2 1
740.2.k.a 2 20.d odd 2 1
740.2.k.a 2 37.d odd 4 1
740.2.k.a 2 148.g even 4 1
740.2.k.b yes 2 1.a even 1 1 trivial
740.2.k.b yes 2 4.b odd 2 1 CM
740.2.k.b yes 2 185.j odd 4 1 inner
740.2.k.b yes 2 740.k even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(740, [\chi])\):

\( T_{3} \) Copy content Toggle raw display
\( T_{13}^{2} - 10T_{13} + 50 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 4T + 5 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 10T + 50 \) Copy content Toggle raw display
$17$ \( T^{2} + 6T + 18 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 14T + 98 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} - 12T + 37 \) Copy content Toggle raw display
$41$ \( T^{2} + 100 \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 196 \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( (T + 16)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 6T + 18 \) Copy content Toggle raw display
$97$ \( T^{2} - 10T + 50 \) Copy content Toggle raw display
show more
show less