Properties

Label 740.2.bp.a.289.8
Level $740$
Weight $2$
Character 740.289
Analytic conductor $5.909$
Analytic rank $0$
Dimension $120$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [740,2,Mod(169,740)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("740.169"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(740, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 11])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 740 = 2^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 740.bp (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.90892974957\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(20\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 289.8
Character \(\chi\) \(=\) 740.289
Dual form 740.2.bp.a.169.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.324044 + 0.890304i) q^{3} +(-0.350865 + 2.20837i) q^{5} +(4.31890 - 0.761538i) q^{7} +(1.61050 + 1.35137i) q^{9} +(-0.398930 + 0.690967i) q^{11} +(4.54857 - 3.81671i) q^{13} +(-1.85242 - 1.02799i) q^{15} +(-3.51825 - 2.95216i) q^{17} +(-0.565183 + 1.55283i) q^{19} +(-0.721513 + 4.09190i) q^{21} +(0.646500 + 1.11977i) q^{23} +(-4.75379 - 1.54968i) q^{25} +(-4.18653 + 2.41709i) q^{27} +(6.97099 + 4.02470i) q^{29} -2.11192i q^{31} +(-0.485900 - 0.579073i) q^{33} +(0.166405 + 9.80491i) q^{35} +(5.80584 + 1.81445i) q^{37} +(1.92409 + 5.28639i) q^{39} +(-8.72727 + 7.32305i) q^{41} +1.78254 q^{43} +(-3.54938 + 3.08242i) q^{45} +(-0.367788 + 0.212342i) q^{47} +(11.4951 - 4.18386i) q^{49} +(3.76839 - 2.17568i) q^{51} +(3.92991 + 0.692949i) q^{53} +(-1.38594 - 1.12342i) q^{55} +(-1.19935 - 1.00637i) q^{57} +(-4.42906 - 0.780963i) q^{59} +(-0.130492 - 0.155514i) q^{61} +(7.98468 + 4.60996i) q^{63} +(6.83276 + 11.3841i) q^{65} +(-5.03707 + 0.888171i) q^{67} +(-1.20643 + 0.212726i) q^{69} +(-14.7335 - 5.36254i) q^{71} +0.313499i q^{73} +(2.92012 - 3.73015i) q^{75} +(-1.19674 + 3.28802i) q^{77} +(-13.1703 + 2.32228i) q^{79} +(0.299882 + 1.70072i) q^{81} +(6.49696 - 7.74277i) q^{83} +(7.75389 - 6.73378i) q^{85} +(-5.84212 + 4.90212i) q^{87} +(-6.41911 - 1.13186i) q^{89} +(16.7382 - 19.9479i) q^{91} +(1.88025 + 0.684354i) q^{93} +(-3.23092 - 1.79297i) q^{95} +(0.185715 + 0.321668i) q^{97} +(-1.57623 + 0.573699i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120 q + 3 q^{5} + 6 q^{9} + 12 q^{11} + 3 q^{15} + 6 q^{19} - 12 q^{21} - 33 q^{25} - 48 q^{35} + 24 q^{39} + 30 q^{41} - 27 q^{45} + 6 q^{49} - 3 q^{55} - 42 q^{59} + 48 q^{61} - 18 q^{65} - 108 q^{69}+ \cdots + 90 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/740\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\) \(371\)
\(\chi(n)\) \(e\left(\frac{7}{18}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.324044 + 0.890304i −0.187087 + 0.514017i −0.997407 0.0719706i \(-0.977071\pi\)
0.810320 + 0.585988i \(0.199293\pi\)
\(4\) 0 0
\(5\) −0.350865 + 2.20837i −0.156912 + 0.987613i
\(6\) 0 0
\(7\) 4.31890 0.761538i 1.63239 0.287834i 0.719027 0.694982i \(-0.244588\pi\)
0.913362 + 0.407148i \(0.133477\pi\)
\(8\) 0 0
\(9\) 1.61050 + 1.35137i 0.536832 + 0.450456i
\(10\) 0 0
\(11\) −0.398930 + 0.690967i −0.120282 + 0.208334i −0.919879 0.392203i \(-0.871713\pi\)
0.799597 + 0.600537i \(0.205047\pi\)
\(12\) 0 0
\(13\) 4.54857 3.81671i 1.26155 1.05856i 0.266032 0.963964i \(-0.414287\pi\)
0.995515 0.0945992i \(-0.0301570\pi\)
\(14\) 0 0
\(15\) −1.85242 1.02799i −0.478294 0.265425i
\(16\) 0 0
\(17\) −3.51825 2.95216i −0.853300 0.716004i 0.107214 0.994236i \(-0.465807\pi\)
−0.960514 + 0.278232i \(0.910252\pi\)
\(18\) 0 0
\(19\) −0.565183 + 1.55283i −0.129662 + 0.356243i −0.987487 0.157698i \(-0.949593\pi\)
0.857825 + 0.513941i \(0.171815\pi\)
\(20\) 0 0
\(21\) −0.721513 + 4.09190i −0.157447 + 0.892926i
\(22\) 0 0
\(23\) 0.646500 + 1.11977i 0.134805 + 0.233488i 0.925523 0.378692i \(-0.123626\pi\)
−0.790718 + 0.612180i \(0.790293\pi\)
\(24\) 0 0
\(25\) −4.75379 1.54968i −0.950757 0.309936i
\(26\) 0 0
\(27\) −4.18653 + 2.41709i −0.805697 + 0.465170i
\(28\) 0 0
\(29\) 6.97099 + 4.02470i 1.29448 + 0.747368i 0.979445 0.201712i \(-0.0646504\pi\)
0.315035 + 0.949080i \(0.397984\pi\)
\(30\) 0 0
\(31\) 2.11192i 0.379311i −0.981851 0.189656i \(-0.939263\pi\)
0.981851 0.189656i \(-0.0607372\pi\)
\(32\) 0 0
\(33\) −0.485900 0.579073i −0.0845844 0.100804i
\(34\) 0 0
\(35\) 0.166405 + 9.80491i 0.0281276 + 1.65733i
\(36\) 0 0
\(37\) 5.80584 + 1.81445i 0.954474 + 0.298294i
\(38\) 0 0
\(39\) 1.92409 + 5.28639i 0.308101 + 0.846501i
\(40\) 0 0
\(41\) −8.72727 + 7.32305i −1.36297 + 1.14367i −0.387918 + 0.921694i \(0.626806\pi\)
−0.975052 + 0.221974i \(0.928750\pi\)
\(42\) 0 0
\(43\) 1.78254 0.271835 0.135918 0.990720i \(-0.456602\pi\)
0.135918 + 0.990720i \(0.456602\pi\)
\(44\) 0 0
\(45\) −3.54938 + 3.08242i −0.529111 + 0.459500i
\(46\) 0 0
\(47\) −0.367788 + 0.212342i −0.0536473 + 0.0309733i −0.526584 0.850123i \(-0.676527\pi\)
0.472936 + 0.881097i \(0.343194\pi\)
\(48\) 0 0
\(49\) 11.4951 4.18386i 1.64215 0.597695i
\(50\) 0 0
\(51\) 3.76839 2.17568i 0.527680 0.304656i
\(52\) 0 0
\(53\) 3.92991 + 0.692949i 0.539815 + 0.0951839i 0.436906 0.899507i \(-0.356074\pi\)
0.102908 + 0.994691i \(0.467185\pi\)
\(54\) 0 0
\(55\) −1.38594 1.12342i −0.186880 0.151482i
\(56\) 0 0
\(57\) −1.19935 1.00637i −0.158857 0.133297i
\(58\) 0 0
\(59\) −4.42906 0.780963i −0.576615 0.101673i −0.122267 0.992497i \(-0.539017\pi\)
−0.454348 + 0.890824i \(0.650128\pi\)
\(60\) 0 0
\(61\) −0.130492 0.155514i −0.0167077 0.0199115i 0.757626 0.652689i \(-0.226359\pi\)
−0.774334 + 0.632778i \(0.781915\pi\)
\(62\) 0 0
\(63\) 7.98468 + 4.60996i 1.00598 + 0.580800i
\(64\) 0 0
\(65\) 6.83276 + 11.3841i 0.847499 + 1.41202i
\(66\) 0 0
\(67\) −5.03707 + 0.888171i −0.615376 + 0.108507i −0.472643 0.881254i \(-0.656700\pi\)
−0.142733 + 0.989761i \(0.545589\pi\)
\(68\) 0 0
\(69\) −1.20643 + 0.212726i −0.145237 + 0.0256092i
\(70\) 0 0
\(71\) −14.7335 5.36254i −1.74854 0.636417i −0.748886 0.662699i \(-0.769411\pi\)
−0.999655 + 0.0262828i \(0.991633\pi\)
\(72\) 0 0
\(73\) 0.313499i 0.0366923i 0.999832 + 0.0183461i \(0.00584009\pi\)
−0.999832 + 0.0183461i \(0.994160\pi\)
\(74\) 0 0
\(75\) 2.92012 3.73015i 0.337187 0.430721i
\(76\) 0 0
\(77\) −1.19674 + 3.28802i −0.136381 + 0.374704i
\(78\) 0 0
\(79\) −13.1703 + 2.32228i −1.48178 + 0.261277i −0.855287 0.518154i \(-0.826619\pi\)
−0.626488 + 0.779431i \(0.715508\pi\)
\(80\) 0 0
\(81\) 0.299882 + 1.70072i 0.0333202 + 0.188968i
\(82\) 0 0
\(83\) 6.49696 7.74277i 0.713134 0.849880i −0.280811 0.959763i \(-0.590603\pi\)
0.993944 + 0.109883i \(0.0350477\pi\)
\(84\) 0 0
\(85\) 7.75389 6.73378i 0.841027 0.730381i
\(86\) 0 0
\(87\) −5.84212 + 4.90212i −0.626341 + 0.525562i
\(88\) 0 0
\(89\) −6.41911 1.13186i −0.680424 0.119977i −0.177255 0.984165i \(-0.556722\pi\)
−0.503169 + 0.864188i \(0.667833\pi\)
\(90\) 0 0
\(91\) 16.7382 19.9479i 1.75464 2.09110i
\(92\) 0 0
\(93\) 1.88025 + 0.684354i 0.194973 + 0.0709642i
\(94\) 0 0
\(95\) −3.23092 1.79297i −0.331485 0.183955i
\(96\) 0 0
\(97\) 0.185715 + 0.321668i 0.0188565 + 0.0326604i 0.875300 0.483581i \(-0.160664\pi\)
−0.856443 + 0.516241i \(0.827331\pi\)
\(98\) 0 0
\(99\) −1.57623 + 0.573699i −0.158417 + 0.0576590i
\(100\) 0 0
\(101\) −0.868722 1.50467i −0.0864411 0.149720i 0.819563 0.572989i \(-0.194216\pi\)
−0.906004 + 0.423268i \(0.860883\pi\)
\(102\) 0 0
\(103\) 8.01418 13.8810i 0.789661 1.36773i −0.136514 0.990638i \(-0.543590\pi\)
0.926175 0.377095i \(-0.123077\pi\)
\(104\) 0 0
\(105\) −8.78328 3.02907i −0.857160 0.295607i
\(106\) 0 0
\(107\) −2.28730 2.72590i −0.221122 0.263523i 0.644067 0.764969i \(-0.277246\pi\)
−0.865189 + 0.501446i \(0.832801\pi\)
\(108\) 0 0
\(109\) 3.37384 + 9.26956i 0.323156 + 0.887863i 0.989797 + 0.142484i \(0.0455090\pi\)
−0.666641 + 0.745379i \(0.732269\pi\)
\(110\) 0 0
\(111\) −3.49676 + 4.58100i −0.331898 + 0.434809i
\(112\) 0 0
\(113\) 13.2781 4.83284i 1.24910 0.454635i 0.369003 0.929428i \(-0.379699\pi\)
0.880098 + 0.474793i \(0.157477\pi\)
\(114\) 0 0
\(115\) −2.69970 + 1.03482i −0.251748 + 0.0964976i
\(116\) 0 0
\(117\) 12.4832 1.15407
\(118\) 0 0
\(119\) −17.4431 10.0708i −1.59901 0.923188i
\(120\) 0 0
\(121\) 5.18171 + 8.97498i 0.471064 + 0.815908i
\(122\) 0 0
\(123\) −3.69172 10.1429i −0.332871 0.914556i
\(124\) 0 0
\(125\) 5.09021 9.95439i 0.455282 0.890347i
\(126\) 0 0
\(127\) −18.0242 3.17816i −1.59939 0.282016i −0.698352 0.715755i \(-0.746083\pi\)
−0.901039 + 0.433739i \(0.857194\pi\)
\(128\) 0 0
\(129\) −0.577623 + 1.58701i −0.0508569 + 0.139728i
\(130\) 0 0
\(131\) 8.38240 9.98976i 0.732374 0.872809i −0.263396 0.964688i \(-0.584843\pi\)
0.995770 + 0.0918783i \(0.0292871\pi\)
\(132\) 0 0
\(133\) −1.25843 + 7.13691i −0.109120 + 0.618849i
\(134\) 0 0
\(135\) −3.86892 10.0935i −0.332984 0.868707i
\(136\) 0 0
\(137\) −8.39094 4.84451i −0.716886 0.413894i 0.0967195 0.995312i \(-0.469165\pi\)
−0.813605 + 0.581417i \(0.802498\pi\)
\(138\) 0 0
\(139\) −10.6628 8.94714i −0.904405 0.758886i 0.0666412 0.997777i \(-0.478772\pi\)
−0.971046 + 0.238891i \(0.923216\pi\)
\(140\) 0 0
\(141\) −0.0698698 0.396251i −0.00588410 0.0333704i
\(142\) 0 0
\(143\) 0.822656 + 4.66551i 0.0687939 + 0.390150i
\(144\) 0 0
\(145\) −11.3339 + 13.9824i −0.941230 + 1.16117i
\(146\) 0 0
\(147\) 11.5899i 0.955916i
\(148\) 0 0
\(149\) 11.8863 0.973766 0.486883 0.873467i \(-0.338134\pi\)
0.486883 + 0.873467i \(0.338134\pi\)
\(150\) 0 0
\(151\) 0.575189 + 0.209352i 0.0468082 + 0.0170368i 0.365318 0.930883i \(-0.380960\pi\)
−0.318510 + 0.947920i \(0.603182\pi\)
\(152\) 0 0
\(153\) −1.67667 9.50889i −0.135551 0.768748i
\(154\) 0 0
\(155\) 4.66389 + 0.740998i 0.374613 + 0.0595184i
\(156\) 0 0
\(157\) −7.48889 + 8.92491i −0.597678 + 0.712285i −0.977062 0.212954i \(-0.931691\pi\)
0.379384 + 0.925239i \(0.376136\pi\)
\(158\) 0 0
\(159\) −1.89040 + 3.27427i −0.149919 + 0.259666i
\(160\) 0 0
\(161\) 3.64491 + 4.34384i 0.287259 + 0.342342i
\(162\) 0 0
\(163\) −4.03275 + 22.8708i −0.315869 + 1.79138i 0.251436 + 0.967874i \(0.419097\pi\)
−0.567305 + 0.823508i \(0.692014\pi\)
\(164\) 0 0
\(165\) 1.44929 0.869870i 0.112827 0.0677193i
\(166\) 0 0
\(167\) 3.65419 + 1.33002i 0.282769 + 0.102920i 0.479511 0.877536i \(-0.340814\pi\)
−0.196742 + 0.980455i \(0.563036\pi\)
\(168\) 0 0
\(169\) 3.86484 21.9186i 0.297296 1.68605i
\(170\) 0 0
\(171\) −3.00867 + 1.73705i −0.230079 + 0.132836i
\(172\) 0 0
\(173\) 3.98194 + 10.9403i 0.302741 + 0.831775i 0.994021 + 0.109188i \(0.0348250\pi\)
−0.691280 + 0.722587i \(0.742953\pi\)
\(174\) 0 0
\(175\) −21.7113 3.07272i −1.64122 0.232276i
\(176\) 0 0
\(177\) 2.13051 3.69015i 0.160139 0.277368i
\(178\) 0 0
\(179\) 13.4118i 1.00245i −0.865318 0.501224i \(-0.832883\pi\)
0.865318 0.501224i \(-0.167117\pi\)
\(180\) 0 0
\(181\) 15.6557 13.1367i 1.16368 0.976445i 0.163732 0.986505i \(-0.447647\pi\)
0.999949 + 0.0100599i \(0.00320221\pi\)
\(182\) 0 0
\(183\) 0.180740 0.0657839i 0.0133607 0.00486288i
\(184\) 0 0
\(185\) −6.04404 + 12.1848i −0.444367 + 0.895845i
\(186\) 0 0
\(187\) 3.44338 1.25329i 0.251805 0.0916495i
\(188\) 0 0
\(189\) −16.2405 + 13.6274i −1.18132 + 0.991245i
\(190\) 0 0
\(191\) 1.03076i 0.0745829i 0.999304 + 0.0372914i \(0.0118730\pi\)
−0.999304 + 0.0372914i \(0.988127\pi\)
\(192\) 0 0
\(193\) 7.82817 13.5588i 0.563484 0.975984i −0.433705 0.901055i \(-0.642794\pi\)
0.997189 0.0749284i \(-0.0238728\pi\)
\(194\) 0 0
\(195\) −12.3494 + 2.39429i −0.884359 + 0.171459i
\(196\) 0 0
\(197\) −5.61287 15.4212i −0.399900 1.09872i −0.962333 0.271874i \(-0.912357\pi\)
0.562433 0.826843i \(-0.309865\pi\)
\(198\) 0 0
\(199\) 15.7156 9.07343i 1.11405 0.643198i 0.174176 0.984715i \(-0.444274\pi\)
0.939876 + 0.341516i \(0.110940\pi\)
\(200\) 0 0
\(201\) 0.841491 4.77233i 0.0593542 0.336614i
\(202\) 0 0
\(203\) 33.1719 + 12.0736i 2.32821 + 0.847400i
\(204\) 0 0
\(205\) −13.1099 21.8424i −0.915635 1.52554i
\(206\) 0 0
\(207\) −0.472035 + 2.67704i −0.0328087 + 0.186067i
\(208\) 0 0
\(209\) −0.847485 1.00999i −0.0586218 0.0698627i
\(210\) 0 0
\(211\) −5.10808 + 8.84745i −0.351655 + 0.609084i −0.986540 0.163523i \(-0.947714\pi\)
0.634885 + 0.772607i \(0.281048\pi\)
\(212\) 0 0
\(213\) 9.54859 11.3796i 0.654258 0.779715i
\(214\) 0 0
\(215\) −0.625433 + 3.93652i −0.0426542 + 0.268468i
\(216\) 0 0
\(217\) −1.60830 9.12115i −0.109179 0.619184i
\(218\) 0 0
\(219\) −0.279110 0.101588i −0.0188605 0.00686465i
\(220\) 0 0
\(221\) −27.2705 −1.83441
\(222\) 0 0
\(223\) 20.7185i 1.38741i −0.720258 0.693707i \(-0.755976\pi\)
0.720258 0.693707i \(-0.244024\pi\)
\(224\) 0 0
\(225\) −5.56177 8.91987i −0.370785 0.594658i
\(226\) 0 0
\(227\) 2.01576 + 11.4319i 0.133791 + 0.758764i 0.975694 + 0.219136i \(0.0703239\pi\)
−0.841904 + 0.539628i \(0.818565\pi\)
\(228\) 0 0
\(229\) −2.81923 15.9887i −0.186300 1.05656i −0.924274 0.381730i \(-0.875328\pi\)
0.737974 0.674830i \(-0.235783\pi\)
\(230\) 0 0
\(231\) −2.53954 2.13093i −0.167089 0.140205i
\(232\) 0 0
\(233\) −19.5600 11.2930i −1.28142 0.739828i −0.304312 0.952572i \(-0.598426\pi\)
−0.977108 + 0.212744i \(0.931760\pi\)
\(234\) 0 0
\(235\) −0.339886 0.886714i −0.0221717 0.0578429i
\(236\) 0 0
\(237\) 2.20023 12.4781i 0.142920 0.810540i
\(238\) 0 0
\(239\) 7.64751 9.11394i 0.494676 0.589532i −0.459724 0.888062i \(-0.652052\pi\)
0.954400 + 0.298530i \(0.0964962\pi\)
\(240\) 0 0
\(241\) 4.10427 11.2764i 0.264379 0.726375i −0.734481 0.678630i \(-0.762574\pi\)
0.998860 0.0477455i \(-0.0152037\pi\)
\(242\) 0 0
\(243\) −15.8936 2.80246i −1.01957 0.179778i
\(244\) 0 0
\(245\) 5.20629 + 26.8533i 0.332618 + 1.71560i
\(246\) 0 0
\(247\) 3.35591 + 9.22029i 0.213532 + 0.586673i
\(248\) 0 0
\(249\) 4.78812 + 8.29327i 0.303435 + 0.525565i
\(250\) 0 0
\(251\) 7.37319 + 4.25691i 0.465392 + 0.268694i 0.714309 0.699831i \(-0.246741\pi\)
−0.248917 + 0.968525i \(0.580075\pi\)
\(252\) 0 0
\(253\) −1.03163 −0.0648582
\(254\) 0 0
\(255\) 3.48251 + 9.08536i 0.218083 + 0.568947i
\(256\) 0 0
\(257\) 12.0026 4.36860i 0.748703 0.272506i 0.0606433 0.998159i \(-0.480685\pi\)
0.688060 + 0.725654i \(0.258463\pi\)
\(258\) 0 0
\(259\) 26.4566 + 3.41505i 1.64393 + 0.212201i
\(260\) 0 0
\(261\) 5.78790 + 15.9021i 0.358262 + 0.984317i
\(262\) 0 0
\(263\) 1.69791 + 2.02349i 0.104698 + 0.124774i 0.815849 0.578265i \(-0.196270\pi\)
−0.711151 + 0.703039i \(0.751826\pi\)
\(264\) 0 0
\(265\) −2.90916 + 8.43556i −0.178708 + 0.518192i
\(266\) 0 0
\(267\) 3.08778 5.34819i 0.188969 0.327304i
\(268\) 0 0
\(269\) 12.9649 + 22.4558i 0.790482 + 1.36916i 0.925669 + 0.378335i \(0.123503\pi\)
−0.135186 + 0.990820i \(0.543163\pi\)
\(270\) 0 0
\(271\) −19.3375 + 7.03827i −1.17467 + 0.427544i −0.854316 0.519754i \(-0.826023\pi\)
−0.320352 + 0.947298i \(0.603801\pi\)
\(272\) 0 0
\(273\) 12.3357 + 21.3661i 0.746593 + 1.29314i
\(274\) 0 0
\(275\) 2.96721 2.66650i 0.178929 0.160796i
\(276\) 0 0
\(277\) −8.30075 3.02123i −0.498744 0.181528i 0.0803851 0.996764i \(-0.474385\pi\)
−0.579129 + 0.815236i \(0.696607\pi\)
\(278\) 0 0
\(279\) 2.85397 3.40123i 0.170863 0.203627i
\(280\) 0 0
\(281\) −7.87777 1.38906i −0.469948 0.0828646i −0.0663413 0.997797i \(-0.521133\pi\)
−0.403607 + 0.914932i \(0.632244\pi\)
\(282\) 0 0
\(283\) −2.41869 + 2.02952i −0.143776 + 0.120642i −0.711839 0.702343i \(-0.752137\pi\)
0.568063 + 0.822985i \(0.307693\pi\)
\(284\) 0 0
\(285\) 2.64325 2.29550i 0.156572 0.135973i
\(286\) 0 0
\(287\) −32.1154 + 38.2736i −1.89571 + 2.25922i
\(288\) 0 0
\(289\) 0.710796 + 4.03113i 0.0418115 + 0.237125i
\(290\) 0 0
\(291\) −0.346562 + 0.0611083i −0.0203158 + 0.00358223i
\(292\) 0 0
\(293\) 3.97588 10.9237i 0.232274 0.638167i −0.767723 0.640782i \(-0.778610\pi\)
0.999997 + 0.00261540i \(0.000832507\pi\)
\(294\) 0 0
\(295\) 3.27866 9.50699i 0.190891 0.553519i
\(296\) 0 0
\(297\) 3.85700i 0.223806i
\(298\) 0 0
\(299\) 7.21449 + 2.62586i 0.417224 + 0.151857i
\(300\) 0 0
\(301\) 7.69862 1.35748i 0.443741 0.0782436i
\(302\) 0 0
\(303\) 1.62112 0.285847i 0.0931309 0.0164215i
\(304\) 0 0
\(305\) 0.389217 0.233609i 0.0222865 0.0133764i
\(306\) 0 0
\(307\) −0.972631 0.561549i −0.0555110 0.0320493i 0.471988 0.881605i \(-0.343537\pi\)
−0.527499 + 0.849556i \(0.676870\pi\)
\(308\) 0 0
\(309\) 9.76134 + 11.6331i 0.555303 + 0.661785i
\(310\) 0 0
\(311\) −16.1237 2.84304i −0.914291 0.161214i −0.303340 0.952882i \(-0.598102\pi\)
−0.610951 + 0.791668i \(0.709213\pi\)
\(312\) 0 0
\(313\) 7.60981 + 6.38538i 0.430132 + 0.360923i 0.832001 0.554774i \(-0.187195\pi\)
−0.401870 + 0.915697i \(0.631640\pi\)
\(314\) 0 0
\(315\) −12.9820 + 16.0157i −0.731455 + 0.902380i
\(316\) 0 0
\(317\) −14.5263 2.56139i −0.815880 0.143862i −0.249891 0.968274i \(-0.580395\pi\)
−0.565990 + 0.824412i \(0.691506\pi\)
\(318\) 0 0
\(319\) −5.56187 + 3.21115i −0.311405 + 0.179790i
\(320\) 0 0
\(321\) 3.16807 1.15308i 0.176824 0.0643588i
\(322\) 0 0
\(323\) 6.57265 3.79472i 0.365712 0.211144i
\(324\) 0 0
\(325\) −27.5376 + 11.0950i −1.52751 + 0.615438i
\(326\) 0 0
\(327\) −9.34600 −0.516835
\(328\) 0 0
\(329\) −1.42673 + 1.19717i −0.0786581 + 0.0660020i
\(330\) 0 0
\(331\) 9.78702 + 26.8896i 0.537943 + 1.47799i 0.849412 + 0.527730i \(0.176957\pi\)
−0.311469 + 0.950256i \(0.600821\pi\)
\(332\) 0 0
\(333\) 6.89830 + 10.7680i 0.378024 + 0.590082i
\(334\) 0 0
\(335\) −0.194076 11.4353i −0.0106035 0.624779i
\(336\) 0 0
\(337\) 12.6152 + 15.0342i 0.687193 + 0.818965i 0.991013 0.133764i \(-0.0427065\pi\)
−0.303820 + 0.952730i \(0.598262\pi\)
\(338\) 0 0
\(339\) 13.3876i 0.727116i
\(340\) 0 0
\(341\) 1.45927 + 0.842507i 0.0790237 + 0.0456243i
\(342\) 0 0
\(343\) 19.8740 11.4743i 1.07310 0.619553i
\(344\) 0 0
\(345\) −0.0464833 2.73888i −0.00250258 0.147457i
\(346\) 0 0
\(347\) −3.05122 5.28487i −0.163798 0.283707i 0.772430 0.635100i \(-0.219041\pi\)
−0.936228 + 0.351393i \(0.885708\pi\)
\(348\) 0 0
\(349\) 2.41356 13.6880i 0.129195 0.732702i −0.849532 0.527537i \(-0.823116\pi\)
0.978727 0.205165i \(-0.0657731\pi\)
\(350\) 0 0
\(351\) −9.81739 + 26.9731i −0.524013 + 1.43972i
\(352\) 0 0
\(353\) 2.14425 + 1.79924i 0.114127 + 0.0957638i 0.698065 0.716034i \(-0.254045\pi\)
−0.583938 + 0.811798i \(0.698489\pi\)
\(354\) 0 0
\(355\) 17.0119 30.6554i 0.902900 1.62702i
\(356\) 0 0
\(357\) 14.6184 12.2663i 0.773688 0.649202i
\(358\) 0 0
\(359\) −4.27001 + 7.39587i −0.225362 + 0.390339i −0.956428 0.291968i \(-0.905690\pi\)
0.731066 + 0.682307i \(0.239023\pi\)
\(360\) 0 0
\(361\) 12.4630 + 10.4577i 0.655947 + 0.550405i
\(362\) 0 0
\(363\) −9.66957 + 1.70501i −0.507521 + 0.0894896i
\(364\) 0 0
\(365\) −0.692322 0.109996i −0.0362378 0.00575745i
\(366\) 0 0
\(367\) 6.60737 18.1536i 0.344902 0.947610i −0.639048 0.769167i \(-0.720672\pi\)
0.983950 0.178443i \(-0.0571062\pi\)
\(368\) 0 0
\(369\) −23.9514 −1.24686
\(370\) 0 0
\(371\) 17.5006 0.908585
\(372\) 0 0
\(373\) −3.62155 + 9.95012i −0.187517 + 0.515198i −0.997454 0.0713194i \(-0.977279\pi\)
0.809937 + 0.586517i \(0.199501\pi\)
\(374\) 0 0
\(375\) 7.21298 + 7.75749i 0.372477 + 0.400595i
\(376\) 0 0
\(377\) 47.0691 8.29956i 2.42418 0.427449i
\(378\) 0 0
\(379\) 14.1433 + 11.8677i 0.726494 + 0.609601i 0.929173 0.369644i \(-0.120521\pi\)
−0.202679 + 0.979245i \(0.564965\pi\)
\(380\) 0 0
\(381\) 8.67017 15.0172i 0.444186 0.769353i
\(382\) 0 0
\(383\) 14.4442 12.1201i 0.738064 0.619309i −0.194253 0.980952i \(-0.562228\pi\)
0.932317 + 0.361642i \(0.117784\pi\)
\(384\) 0 0
\(385\) −6.84126 3.79650i −0.348663 0.193487i
\(386\) 0 0
\(387\) 2.87078 + 2.40887i 0.145930 + 0.122450i
\(388\) 0 0
\(389\) −9.23959 + 25.3856i −0.468466 + 1.28710i 0.450505 + 0.892774i \(0.351244\pi\)
−0.918971 + 0.394326i \(0.870978\pi\)
\(390\) 0 0
\(391\) 1.03120 5.84820i 0.0521498 0.295756i
\(392\) 0 0
\(393\) 6.17766 + 10.7000i 0.311622 + 0.539744i
\(394\) 0 0
\(395\) −0.507447 29.8997i −0.0255324 1.50442i
\(396\) 0 0
\(397\) −12.7543 + 7.36371i −0.640121 + 0.369574i −0.784661 0.619925i \(-0.787163\pi\)
0.144540 + 0.989499i \(0.453830\pi\)
\(398\) 0 0
\(399\) −5.94624 3.43306i −0.297684 0.171868i
\(400\) 0 0
\(401\) 5.67411i 0.283352i 0.989913 + 0.141676i \(0.0452490\pi\)
−0.989913 + 0.141676i \(0.954751\pi\)
\(402\) 0 0
\(403\) −8.06056 9.60620i −0.401525 0.478519i
\(404\) 0 0
\(405\) −3.86103 + 0.0655279i −0.191856 + 0.00325611i
\(406\) 0 0
\(407\) −3.56985 + 3.28781i −0.176951 + 0.162971i
\(408\) 0 0
\(409\) −9.32479 25.6197i −0.461081 1.26681i −0.924673 0.380762i \(-0.875662\pi\)
0.463592 0.886049i \(-0.346560\pi\)
\(410\) 0 0
\(411\) 7.03212 5.90065i 0.346869 0.291058i
\(412\) 0 0
\(413\) −19.7234 −0.970525
\(414\) 0 0
\(415\) 14.8193 + 17.0644i 0.727453 + 0.837656i
\(416\) 0 0
\(417\) 11.4209 6.59385i 0.559283 0.322902i
\(418\) 0 0
\(419\) −32.5941 + 11.8633i −1.59232 + 0.579558i −0.977837 0.209368i \(-0.932859\pi\)
−0.614487 + 0.788927i \(0.710637\pi\)
\(420\) 0 0
\(421\) −12.9180 + 7.45819i −0.629583 + 0.363490i −0.780591 0.625043i \(-0.785082\pi\)
0.151007 + 0.988533i \(0.451748\pi\)
\(422\) 0 0
\(423\) −0.879273 0.155040i −0.0427517 0.00753828i
\(424\) 0 0
\(425\) 12.1501 + 19.4861i 0.589366 + 0.945215i
\(426\) 0 0
\(427\) −0.682010 0.572274i −0.0330048 0.0276943i
\(428\) 0 0
\(429\) −4.42030 0.779419i −0.213414 0.0376307i
\(430\) 0 0
\(431\) 24.8086 + 29.5657i 1.19499 + 1.42413i 0.879960 + 0.475048i \(0.157569\pi\)
0.315027 + 0.949083i \(0.397986\pi\)
\(432\) 0 0
\(433\) 26.8761 + 15.5169i 1.29158 + 0.745695i 0.978934 0.204175i \(-0.0654512\pi\)
0.312646 + 0.949870i \(0.398784\pi\)
\(434\) 0 0
\(435\) −8.77589 14.6215i −0.420772 0.701049i
\(436\) 0 0
\(437\) −2.10420 + 0.371028i −0.100658 + 0.0177487i
\(438\) 0 0
\(439\) −23.9885 + 4.22981i −1.14491 + 0.201878i −0.713751 0.700400i \(-0.753005\pi\)
−0.431156 + 0.902278i \(0.641894\pi\)
\(440\) 0 0
\(441\) 24.1667 + 8.79596i 1.15080 + 0.418855i
\(442\) 0 0
\(443\) 29.9783i 1.42431i −0.702022 0.712155i \(-0.747719\pi\)
0.702022 0.712155i \(-0.252281\pi\)
\(444\) 0 0
\(445\) 4.75181 13.7786i 0.225257 0.653170i
\(446\) 0 0
\(447\) −3.85169 + 10.5824i −0.182179 + 0.500532i
\(448\) 0 0
\(449\) 33.4009 5.88948i 1.57629 0.277942i 0.684025 0.729459i \(-0.260228\pi\)
0.892263 + 0.451517i \(0.149117\pi\)
\(450\) 0 0
\(451\) −1.57842 8.95164i −0.0743247 0.421516i
\(452\) 0 0
\(453\) −0.372773 + 0.444254i −0.0175144 + 0.0208729i
\(454\) 0 0
\(455\) 38.1794 + 43.9632i 1.78988 + 2.06103i
\(456\) 0 0
\(457\) −9.91966 + 8.32358i −0.464022 + 0.389361i −0.844608 0.535385i \(-0.820167\pi\)
0.380586 + 0.924745i \(0.375722\pi\)
\(458\) 0 0
\(459\) 21.8649 + 3.85537i 1.02057 + 0.179953i
\(460\) 0 0
\(461\) −10.5826 + 12.6119i −0.492882 + 0.587394i −0.953948 0.299972i \(-0.903023\pi\)
0.461066 + 0.887366i \(0.347467\pi\)
\(462\) 0 0
\(463\) −26.7562 9.73847i −1.24347 0.452585i −0.365278 0.930898i \(-0.619026\pi\)
−0.878189 + 0.478313i \(0.841248\pi\)
\(464\) 0 0
\(465\) −2.17102 + 3.91217i −0.100679 + 0.181422i
\(466\) 0 0
\(467\) −1.24778 2.16122i −0.0577404 0.100009i 0.835710 0.549170i \(-0.185056\pi\)
−0.893451 + 0.449161i \(0.851723\pi\)
\(468\) 0 0
\(469\) −21.0782 + 7.67184i −0.973301 + 0.354253i
\(470\) 0 0
\(471\) −5.51915 9.55945i −0.254309 0.440476i
\(472\) 0 0
\(473\) −0.711111 + 1.23168i −0.0326969 + 0.0566327i
\(474\) 0 0
\(475\) 5.09315 6.50596i 0.233690 0.298514i
\(476\) 0 0
\(477\) 5.39268 + 6.42674i 0.246914 + 0.294260i
\(478\) 0 0
\(479\) −4.57919 12.5812i −0.209228 0.574850i 0.790042 0.613053i \(-0.210059\pi\)
−0.999270 + 0.0382029i \(0.987837\pi\)
\(480\) 0 0
\(481\) 33.3335 13.9060i 1.51988 0.634060i
\(482\) 0 0
\(483\) −5.04845 + 1.83749i −0.229712 + 0.0836085i
\(484\) 0 0
\(485\) −0.775523 + 0.297265i −0.0352147 + 0.0134981i
\(486\) 0 0
\(487\) 42.0899 1.90727 0.953637 0.300958i \(-0.0973064\pi\)
0.953637 + 0.300958i \(0.0973064\pi\)
\(488\) 0 0
\(489\) −19.0552 11.0015i −0.861706 0.497506i
\(490\) 0 0
\(491\) −9.47119 16.4046i −0.427429 0.740328i 0.569215 0.822189i \(-0.307247\pi\)
−0.996644 + 0.0818603i \(0.973914\pi\)
\(492\) 0 0
\(493\) −12.6441 34.7394i −0.569461 1.56458i
\(494\) 0 0
\(495\) −0.713897 3.68218i −0.0320873 0.165502i
\(496\) 0 0
\(497\) −67.7161 11.9402i −3.03748 0.535590i
\(498\) 0 0
\(499\) 2.33240 6.40822i 0.104413 0.286871i −0.876475 0.481448i \(-0.840111\pi\)
0.980887 + 0.194576i \(0.0623332\pi\)
\(500\) 0 0
\(501\) −2.36824 + 2.82235i −0.105805 + 0.126093i
\(502\) 0 0
\(503\) −6.11462 + 34.6778i −0.272638 + 1.54620i 0.473730 + 0.880670i \(0.342907\pi\)
−0.746367 + 0.665534i \(0.768204\pi\)
\(504\) 0 0
\(505\) 3.62767 1.39052i 0.161429 0.0618774i
\(506\) 0 0
\(507\) 18.2619 + 10.5435i 0.811038 + 0.468253i
\(508\) 0 0
\(509\) 16.7180 + 14.0281i 0.741013 + 0.621784i 0.933110 0.359592i \(-0.117084\pi\)
−0.192096 + 0.981376i \(0.561529\pi\)
\(510\) 0 0
\(511\) 0.238741 + 1.35397i 0.0105613 + 0.0598961i
\(512\) 0 0
\(513\) −1.38717 7.86706i −0.0612453 0.347339i
\(514\) 0 0
\(515\) 27.8424 + 22.5686i 1.22688 + 0.994492i
\(516\) 0 0
\(517\) 0.338839i 0.0149021i
\(518\) 0 0
\(519\) −11.0305 −0.484186
\(520\) 0 0
\(521\) −32.1815 11.7131i −1.40990 0.513161i −0.478799 0.877925i \(-0.658928\pi\)
−0.931100 + 0.364763i \(0.881150\pi\)
\(522\) 0 0
\(523\) −2.49122 14.1284i −0.108933 0.617791i −0.989576 0.144011i \(-0.954000\pi\)
0.880643 0.473781i \(-0.157111\pi\)
\(524\) 0 0
\(525\) 9.77106 18.3339i 0.426444 0.800158i
\(526\) 0 0
\(527\) −6.23472 + 7.43024i −0.271588 + 0.323667i
\(528\) 0 0
\(529\) 10.6641 18.4707i 0.463655 0.803075i
\(530\) 0 0
\(531\) −6.07762 7.24303i −0.263746 0.314321i
\(532\) 0 0
\(533\) −11.7467 + 66.6188i −0.508806 + 2.88558i
\(534\) 0 0
\(535\) 6.82233 4.09478i 0.294955 0.177033i
\(536\) 0 0
\(537\) 11.9406 + 4.34603i 0.515276 + 0.187545i
\(538\) 0 0
\(539\) −1.69482 + 9.61179i −0.0730010 + 0.414009i
\(540\) 0 0
\(541\) −4.47951 + 2.58624i −0.192589 + 0.111191i −0.593194 0.805060i \(-0.702133\pi\)
0.400605 + 0.916251i \(0.368800\pi\)
\(542\) 0 0
\(543\) 6.62253 + 18.1952i 0.284200 + 0.780833i
\(544\) 0 0
\(545\) −21.6544 + 4.19832i −0.927571 + 0.179836i
\(546\) 0 0
\(547\) −15.4266 + 26.7197i −0.659596 + 1.14245i 0.321125 + 0.947037i \(0.395939\pi\)
−0.980720 + 0.195416i \(0.937394\pi\)
\(548\) 0 0
\(549\) 0.426797i 0.0182152i
\(550\) 0 0
\(551\) −10.1896 + 8.55006i −0.434090 + 0.364245i
\(552\) 0 0
\(553\) −55.1127 + 20.0594i −2.34363 + 0.853012i
\(554\) 0 0
\(555\) −8.88965 9.32945i −0.377345 0.396013i
\(556\) 0 0
\(557\) 19.0747 6.94261i 0.808219 0.294168i 0.0953312 0.995446i \(-0.469609\pi\)
0.712888 + 0.701278i \(0.247387\pi\)
\(558\) 0 0
\(559\) 8.10803 6.80345i 0.342933 0.287755i
\(560\) 0 0
\(561\) 3.47178i 0.146579i
\(562\) 0 0
\(563\) 16.9432 29.3465i 0.714071 1.23681i −0.249246 0.968440i \(-0.580183\pi\)
0.963317 0.268367i \(-0.0864838\pi\)
\(564\) 0 0
\(565\) 6.01386 + 31.0187i 0.253005 + 1.30497i
\(566\) 0 0
\(567\) 2.59032 + 7.11684i 0.108783 + 0.298879i
\(568\) 0 0
\(569\) −12.1617 + 7.02157i −0.509846 + 0.294359i −0.732770 0.680476i \(-0.761773\pi\)
0.222925 + 0.974836i \(0.428440\pi\)
\(570\) 0 0
\(571\) −3.86828 + 21.9381i −0.161882 + 0.918081i 0.790338 + 0.612671i \(0.209905\pi\)
−0.952221 + 0.305410i \(0.901206\pi\)
\(572\) 0 0
\(573\) −0.917686 0.334010i −0.0383369 0.0139535i
\(574\) 0 0
\(575\) −1.33804 6.32502i −0.0557999 0.263772i
\(576\) 0 0
\(577\) 3.10096 17.5864i 0.129095 0.732133i −0.849696 0.527272i \(-0.823215\pi\)
0.978791 0.204861i \(-0.0656742\pi\)
\(578\) 0 0
\(579\) 9.53478 + 11.3631i 0.396252 + 0.472235i
\(580\) 0 0
\(581\) 22.1633 38.3879i 0.919488 1.59260i
\(582\) 0 0
\(583\) −2.04657 + 2.43900i −0.0847601 + 0.101013i
\(584\) 0 0
\(585\) −4.37993 + 27.5676i −0.181088 + 1.13978i
\(586\) 0 0
\(587\) −6.16682 34.9738i −0.254532 1.44352i −0.797271 0.603621i \(-0.793724\pi\)
0.542740 0.839901i \(-0.317387\pi\)
\(588\) 0 0
\(589\) 3.27944 + 1.19362i 0.135127 + 0.0491823i
\(590\) 0 0
\(591\) 15.5484 0.639575
\(592\) 0 0
\(593\) 12.4419i 0.510929i 0.966818 + 0.255464i \(0.0822283\pi\)
−0.966818 + 0.255464i \(0.917772\pi\)
\(594\) 0 0
\(595\) 28.3602 34.9874i 1.16266 1.43434i
\(596\) 0 0
\(597\) 2.98555 + 16.9319i 0.122190 + 0.692976i
\(598\) 0 0
\(599\) 8.18282 + 46.4071i 0.334341 + 1.89614i 0.433643 + 0.901085i \(0.357228\pi\)
−0.0993017 + 0.995057i \(0.531661\pi\)
\(600\) 0 0
\(601\) −37.1341 31.1592i −1.51473 1.27101i −0.853845 0.520528i \(-0.825735\pi\)
−0.660889 0.750484i \(-0.729820\pi\)
\(602\) 0 0
\(603\) −9.31243 5.37653i −0.379231 0.218949i
\(604\) 0 0
\(605\) −21.6382 + 8.29411i −0.879716 + 0.337204i
\(606\) 0 0
\(607\) 0.0401154 0.227506i 0.00162823 0.00923417i −0.983983 0.178263i \(-0.942952\pi\)
0.985611 + 0.169029i \(0.0540632\pi\)
\(608\) 0 0
\(609\) −21.4983 + 25.6207i −0.871157 + 1.03820i
\(610\) 0 0
\(611\) −0.862461 + 2.36959i −0.0348914 + 0.0958634i
\(612\) 0 0
\(613\) −46.9139 8.27219i −1.89484 0.334111i −0.900023 0.435842i \(-0.856451\pi\)
−0.994812 + 0.101731i \(0.967562\pi\)
\(614\) 0 0
\(615\) 23.6946 4.59388i 0.955459 0.185243i
\(616\) 0 0
\(617\) −3.58282 9.84371i −0.144239 0.396293i 0.846445 0.532476i \(-0.178738\pi\)
−0.990684 + 0.136184i \(0.956516\pi\)
\(618\) 0 0
\(619\) −6.17060 10.6878i −0.248017 0.429579i 0.714958 0.699167i \(-0.246446\pi\)
−0.962976 + 0.269589i \(0.913112\pi\)
\(620\) 0 0
\(621\) −5.41318 3.12530i −0.217223 0.125414i
\(622\) 0 0
\(623\) −28.5854 −1.14525
\(624\) 0 0
\(625\) 20.1970 + 14.7337i 0.807879 + 0.589348i
\(626\) 0 0
\(627\) 1.17382 0.427237i 0.0468780 0.0170622i
\(628\) 0 0
\(629\) −15.0698 23.5235i −0.600874 0.937941i
\(630\) 0 0
\(631\) −13.4759 37.0246i −0.536466 1.47393i −0.851248 0.524764i \(-0.824154\pi\)
0.314782 0.949164i \(-0.398069\pi\)
\(632\) 0 0
\(633\) −6.22168 7.41471i −0.247290 0.294708i
\(634\) 0 0
\(635\) 13.3426 38.6890i 0.529486 1.53533i
\(636\) 0 0
\(637\) 36.3176 62.9039i 1.43896 2.49234i
\(638\) 0 0
\(639\) −16.4814 28.5467i −0.651995 1.12929i
\(640\) 0 0
\(641\) 4.65455 1.69412i 0.183844 0.0669136i −0.248458 0.968643i \(-0.579924\pi\)
0.432302 + 0.901729i \(0.357702\pi\)
\(642\) 0 0
\(643\) 10.6324 + 18.4158i 0.419300 + 0.726249i 0.995869 0.0907990i \(-0.0289421\pi\)
−0.576569 + 0.817049i \(0.695609\pi\)
\(644\) 0 0
\(645\) −3.30203 1.83243i −0.130017 0.0721519i
\(646\) 0 0
\(647\) −34.6354 12.6063i −1.36166 0.495603i −0.445091 0.895485i \(-0.646829\pi\)
−0.916566 + 0.399882i \(0.869051\pi\)
\(648\) 0 0
\(649\) 2.30651 2.74879i 0.0905383 0.107899i
\(650\) 0 0
\(651\) 8.64176 + 1.52378i 0.338697 + 0.0597215i
\(652\) 0 0
\(653\) 8.24845 6.92127i 0.322787 0.270850i −0.466966 0.884275i \(-0.654653\pi\)
0.789753 + 0.613425i \(0.210209\pi\)
\(654\) 0 0
\(655\) 19.1200 + 22.0165i 0.747080 + 0.860256i
\(656\) 0 0
\(657\) −0.423652 + 0.504889i −0.0165283 + 0.0196976i
\(658\) 0 0
\(659\) −2.70254 15.3269i −0.105276 0.597051i −0.991110 0.133048i \(-0.957524\pi\)
0.885833 0.464003i \(-0.153587\pi\)
\(660\) 0 0
\(661\) −40.1443 + 7.07852i −1.56143 + 0.275322i −0.886560 0.462613i \(-0.846912\pi\)
−0.674871 + 0.737936i \(0.735801\pi\)
\(662\) 0 0
\(663\) 8.83686 24.2791i 0.343195 0.942921i
\(664\) 0 0
\(665\) −15.3194 5.28318i −0.594061 0.204873i
\(666\) 0 0
\(667\) 10.4079i 0.402995i
\(668\) 0 0
\(669\) 18.4458 + 6.71371i 0.713155 + 0.259567i
\(670\) 0 0
\(671\) 0.159512 0.0281263i 0.00615790 0.00108580i
\(672\) 0 0
\(673\) −31.9457 + 5.63289i −1.23142 + 0.217132i −0.751233 0.660037i \(-0.770541\pi\)
−0.480182 + 0.877169i \(0.659429\pi\)
\(674\) 0 0
\(675\) 23.6476 5.00256i 0.910196 0.192549i
\(676\) 0 0
\(677\) −13.5828 7.84204i −0.522030 0.301394i 0.215735 0.976452i \(-0.430785\pi\)
−0.737765 + 0.675058i \(0.764119\pi\)
\(678\) 0 0
\(679\) 1.04705 + 1.24782i 0.0401820 + 0.0478870i
\(680\) 0 0
\(681\) −10.8311 1.90981i −0.415048 0.0731842i
\(682\) 0 0
\(683\) 7.90817 + 6.63574i 0.302598 + 0.253909i 0.781424 0.624000i \(-0.214493\pi\)
−0.478827 + 0.877909i \(0.658938\pi\)
\(684\) 0 0
\(685\) 13.6426 16.8305i 0.521255 0.643061i
\(686\) 0 0
\(687\) 15.1483 + 2.67106i 0.577945 + 0.101907i
\(688\) 0 0
\(689\) 20.5203 11.8474i 0.781760 0.451349i
\(690\) 0 0
\(691\) 9.87074 3.59266i 0.375501 0.136671i −0.147374 0.989081i \(-0.547082\pi\)
0.522874 + 0.852410i \(0.324860\pi\)
\(692\) 0 0
\(693\) −6.37066 + 3.67810i −0.242001 + 0.139720i
\(694\) 0 0
\(695\) 23.4998 20.4081i 0.891397 0.774124i
\(696\) 0 0
\(697\) 52.3235 1.98189
\(698\) 0 0
\(699\) 16.3925 13.7549i 0.620021 0.520260i
\(700\) 0 0
\(701\) −14.5985 40.1090i −0.551378 1.51490i −0.831830 0.555030i \(-0.812707\pi\)
0.280453 0.959868i \(-0.409515\pi\)
\(702\) 0 0
\(703\) −6.09889 + 7.98998i −0.230024 + 0.301348i
\(704\) 0 0
\(705\) 0.899584 0.0152674i 0.0338803 0.000575004i
\(706\) 0 0
\(707\) −4.89778 5.83695i −0.184200 0.219521i
\(708\) 0 0
\(709\) 36.5430i 1.37240i −0.727412 0.686201i \(-0.759277\pi\)
0.727412 0.686201i \(-0.240723\pi\)
\(710\) 0 0
\(711\) −24.3490 14.0579i −0.913158 0.527212i
\(712\) 0 0
\(713\) 2.36486 1.36535i 0.0885648 0.0511329i
\(714\) 0 0
\(715\) −10.5918 + 0.179760i −0.396112 + 0.00672266i
\(716\) 0 0
\(717\) 5.63605 + 9.76193i 0.210482 + 0.364566i
\(718\) 0 0
\(719\) −1.76717 + 10.0221i −0.0659042 + 0.373761i 0.933962 + 0.357374i \(0.116328\pi\)
−0.999866 + 0.0163876i \(0.994783\pi\)
\(720\) 0 0
\(721\) 24.0415 66.0536i 0.895354 2.45996i
\(722\) 0 0
\(723\) 8.70944 + 7.30809i 0.323908 + 0.271791i
\(724\) 0 0
\(725\) −26.9016 29.9354i −0.999100 1.11177i
\(726\) 0 0
\(727\) 0.212334 0.178169i 0.00787503 0.00660794i −0.638842 0.769338i \(-0.720586\pi\)
0.646717 + 0.762730i \(0.276142\pi\)
\(728\) 0 0
\(729\) 5.05483 8.75522i 0.187216 0.324268i
\(730\) 0 0
\(731\) −6.27143 5.26236i −0.231957 0.194635i
\(732\) 0 0
\(733\) −11.0400 + 1.94665i −0.407772 + 0.0719013i −0.373772 0.927521i \(-0.621936\pi\)
−0.0340003 + 0.999422i \(0.510825\pi\)
\(734\) 0 0
\(735\) −25.5947 4.06648i −0.944075 0.149995i
\(736\) 0 0
\(737\) 1.39574 3.83477i 0.0514128 0.141256i
\(738\) 0 0
\(739\) 43.9151 1.61544 0.807722 0.589564i \(-0.200701\pi\)
0.807722 + 0.589564i \(0.200701\pi\)
\(740\) 0 0
\(741\) −9.29633 −0.341509
\(742\) 0 0
\(743\) −6.23262 + 17.1240i −0.228653 + 0.628218i −0.999966 0.00823752i \(-0.997378\pi\)
0.771313 + 0.636455i \(0.219600\pi\)
\(744\) 0 0
\(745\) −4.17050 + 26.2494i −0.152795 + 0.961703i
\(746\) 0 0
\(747\) 20.9267 3.68993i 0.765666 0.135008i
\(748\) 0 0
\(749\) −11.9545 10.0310i −0.436808 0.366525i
\(750\) 0 0
\(751\) −14.4686 + 25.0604i −0.527967 + 0.914465i 0.471502 + 0.881865i \(0.343712\pi\)
−0.999468 + 0.0326002i \(0.989621\pi\)
\(752\) 0 0
\(753\) −6.17919 + 5.18496i −0.225182 + 0.188950i
\(754\) 0 0
\(755\) −0.664139 + 1.19677i −0.0241705 + 0.0435551i
\(756\) 0 0
\(757\) 4.57235 + 3.83665i 0.166185 + 0.139446i 0.722087 0.691802i \(-0.243183\pi\)
−0.555903 + 0.831247i \(0.687627\pi\)
\(758\) 0 0
\(759\) 0.334295 0.918467i 0.0121341 0.0333383i
\(760\) 0 0
\(761\) −7.05714 + 40.0230i −0.255821 + 1.45083i 0.538135 + 0.842858i \(0.319129\pi\)
−0.793956 + 0.607975i \(0.791982\pi\)
\(762\) 0 0
\(763\) 21.6304 + 37.4650i 0.783073 + 1.35632i
\(764\) 0 0
\(765\) 21.5874 0.366374i 0.780495 0.0132463i
\(766\) 0 0
\(767\) −23.1266 + 13.3522i −0.835054 + 0.482119i
\(768\) 0 0
\(769\) −16.1199 9.30685i −0.581300 0.335614i 0.180350 0.983603i \(-0.442277\pi\)
−0.761650 + 0.647989i \(0.775610\pi\)
\(770\) 0 0
\(771\) 12.1016i 0.435829i
\(772\) 0 0
\(773\) 8.34439 + 9.94446i 0.300127 + 0.357677i 0.894940 0.446187i \(-0.147218\pi\)
−0.594813 + 0.803864i \(0.702774\pi\)
\(774\) 0 0
\(775\) −3.27280 + 10.0396i −0.117562 + 0.360633i
\(776\) 0 0
\(777\) −11.6135 + 22.4478i −0.416633 + 0.805310i
\(778\) 0 0
\(779\) −6.43893 17.6908i −0.230699 0.633840i
\(780\) 0 0
\(781\) 9.58296 8.04106i 0.342905 0.287732i
\(782\) 0 0
\(783\) −38.9123 −1.39061
\(784\) 0 0
\(785\) −17.0819 19.6697i −0.609679 0.702040i
\(786\) 0 0
\(787\) 0.705191 0.407142i 0.0251374 0.0145131i −0.487379 0.873191i \(-0.662047\pi\)
0.512516 + 0.858678i \(0.328714\pi\)
\(788\) 0 0
\(789\) −2.35172 + 0.855958i −0.0837236 + 0.0304729i
\(790\) 0 0
\(791\) 53.6664 30.9843i 1.90816 1.10168i
\(792\) 0 0
\(793\) −1.18710 0.209318i −0.0421552 0.00743310i
\(794\) 0 0
\(795\) −6.56752 5.32353i −0.232926 0.188806i
\(796\) 0 0
\(797\) 30.5017 + 25.5940i 1.08043 + 0.906586i 0.995956 0.0898403i \(-0.0286357\pi\)
0.0844706 + 0.996426i \(0.473080\pi\)
\(798\) 0 0
\(799\) 1.92084 + 0.338695i 0.0679543 + 0.0119822i
\(800\) 0 0
\(801\) −8.80839 10.4974i −0.311229 0.370908i
\(802\) 0 0
\(803\) −0.216618 0.125064i −0.00764427 0.00441342i
\(804\) 0 0
\(805\) −10.8717 + 6.52521i −0.383176 + 0.229983i
\(806\) 0 0
\(807\) −24.1937 + 4.26600i −0.851659 + 0.150170i
\(808\) 0 0
\(809\) 35.2228 6.21073i 1.23837 0.218357i 0.484151 0.874984i \(-0.339128\pi\)
0.754216 + 0.656627i \(0.228017\pi\)
\(810\) 0 0
\(811\) 8.27790 + 3.01291i 0.290676 + 0.105798i 0.483243 0.875486i \(-0.339459\pi\)
−0.192566 + 0.981284i \(0.561681\pi\)
\(812\) 0 0
\(813\) 19.4969i 0.683788i
\(814\) 0 0
\(815\) −49.0923 16.9304i −1.71963 0.593045i
\(816\) 0 0
\(817\) −1.00746 + 2.76799i −0.0352467 + 0.0968396i
\(818\) 0 0
\(819\) 53.9138 9.50645i 1.88390 0.332182i
\(820\) 0 0
\(821\) 7.83242 + 44.4198i 0.273353 + 1.55026i 0.744144 + 0.668019i \(0.232857\pi\)
−0.470791 + 0.882245i \(0.656031\pi\)
\(822\) 0 0
\(823\) −11.8439 + 14.1150i −0.412851 + 0.492016i −0.931894 0.362732i \(-0.881844\pi\)
0.519043 + 0.854748i \(0.326289\pi\)
\(824\) 0 0
\(825\) 1.41249 + 3.50578i 0.0491765 + 0.122056i
\(826\) 0 0
\(827\) −20.8396 + 17.4865i −0.724664 + 0.608065i −0.928671 0.370904i \(-0.879048\pi\)
0.204007 + 0.978969i \(0.434603\pi\)
\(828\) 0 0
\(829\) 9.32783 + 1.64475i 0.323969 + 0.0571245i 0.333268 0.942832i \(-0.391849\pi\)
−0.00929858 + 0.999957i \(0.502960\pi\)
\(830\) 0 0
\(831\) 5.37962 6.41118i 0.186617 0.222401i
\(832\) 0 0
\(833\) −52.7939 19.2154i −1.82920 0.665775i
\(834\) 0 0
\(835\) −4.21929 + 7.60314i −0.146015 + 0.263117i
\(836\) 0 0
\(837\) 5.10470 + 8.84159i 0.176444 + 0.305610i
\(838\) 0 0
\(839\) −3.75024 + 1.36497i −0.129473 + 0.0471242i −0.405944 0.913898i \(-0.633057\pi\)
0.276471 + 0.961022i \(0.410835\pi\)
\(840\) 0 0
\(841\) 17.8964 + 30.9976i 0.617119 + 1.06888i
\(842\) 0 0
\(843\) 3.78943 6.56349i 0.130515 0.226059i
\(844\) 0 0
\(845\) 47.0484 + 16.2255i 1.61851 + 0.558174i
\(846\) 0 0
\(847\) 29.2141 + 34.8160i 1.00381 + 1.19629i
\(848\) 0 0
\(849\) −1.02313 2.81102i −0.0351137 0.0964740i
\(850\) 0 0
\(851\) 1.72171 + 7.67425i 0.0590193 + 0.263070i
\(852\) 0 0
\(853\) 27.3895 9.96896i 0.937798 0.341331i 0.172502 0.985009i \(-0.444815\pi\)
0.765296 + 0.643679i \(0.222593\pi\)
\(854\) 0 0
\(855\) −2.78042 7.25372i −0.0950884 0.248072i
\(856\) 0 0
\(857\) −11.3940 −0.389213 −0.194606 0.980881i \(-0.562343\pi\)
−0.194606 + 0.980881i \(0.562343\pi\)
\(858\) 0 0
\(859\) 39.9762 + 23.0803i 1.36397 + 0.787489i 0.990150 0.140011i \(-0.0447138\pi\)
0.373822 + 0.927501i \(0.378047\pi\)
\(860\) 0 0
\(861\) −23.6684 40.9948i −0.806616 1.39710i
\(862\) 0 0
\(863\) −18.2906 50.2531i −0.622620 1.71064i −0.700481 0.713671i \(-0.747031\pi\)
0.0778601 0.996964i \(-0.475191\pi\)
\(864\) 0 0
\(865\) −25.5573 + 4.95503i −0.868975 + 0.168476i
\(866\) 0 0
\(867\) −3.81926 0.673438i −0.129709 0.0228712i
\(868\) 0 0
\(869\) 3.64941 10.0267i 0.123798 0.340132i
\(870\) 0 0
\(871\) −19.5216 + 23.2649i −0.661464 + 0.788302i
\(872\) 0 0
\(873\) −0.135598 + 0.769015i −0.00458930 + 0.0260272i
\(874\) 0 0
\(875\) 14.4034 46.8683i 0.486925 1.58444i
\(876\) 0 0
\(877\) −21.1439 12.2074i −0.713979 0.412216i 0.0985535 0.995132i \(-0.468578\pi\)
−0.812533 + 0.582916i \(0.801912\pi\)
\(878\) 0 0
\(879\) 8.43701 + 7.07949i 0.284573 + 0.238785i
\(880\) 0 0
\(881\) 4.29172 + 24.3396i 0.144592 + 0.820020i 0.967694 + 0.252127i \(0.0811302\pi\)
−0.823102 + 0.567893i \(0.807759\pi\)
\(882\) 0 0
\(883\) 5.73595 + 32.5302i 0.193030 + 1.09473i 0.915196 + 0.403008i \(0.132035\pi\)
−0.722166 + 0.691719i \(0.756854\pi\)
\(884\) 0 0
\(885\) 7.40169 + 5.99969i 0.248805 + 0.201677i
\(886\) 0 0
\(887\) 17.4414i 0.585623i −0.956170 0.292812i \(-0.905409\pi\)
0.956170 0.292812i \(-0.0945909\pi\)
\(888\) 0 0
\(889\) −80.2650 −2.69200
\(890\) 0 0
\(891\) −1.29477 0.471258i −0.0433765 0.0157877i
\(892\) 0 0
\(893\) −0.121864 0.691123i −0.00407801 0.0231276i
\(894\) 0 0
\(895\) 29.6183 + 4.70575i 0.990030 + 0.157296i
\(896\) 0 0
\(897\) −4.67562 + 5.57219i −0.156115 + 0.186050i
\(898\) 0 0
\(899\) 8.49983 14.7221i 0.283485 0.491011i
\(900\) 0 0
\(901\) −11.7807 14.0397i −0.392472 0.467730i
\(902\) 0 0
\(903\) −1.28613 + 7.29400i −0.0427997 + 0.242729i
\(904\) 0 0
\(905\) 23.5177 + 39.1829i 0.781754 + 1.30248i
\(906\) 0 0
\(907\) −30.7961 11.2089i −1.02257 0.372184i −0.224321 0.974515i \(-0.572016\pi\)
−0.798246 + 0.602331i \(0.794239\pi\)
\(908\) 0 0
\(909\) 0.634289 3.59723i 0.0210380 0.119313i
\(910\) 0 0
\(911\) 4.69453 2.71039i 0.155537 0.0897992i −0.420212 0.907426i \(-0.638044\pi\)
0.575748 + 0.817627i \(0.304711\pi\)
\(912\) 0 0
\(913\) 2.75817 + 7.57801i 0.0912821 + 0.250796i
\(914\) 0 0
\(915\) 0.0818598 + 0.422221i 0.00270620 + 0.0139582i
\(916\) 0 0
\(917\) 28.5952 49.5283i 0.944295 1.63557i
\(918\) 0 0
\(919\) 50.5550i 1.66766i 0.552023 + 0.833829i \(0.313856\pi\)
−0.552023 + 0.833829i \(0.686144\pi\)
\(920\) 0 0
\(921\) 0.815125 0.683971i 0.0268593 0.0225376i
\(922\) 0 0
\(923\) −87.4834 + 31.8414i −2.87955 + 1.04807i
\(924\) 0 0
\(925\) −24.7879 17.6227i −0.815021 0.579431i
\(926\) 0 0
\(927\) 31.6651 11.5252i 1.04002 0.378536i
\(928\) 0 0
\(929\) 4.57589 3.83963i 0.150130 0.125974i −0.564629 0.825345i \(-0.690981\pi\)
0.714759 + 0.699371i \(0.246536\pi\)
\(930\) 0 0
\(931\) 20.2145i 0.662505i
\(932\) 0 0
\(933\) 7.75596 13.4337i 0.253919 0.439800i
\(934\) 0 0
\(935\) 1.55956 + 8.04399i 0.0510031 + 0.263067i
\(936\) 0 0
\(937\) −11.2214 30.8307i −0.366589 1.00719i −0.976649 0.214839i \(-0.931077\pi\)
0.610061 0.792355i \(-0.291145\pi\)
\(938\) 0 0
\(939\) −8.15085 + 4.70589i −0.265993 + 0.153571i
\(940\) 0 0
\(941\) −4.09873 + 23.2451i −0.133615 + 0.757768i 0.842199 + 0.539166i \(0.181261\pi\)
−0.975814 + 0.218601i \(0.929851\pi\)
\(942\) 0 0
\(943\) −13.8423 5.03819i −0.450768 0.164066i
\(944\) 0 0
\(945\) −24.3960 40.6463i −0.793603 1.32222i
\(946\) 0 0
\(947\) 4.82434 27.3602i 0.156770 0.889086i −0.800380 0.599493i \(-0.795369\pi\)
0.957150 0.289593i \(-0.0935199\pi\)
\(948\) 0 0
\(949\) 1.19653 + 1.42597i 0.0388411 + 0.0462891i
\(950\) 0 0
\(951\) 6.98759 12.1029i 0.226588 0.392462i
\(952\) 0 0
\(953\) 16.8182 20.0432i 0.544795 0.649261i −0.421461 0.906847i \(-0.638482\pi\)
0.966256 + 0.257585i \(0.0829268\pi\)
\(954\) 0 0
\(955\) −2.27629 0.361657i −0.0736590 0.0117029i
\(956\) 0 0
\(957\) −1.05661 5.99232i −0.0341552 0.193704i
\(958\) 0 0
\(959\) −39.9289 14.5329i −1.28937 0.469292i
\(960\) 0 0
\(961\) 26.5398 0.856123
\(962\) 0 0
\(963\) 7.48104i 0.241073i
\(964\) 0 0
\(965\) 27.1962 + 22.0448i 0.875476 + 0.709648i
\(966\) 0 0
\(967\) 5.80155 + 32.9022i 0.186565 + 1.05806i 0.923928 + 0.382567i \(0.124960\pi\)
−0.737362 + 0.675497i \(0.763929\pi\)
\(968\) 0 0
\(969\) 1.24863 + 7.08132i 0.0401117 + 0.227485i
\(970\) 0 0
\(971\) 42.4349 + 35.6071i 1.36180 + 1.14269i 0.975421 + 0.220348i \(0.0707194\pi\)
0.386381 + 0.922339i \(0.373725\pi\)
\(972\) 0 0
\(973\) −52.8650 30.5216i −1.69477 0.978479i
\(974\) 0 0
\(975\) −0.954492 28.1121i −0.0305682 0.900308i
\(976\) 0 0
\(977\) 1.07411 6.09157i 0.0343638 0.194887i −0.962793 0.270239i \(-0.912897\pi\)
0.997157 + 0.0753527i \(0.0240083\pi\)
\(978\) 0 0
\(979\) 3.34286 3.98386i 0.106838 0.127325i
\(980\) 0 0
\(981\) −7.09301 + 19.4879i −0.226462 + 0.622201i
\(982\) 0 0
\(983\) −38.1665 6.72979i −1.21732 0.214647i −0.472150 0.881518i \(-0.656522\pi\)
−0.745173 + 0.666871i \(0.767633\pi\)
\(984\) 0 0
\(985\) 36.0251 6.98450i 1.14786 0.222545i
\(986\) 0 0
\(987\) −0.603520 1.65816i −0.0192103 0.0527798i
\(988\) 0 0
\(989\) 1.15241 + 1.99604i 0.0366447 + 0.0634704i
\(990\) 0 0
\(991\) 18.0120 + 10.3992i 0.572170 + 0.330342i 0.758015 0.652237i \(-0.226169\pi\)
−0.185846 + 0.982579i \(0.559502\pi\)
\(992\) 0 0
\(993\) −27.1114 −0.860353
\(994\) 0 0
\(995\) 14.5234 + 37.8895i 0.460423 + 1.20118i
\(996\) 0 0
\(997\) 23.6864 8.62113i 0.750155 0.273034i 0.0614837 0.998108i \(-0.480417\pi\)
0.688671 + 0.725074i \(0.258195\pi\)
\(998\) 0 0
\(999\) −28.6920 + 6.43701i −0.907774 + 0.203658i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 740.2.bp.a.289.8 yes 120
5.4 even 2 inner 740.2.bp.a.289.13 yes 120
37.21 even 18 inner 740.2.bp.a.169.13 yes 120
185.169 even 18 inner 740.2.bp.a.169.8 120
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.bp.a.169.8 120 185.169 even 18 inner
740.2.bp.a.169.13 yes 120 37.21 even 18 inner
740.2.bp.a.289.8 yes 120 1.1 even 1 trivial
740.2.bp.a.289.13 yes 120 5.4 even 2 inner