Defining parameters
Level: | \( N \) | = | \( 740 = 2^{2} \cdot 5 \cdot 37 \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 30 \) | ||
Newform subspaces: | \( 58 \) | ||
Sturm bound: | \(65664\) | ||
Trace bound: | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(740))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 17136 | 8972 | 8164 |
Cusp forms | 15697 | 8556 | 7141 |
Eisenstein series | 1439 | 416 | 1023 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(740))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(740))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(740)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(37))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(74))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(148))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(185))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(370))\)\(^{\oplus 2}\)