Properties

Label 740.2.bp.a.169.8
Level $740$
Weight $2$
Character 740.169
Analytic conductor $5.909$
Analytic rank $0$
Dimension $120$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [740,2,Mod(169,740)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("740.169"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(740, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 9, 11])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 740 = 2^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 740.bp (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.90892974957\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(20\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 169.8
Character \(\chi\) \(=\) 740.169
Dual form 740.2.bp.a.289.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.324044 - 0.890304i) q^{3} +(-0.350865 - 2.20837i) q^{5} +(4.31890 + 0.761538i) q^{7} +(1.61050 - 1.35137i) q^{9} +(-0.398930 - 0.690967i) q^{11} +(4.54857 + 3.81671i) q^{13} +(-1.85242 + 1.02799i) q^{15} +(-3.51825 + 2.95216i) q^{17} +(-0.565183 - 1.55283i) q^{19} +(-0.721513 - 4.09190i) q^{21} +(0.646500 - 1.11977i) q^{23} +(-4.75379 + 1.54968i) q^{25} +(-4.18653 - 2.41709i) q^{27} +(6.97099 - 4.02470i) q^{29} +2.11192i q^{31} +(-0.485900 + 0.579073i) q^{33} +(0.166405 - 9.80491i) q^{35} +(5.80584 - 1.81445i) q^{37} +(1.92409 - 5.28639i) q^{39} +(-8.72727 - 7.32305i) q^{41} +1.78254 q^{43} +(-3.54938 - 3.08242i) q^{45} +(-0.367788 - 0.212342i) q^{47} +(11.4951 + 4.18386i) q^{49} +(3.76839 + 2.17568i) q^{51} +(3.92991 - 0.692949i) q^{53} +(-1.38594 + 1.12342i) q^{55} +(-1.19935 + 1.00637i) q^{57} +(-4.42906 + 0.780963i) q^{59} +(-0.130492 + 0.155514i) q^{61} +(7.98468 - 4.60996i) q^{63} +(6.83276 - 11.3841i) q^{65} +(-5.03707 - 0.888171i) q^{67} +(-1.20643 - 0.212726i) q^{69} +(-14.7335 + 5.36254i) q^{71} -0.313499i q^{73} +(2.92012 + 3.73015i) q^{75} +(-1.19674 - 3.28802i) q^{77} +(-13.1703 - 2.32228i) q^{79} +(0.299882 - 1.70072i) q^{81} +(6.49696 + 7.74277i) q^{83} +(7.75389 + 6.73378i) q^{85} +(-5.84212 - 4.90212i) q^{87} +(-6.41911 + 1.13186i) q^{89} +(16.7382 + 19.9479i) q^{91} +(1.88025 - 0.684354i) q^{93} +(-3.23092 + 1.79297i) q^{95} +(0.185715 - 0.321668i) q^{97} +(-1.57623 - 0.573699i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120 q + 3 q^{5} + 6 q^{9} + 12 q^{11} + 3 q^{15} + 6 q^{19} - 12 q^{21} - 33 q^{25} - 48 q^{35} + 24 q^{39} + 30 q^{41} - 27 q^{45} + 6 q^{49} - 3 q^{55} - 42 q^{59} + 48 q^{61} - 18 q^{65} - 108 q^{69}+ \cdots + 90 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/740\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\) \(371\)
\(\chi(n)\) \(e\left(\frac{11}{18}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.324044 0.890304i −0.187087 0.514017i 0.810320 0.585988i \(-0.199293\pi\)
−0.997407 + 0.0719706i \(0.977071\pi\)
\(4\) 0 0
\(5\) −0.350865 2.20837i −0.156912 0.987613i
\(6\) 0 0
\(7\) 4.31890 + 0.761538i 1.63239 + 0.287834i 0.913362 0.407148i \(-0.133477\pi\)
0.719027 + 0.694982i \(0.244588\pi\)
\(8\) 0 0
\(9\) 1.61050 1.35137i 0.536832 0.450456i
\(10\) 0 0
\(11\) −0.398930 0.690967i −0.120282 0.208334i 0.799597 0.600537i \(-0.205047\pi\)
−0.919879 + 0.392203i \(0.871713\pi\)
\(12\) 0 0
\(13\) 4.54857 + 3.81671i 1.26155 + 1.05856i 0.995515 + 0.0945992i \(0.0301570\pi\)
0.266032 + 0.963964i \(0.414287\pi\)
\(14\) 0 0
\(15\) −1.85242 + 1.02799i −0.478294 + 0.265425i
\(16\) 0 0
\(17\) −3.51825 + 2.95216i −0.853300 + 0.716004i −0.960514 0.278232i \(-0.910252\pi\)
0.107214 + 0.994236i \(0.465807\pi\)
\(18\) 0 0
\(19\) −0.565183 1.55283i −0.129662 0.356243i 0.857825 0.513941i \(-0.171815\pi\)
−0.987487 + 0.157698i \(0.949593\pi\)
\(20\) 0 0
\(21\) −0.721513 4.09190i −0.157447 0.892926i
\(22\) 0 0
\(23\) 0.646500 1.11977i 0.134805 0.233488i −0.790718 0.612180i \(-0.790293\pi\)
0.925523 + 0.378692i \(0.123626\pi\)
\(24\) 0 0
\(25\) −4.75379 + 1.54968i −0.950757 + 0.309936i
\(26\) 0 0
\(27\) −4.18653 2.41709i −0.805697 0.465170i
\(28\) 0 0
\(29\) 6.97099 4.02470i 1.29448 0.747368i 0.315035 0.949080i \(-0.397984\pi\)
0.979445 + 0.201712i \(0.0646504\pi\)
\(30\) 0 0
\(31\) 2.11192i 0.379311i 0.981851 + 0.189656i \(0.0607372\pi\)
−0.981851 + 0.189656i \(0.939263\pi\)
\(32\) 0 0
\(33\) −0.485900 + 0.579073i −0.0845844 + 0.100804i
\(34\) 0 0
\(35\) 0.166405 9.80491i 0.0281276 1.65733i
\(36\) 0 0
\(37\) 5.80584 1.81445i 0.954474 0.298294i
\(38\) 0 0
\(39\) 1.92409 5.28639i 0.308101 0.846501i
\(40\) 0 0
\(41\) −8.72727 7.32305i −1.36297 1.14367i −0.975052 0.221974i \(-0.928750\pi\)
−0.387918 0.921694i \(-0.626806\pi\)
\(42\) 0 0
\(43\) 1.78254 0.271835 0.135918 0.990720i \(-0.456602\pi\)
0.135918 + 0.990720i \(0.456602\pi\)
\(44\) 0 0
\(45\) −3.54938 3.08242i −0.529111 0.459500i
\(46\) 0 0
\(47\) −0.367788 0.212342i −0.0536473 0.0309733i 0.472936 0.881097i \(-0.343194\pi\)
−0.526584 + 0.850123i \(0.676527\pi\)
\(48\) 0 0
\(49\) 11.4951 + 4.18386i 1.64215 + 0.597695i
\(50\) 0 0
\(51\) 3.76839 + 2.17568i 0.527680 + 0.304656i
\(52\) 0 0
\(53\) 3.92991 0.692949i 0.539815 0.0951839i 0.102908 0.994691i \(-0.467185\pi\)
0.436906 + 0.899507i \(0.356074\pi\)
\(54\) 0 0
\(55\) −1.38594 + 1.12342i −0.186880 + 0.151482i
\(56\) 0 0
\(57\) −1.19935 + 1.00637i −0.158857 + 0.133297i
\(58\) 0 0
\(59\) −4.42906 + 0.780963i −0.576615 + 0.101673i −0.454348 0.890824i \(-0.650128\pi\)
−0.122267 + 0.992497i \(0.539017\pi\)
\(60\) 0 0
\(61\) −0.130492 + 0.155514i −0.0167077 + 0.0199115i −0.774334 0.632778i \(-0.781915\pi\)
0.757626 + 0.652689i \(0.226359\pi\)
\(62\) 0 0
\(63\) 7.98468 4.60996i 1.00598 0.580800i
\(64\) 0 0
\(65\) 6.83276 11.3841i 0.847499 1.41202i
\(66\) 0 0
\(67\) −5.03707 0.888171i −0.615376 0.108507i −0.142733 0.989761i \(-0.545589\pi\)
−0.472643 + 0.881254i \(0.656700\pi\)
\(68\) 0 0
\(69\) −1.20643 0.212726i −0.145237 0.0256092i
\(70\) 0 0
\(71\) −14.7335 + 5.36254i −1.74854 + 0.636417i −0.999655 0.0262828i \(-0.991633\pi\)
−0.748886 + 0.662699i \(0.769411\pi\)
\(72\) 0 0
\(73\) 0.313499i 0.0366923i −0.999832 0.0183461i \(-0.994160\pi\)
0.999832 0.0183461i \(-0.00584009\pi\)
\(74\) 0 0
\(75\) 2.92012 + 3.73015i 0.337187 + 0.430721i
\(76\) 0 0
\(77\) −1.19674 3.28802i −0.136381 0.374704i
\(78\) 0 0
\(79\) −13.1703 2.32228i −1.48178 0.261277i −0.626488 0.779431i \(-0.715508\pi\)
−0.855287 + 0.518154i \(0.826619\pi\)
\(80\) 0 0
\(81\) 0.299882 1.70072i 0.0333202 0.188968i
\(82\) 0 0
\(83\) 6.49696 + 7.74277i 0.713134 + 0.849880i 0.993944 0.109883i \(-0.0350477\pi\)
−0.280811 + 0.959763i \(0.590603\pi\)
\(84\) 0 0
\(85\) 7.75389 + 6.73378i 0.841027 + 0.730381i
\(86\) 0 0
\(87\) −5.84212 4.90212i −0.626341 0.525562i
\(88\) 0 0
\(89\) −6.41911 + 1.13186i −0.680424 + 0.119977i −0.503169 0.864188i \(-0.667833\pi\)
−0.177255 + 0.984165i \(0.556722\pi\)
\(90\) 0 0
\(91\) 16.7382 + 19.9479i 1.75464 + 2.09110i
\(92\) 0 0
\(93\) 1.88025 0.684354i 0.194973 0.0709642i
\(94\) 0 0
\(95\) −3.23092 + 1.79297i −0.331485 + 0.183955i
\(96\) 0 0
\(97\) 0.185715 0.321668i 0.0188565 0.0326604i −0.856443 0.516241i \(-0.827331\pi\)
0.875300 + 0.483581i \(0.160664\pi\)
\(98\) 0 0
\(99\) −1.57623 0.573699i −0.158417 0.0576590i
\(100\) 0 0
\(101\) −0.868722 + 1.50467i −0.0864411 + 0.149720i −0.906004 0.423268i \(-0.860883\pi\)
0.819563 + 0.572989i \(0.194216\pi\)
\(102\) 0 0
\(103\) 8.01418 + 13.8810i 0.789661 + 1.36773i 0.926175 + 0.377095i \(0.123077\pi\)
−0.136514 + 0.990638i \(0.543590\pi\)
\(104\) 0 0
\(105\) −8.78328 + 3.02907i −0.857160 + 0.295607i
\(106\) 0 0
\(107\) −2.28730 + 2.72590i −0.221122 + 0.263523i −0.865189 0.501446i \(-0.832801\pi\)
0.644067 + 0.764969i \(0.277246\pi\)
\(108\) 0 0
\(109\) 3.37384 9.26956i 0.323156 0.887863i −0.666641 0.745379i \(-0.732269\pi\)
0.989797 0.142484i \(-0.0455090\pi\)
\(110\) 0 0
\(111\) −3.49676 4.58100i −0.331898 0.434809i
\(112\) 0 0
\(113\) 13.2781 + 4.83284i 1.24910 + 0.454635i 0.880098 0.474793i \(-0.157477\pi\)
0.369003 + 0.929428i \(0.379699\pi\)
\(114\) 0 0
\(115\) −2.69970 1.03482i −0.251748 0.0964976i
\(116\) 0 0
\(117\) 12.4832 1.15407
\(118\) 0 0
\(119\) −17.4431 + 10.0708i −1.59901 + 0.923188i
\(120\) 0 0
\(121\) 5.18171 8.97498i 0.471064 0.815908i
\(122\) 0 0
\(123\) −3.69172 + 10.1429i −0.332871 + 0.914556i
\(124\) 0 0
\(125\) 5.09021 + 9.95439i 0.455282 + 0.890347i
\(126\) 0 0
\(127\) −18.0242 + 3.17816i −1.59939 + 0.282016i −0.901039 0.433739i \(-0.857194\pi\)
−0.698352 + 0.715755i \(0.746083\pi\)
\(128\) 0 0
\(129\) −0.577623 1.58701i −0.0508569 0.139728i
\(130\) 0 0
\(131\) 8.38240 + 9.98976i 0.732374 + 0.872809i 0.995770 0.0918783i \(-0.0292871\pi\)
−0.263396 + 0.964688i \(0.584843\pi\)
\(132\) 0 0
\(133\) −1.25843 7.13691i −0.109120 0.618849i
\(134\) 0 0
\(135\) −3.86892 + 10.0935i −0.332984 + 0.868707i
\(136\) 0 0
\(137\) −8.39094 + 4.84451i −0.716886 + 0.413894i −0.813605 0.581417i \(-0.802498\pi\)
0.0967195 + 0.995312i \(0.469165\pi\)
\(138\) 0 0
\(139\) −10.6628 + 8.94714i −0.904405 + 0.758886i −0.971046 0.238891i \(-0.923216\pi\)
0.0666412 + 0.997777i \(0.478772\pi\)
\(140\) 0 0
\(141\) −0.0698698 + 0.396251i −0.00588410 + 0.0333704i
\(142\) 0 0
\(143\) 0.822656 4.66551i 0.0687939 0.390150i
\(144\) 0 0
\(145\) −11.3339 13.9824i −0.941230 1.16117i
\(146\) 0 0
\(147\) 11.5899i 0.955916i
\(148\) 0 0
\(149\) 11.8863 0.973766 0.486883 0.873467i \(-0.338134\pi\)
0.486883 + 0.873467i \(0.338134\pi\)
\(150\) 0 0
\(151\) 0.575189 0.209352i 0.0468082 0.0170368i −0.318510 0.947920i \(-0.603182\pi\)
0.365318 + 0.930883i \(0.380960\pi\)
\(152\) 0 0
\(153\) −1.67667 + 9.50889i −0.135551 + 0.768748i
\(154\) 0 0
\(155\) 4.66389 0.740998i 0.374613 0.0595184i
\(156\) 0 0
\(157\) −7.48889 8.92491i −0.597678 0.712285i 0.379384 0.925239i \(-0.376136\pi\)
−0.977062 + 0.212954i \(0.931691\pi\)
\(158\) 0 0
\(159\) −1.89040 3.27427i −0.149919 0.259666i
\(160\) 0 0
\(161\) 3.64491 4.34384i 0.287259 0.342342i
\(162\) 0 0
\(163\) −4.03275 22.8708i −0.315869 1.79138i −0.567305 0.823508i \(-0.692014\pi\)
0.251436 0.967874i \(-0.419097\pi\)
\(164\) 0 0
\(165\) 1.44929 + 0.869870i 0.112827 + 0.0677193i
\(166\) 0 0
\(167\) 3.65419 1.33002i 0.282769 0.102920i −0.196742 0.980455i \(-0.563036\pi\)
0.479511 + 0.877536i \(0.340814\pi\)
\(168\) 0 0
\(169\) 3.86484 + 21.9186i 0.297296 + 1.68605i
\(170\) 0 0
\(171\) −3.00867 1.73705i −0.230079 0.132836i
\(172\) 0 0
\(173\) 3.98194 10.9403i 0.302741 0.831775i −0.691280 0.722587i \(-0.742953\pi\)
0.994021 0.109188i \(-0.0348250\pi\)
\(174\) 0 0
\(175\) −21.7113 + 3.07272i −1.64122 + 0.232276i
\(176\) 0 0
\(177\) 2.13051 + 3.69015i 0.160139 + 0.277368i
\(178\) 0 0
\(179\) 13.4118i 1.00245i 0.865318 + 0.501224i \(0.167117\pi\)
−0.865318 + 0.501224i \(0.832883\pi\)
\(180\) 0 0
\(181\) 15.6557 + 13.1367i 1.16368 + 0.976445i 0.999949 0.0100599i \(-0.00320221\pi\)
0.163732 + 0.986505i \(0.447647\pi\)
\(182\) 0 0
\(183\) 0.180740 + 0.0657839i 0.0133607 + 0.00486288i
\(184\) 0 0
\(185\) −6.04404 12.1848i −0.444367 0.895845i
\(186\) 0 0
\(187\) 3.44338 + 1.25329i 0.251805 + 0.0916495i
\(188\) 0 0
\(189\) −16.2405 13.6274i −1.18132 0.991245i
\(190\) 0 0
\(191\) 1.03076i 0.0745829i −0.999304 0.0372914i \(-0.988127\pi\)
0.999304 0.0372914i \(-0.0118730\pi\)
\(192\) 0 0
\(193\) 7.82817 + 13.5588i 0.563484 + 0.975984i 0.997189 + 0.0749284i \(0.0238728\pi\)
−0.433705 + 0.901055i \(0.642794\pi\)
\(194\) 0 0
\(195\) −12.3494 2.39429i −0.884359 0.171459i
\(196\) 0 0
\(197\) −5.61287 + 15.4212i −0.399900 + 1.09872i 0.562433 + 0.826843i \(0.309865\pi\)
−0.962333 + 0.271874i \(0.912357\pi\)
\(198\) 0 0
\(199\) 15.7156 + 9.07343i 1.11405 + 0.643198i 0.939876 0.341516i \(-0.110940\pi\)
0.174176 + 0.984715i \(0.444274\pi\)
\(200\) 0 0
\(201\) 0.841491 + 4.77233i 0.0593542 + 0.336614i
\(202\) 0 0
\(203\) 33.1719 12.0736i 2.32821 0.847400i
\(204\) 0 0
\(205\) −13.1099 + 21.8424i −0.915635 + 1.52554i
\(206\) 0 0
\(207\) −0.472035 2.67704i −0.0328087 0.186067i
\(208\) 0 0
\(209\) −0.847485 + 1.00999i −0.0586218 + 0.0698627i
\(210\) 0 0
\(211\) −5.10808 8.84745i −0.351655 0.609084i 0.634885 0.772607i \(-0.281048\pi\)
−0.986540 + 0.163523i \(0.947714\pi\)
\(212\) 0 0
\(213\) 9.54859 + 11.3796i 0.654258 + 0.779715i
\(214\) 0 0
\(215\) −0.625433 3.93652i −0.0426542 0.268468i
\(216\) 0 0
\(217\) −1.60830 + 9.12115i −0.109179 + 0.619184i
\(218\) 0 0
\(219\) −0.279110 + 0.101588i −0.0188605 + 0.00686465i
\(220\) 0 0
\(221\) −27.2705 −1.83441
\(222\) 0 0
\(223\) 20.7185i 1.38741i 0.720258 + 0.693707i \(0.244024\pi\)
−0.720258 + 0.693707i \(0.755976\pi\)
\(224\) 0 0
\(225\) −5.56177 + 8.91987i −0.370785 + 0.594658i
\(226\) 0 0
\(227\) 2.01576 11.4319i 0.133791 0.758764i −0.841904 0.539628i \(-0.818565\pi\)
0.975694 0.219136i \(-0.0703239\pi\)
\(228\) 0 0
\(229\) −2.81923 + 15.9887i −0.186300 + 1.05656i 0.737974 + 0.674830i \(0.235783\pi\)
−0.924274 + 0.381730i \(0.875328\pi\)
\(230\) 0 0
\(231\) −2.53954 + 2.13093i −0.167089 + 0.140205i
\(232\) 0 0
\(233\) −19.5600 + 11.2930i −1.28142 + 0.739828i −0.977108 0.212744i \(-0.931760\pi\)
−0.304312 + 0.952572i \(0.598426\pi\)
\(234\) 0 0
\(235\) −0.339886 + 0.886714i −0.0221717 + 0.0578429i
\(236\) 0 0
\(237\) 2.20023 + 12.4781i 0.142920 + 0.810540i
\(238\) 0 0
\(239\) 7.64751 + 9.11394i 0.494676 + 0.589532i 0.954400 0.298530i \(-0.0964962\pi\)
−0.459724 + 0.888062i \(0.652052\pi\)
\(240\) 0 0
\(241\) 4.10427 + 11.2764i 0.264379 + 0.726375i 0.998860 + 0.0477455i \(0.0152037\pi\)
−0.734481 + 0.678630i \(0.762574\pi\)
\(242\) 0 0
\(243\) −15.8936 + 2.80246i −1.01957 + 0.179778i
\(244\) 0 0
\(245\) 5.20629 26.8533i 0.332618 1.71560i
\(246\) 0 0
\(247\) 3.35591 9.22029i 0.213532 0.586673i
\(248\) 0 0
\(249\) 4.78812 8.29327i 0.303435 0.525565i
\(250\) 0 0
\(251\) 7.37319 4.25691i 0.465392 0.268694i −0.248917 0.968525i \(-0.580075\pi\)
0.714309 + 0.699831i \(0.246741\pi\)
\(252\) 0 0
\(253\) −1.03163 −0.0648582
\(254\) 0 0
\(255\) 3.48251 9.08536i 0.218083 0.568947i
\(256\) 0 0
\(257\) 12.0026 + 4.36860i 0.748703 + 0.272506i 0.688060 0.725654i \(-0.258463\pi\)
0.0606433 + 0.998159i \(0.480685\pi\)
\(258\) 0 0
\(259\) 26.4566 3.41505i 1.64393 0.212201i
\(260\) 0 0
\(261\) 5.78790 15.9021i 0.358262 0.984317i
\(262\) 0 0
\(263\) 1.69791 2.02349i 0.104698 0.124774i −0.711151 0.703039i \(-0.751826\pi\)
0.815849 + 0.578265i \(0.196270\pi\)
\(264\) 0 0
\(265\) −2.90916 8.43556i −0.178708 0.518192i
\(266\) 0 0
\(267\) 3.08778 + 5.34819i 0.188969 + 0.327304i
\(268\) 0 0
\(269\) 12.9649 22.4558i 0.790482 1.36916i −0.135186 0.990820i \(-0.543163\pi\)
0.925669 0.378335i \(-0.123503\pi\)
\(270\) 0 0
\(271\) −19.3375 7.03827i −1.17467 0.427544i −0.320352 0.947298i \(-0.603801\pi\)
−0.854316 + 0.519754i \(0.826023\pi\)
\(272\) 0 0
\(273\) 12.3357 21.3661i 0.746593 1.29314i
\(274\) 0 0
\(275\) 2.96721 + 2.66650i 0.178929 + 0.160796i
\(276\) 0 0
\(277\) −8.30075 + 3.02123i −0.498744 + 0.181528i −0.579129 0.815236i \(-0.696607\pi\)
0.0803851 + 0.996764i \(0.474385\pi\)
\(278\) 0 0
\(279\) 2.85397 + 3.40123i 0.170863 + 0.203627i
\(280\) 0 0
\(281\) −7.87777 + 1.38906i −0.469948 + 0.0828646i −0.403607 0.914932i \(-0.632244\pi\)
−0.0663413 + 0.997797i \(0.521133\pi\)
\(282\) 0 0
\(283\) −2.41869 2.02952i −0.143776 0.120642i 0.568063 0.822985i \(-0.307693\pi\)
−0.711839 + 0.702343i \(0.752137\pi\)
\(284\) 0 0
\(285\) 2.64325 + 2.29550i 0.156572 + 0.135973i
\(286\) 0 0
\(287\) −32.1154 38.2736i −1.89571 2.25922i
\(288\) 0 0
\(289\) 0.710796 4.03113i 0.0418115 0.237125i
\(290\) 0 0
\(291\) −0.346562 0.0611083i −0.0203158 0.00358223i
\(292\) 0 0
\(293\) 3.97588 + 10.9237i 0.232274 + 0.638167i 0.999997 0.00261540i \(-0.000832507\pi\)
−0.767723 + 0.640782i \(0.778610\pi\)
\(294\) 0 0
\(295\) 3.27866 + 9.50699i 0.190891 + 0.553519i
\(296\) 0 0
\(297\) 3.85700i 0.223806i
\(298\) 0 0
\(299\) 7.21449 2.62586i 0.417224 0.151857i
\(300\) 0 0
\(301\) 7.69862 + 1.35748i 0.443741 + 0.0782436i
\(302\) 0 0
\(303\) 1.62112 + 0.285847i 0.0931309 + 0.0164215i
\(304\) 0 0
\(305\) 0.389217 + 0.233609i 0.0222865 + 0.0133764i
\(306\) 0 0
\(307\) −0.972631 + 0.561549i −0.0555110 + 0.0320493i −0.527499 0.849556i \(-0.676870\pi\)
0.471988 + 0.881605i \(0.343537\pi\)
\(308\) 0 0
\(309\) 9.76134 11.6331i 0.555303 0.661785i
\(310\) 0 0
\(311\) −16.1237 + 2.84304i −0.914291 + 0.161214i −0.610951 0.791668i \(-0.709213\pi\)
−0.303340 + 0.952882i \(0.598102\pi\)
\(312\) 0 0
\(313\) 7.60981 6.38538i 0.430132 0.360923i −0.401870 0.915697i \(-0.631640\pi\)
0.832001 + 0.554774i \(0.187195\pi\)
\(314\) 0 0
\(315\) −12.9820 16.0157i −0.731455 0.902380i
\(316\) 0 0
\(317\) −14.5263 + 2.56139i −0.815880 + 0.143862i −0.565990 0.824412i \(-0.691506\pi\)
−0.249891 + 0.968274i \(0.580395\pi\)
\(318\) 0 0
\(319\) −5.56187 3.21115i −0.311405 0.179790i
\(320\) 0 0
\(321\) 3.16807 + 1.15308i 0.176824 + 0.0643588i
\(322\) 0 0
\(323\) 6.57265 + 3.79472i 0.365712 + 0.211144i
\(324\) 0 0
\(325\) −27.5376 11.0950i −1.52751 0.615438i
\(326\) 0 0
\(327\) −9.34600 −0.516835
\(328\) 0 0
\(329\) −1.42673 1.19717i −0.0786581 0.0660020i
\(330\) 0 0
\(331\) 9.78702 26.8896i 0.537943 1.47799i −0.311469 0.950256i \(-0.600821\pi\)
0.849412 0.527730i \(-0.176957\pi\)
\(332\) 0 0
\(333\) 6.89830 10.7680i 0.378024 0.590082i
\(334\) 0 0
\(335\) −0.194076 + 11.4353i −0.0106035 + 0.624779i
\(336\) 0 0
\(337\) 12.6152 15.0342i 0.687193 0.818965i −0.303820 0.952730i \(-0.598262\pi\)
0.991013 + 0.133764i \(0.0427065\pi\)
\(338\) 0 0
\(339\) 13.3876i 0.727116i
\(340\) 0 0
\(341\) 1.45927 0.842507i 0.0790237 0.0456243i
\(342\) 0 0
\(343\) 19.8740 + 11.4743i 1.07310 + 0.619553i
\(344\) 0 0
\(345\) −0.0464833 + 2.73888i −0.00250258 + 0.147457i
\(346\) 0 0
\(347\) −3.05122 + 5.28487i −0.163798 + 0.283707i −0.936228 0.351393i \(-0.885708\pi\)
0.772430 + 0.635100i \(0.219041\pi\)
\(348\) 0 0
\(349\) 2.41356 + 13.6880i 0.129195 + 0.732702i 0.978727 + 0.205165i \(0.0657731\pi\)
−0.849532 + 0.527537i \(0.823116\pi\)
\(350\) 0 0
\(351\) −9.81739 26.9731i −0.524013 1.43972i
\(352\) 0 0
\(353\) 2.14425 1.79924i 0.114127 0.0957638i −0.583938 0.811798i \(-0.698489\pi\)
0.698065 + 0.716034i \(0.254045\pi\)
\(354\) 0 0
\(355\) 17.0119 + 30.6554i 0.902900 + 1.62702i
\(356\) 0 0
\(357\) 14.6184 + 12.2663i 0.773688 + 0.649202i
\(358\) 0 0
\(359\) −4.27001 7.39587i −0.225362 0.390339i 0.731066 0.682307i \(-0.239023\pi\)
−0.956428 + 0.291968i \(0.905690\pi\)
\(360\) 0 0
\(361\) 12.4630 10.4577i 0.655947 0.550405i
\(362\) 0 0
\(363\) −9.66957 1.70501i −0.507521 0.0894896i
\(364\) 0 0
\(365\) −0.692322 + 0.109996i −0.0362378 + 0.00575745i
\(366\) 0 0
\(367\) 6.60737 + 18.1536i 0.344902 + 0.947610i 0.983950 + 0.178443i \(0.0571062\pi\)
−0.639048 + 0.769167i \(0.720672\pi\)
\(368\) 0 0
\(369\) −23.9514 −1.24686
\(370\) 0 0
\(371\) 17.5006 0.908585
\(372\) 0 0
\(373\) −3.62155 9.95012i −0.187517 0.515198i 0.809937 0.586517i \(-0.199501\pi\)
−0.997454 + 0.0713194i \(0.977279\pi\)
\(374\) 0 0
\(375\) 7.21298 7.75749i 0.372477 0.400595i
\(376\) 0 0
\(377\) 47.0691 + 8.29956i 2.42418 + 0.427449i
\(378\) 0 0
\(379\) 14.1433 11.8677i 0.726494 0.609601i −0.202679 0.979245i \(-0.564965\pi\)
0.929173 + 0.369644i \(0.120521\pi\)
\(380\) 0 0
\(381\) 8.67017 + 15.0172i 0.444186 + 0.769353i
\(382\) 0 0
\(383\) 14.4442 + 12.1201i 0.738064 + 0.619309i 0.932317 0.361642i \(-0.117784\pi\)
−0.194253 + 0.980952i \(0.562228\pi\)
\(384\) 0 0
\(385\) −6.84126 + 3.79650i −0.348663 + 0.193487i
\(386\) 0 0
\(387\) 2.87078 2.40887i 0.145930 0.122450i
\(388\) 0 0
\(389\) −9.23959 25.3856i −0.468466 1.28710i −0.918971 0.394326i \(-0.870978\pi\)
0.450505 0.892774i \(-0.351244\pi\)
\(390\) 0 0
\(391\) 1.03120 + 5.84820i 0.0521498 + 0.295756i
\(392\) 0 0
\(393\) 6.17766 10.7000i 0.311622 0.539744i
\(394\) 0 0
\(395\) −0.507447 + 29.8997i −0.0255324 + 1.50442i
\(396\) 0 0
\(397\) −12.7543 7.36371i −0.640121 0.369574i 0.144540 0.989499i \(-0.453830\pi\)
−0.784661 + 0.619925i \(0.787163\pi\)
\(398\) 0 0
\(399\) −5.94624 + 3.43306i −0.297684 + 0.171868i
\(400\) 0 0
\(401\) 5.67411i 0.283352i −0.989913 0.141676i \(-0.954751\pi\)
0.989913 0.141676i \(-0.0452490\pi\)
\(402\) 0 0
\(403\) −8.06056 + 9.60620i −0.401525 + 0.478519i
\(404\) 0 0
\(405\) −3.86103 0.0655279i −0.191856 0.00325611i
\(406\) 0 0
\(407\) −3.56985 3.28781i −0.176951 0.162971i
\(408\) 0 0
\(409\) −9.32479 + 25.6197i −0.461081 + 1.26681i 0.463592 + 0.886049i \(0.346560\pi\)
−0.924673 + 0.380762i \(0.875662\pi\)
\(410\) 0 0
\(411\) 7.03212 + 5.90065i 0.346869 + 0.291058i
\(412\) 0 0
\(413\) −19.7234 −0.970525
\(414\) 0 0
\(415\) 14.8193 17.0644i 0.727453 0.837656i
\(416\) 0 0
\(417\) 11.4209 + 6.59385i 0.559283 + 0.322902i
\(418\) 0 0
\(419\) −32.5941 11.8633i −1.59232 0.579558i −0.614487 0.788927i \(-0.710637\pi\)
−0.977837 + 0.209368i \(0.932859\pi\)
\(420\) 0 0
\(421\) −12.9180 7.45819i −0.629583 0.363490i 0.151007 0.988533i \(-0.451748\pi\)
−0.780591 + 0.625043i \(0.785082\pi\)
\(422\) 0 0
\(423\) −0.879273 + 0.155040i −0.0427517 + 0.00753828i
\(424\) 0 0
\(425\) 12.1501 19.4861i 0.589366 0.945215i
\(426\) 0 0
\(427\) −0.682010 + 0.572274i −0.0330048 + 0.0276943i
\(428\) 0 0
\(429\) −4.42030 + 0.779419i −0.213414 + 0.0376307i
\(430\) 0 0
\(431\) 24.8086 29.5657i 1.19499 1.42413i 0.315027 0.949083i \(-0.397986\pi\)
0.879960 0.475048i \(-0.157569\pi\)
\(432\) 0 0
\(433\) 26.8761 15.5169i 1.29158 0.745695i 0.312646 0.949870i \(-0.398784\pi\)
0.978934 + 0.204175i \(0.0654512\pi\)
\(434\) 0 0
\(435\) −8.77589 + 14.6215i −0.420772 + 0.701049i
\(436\) 0 0
\(437\) −2.10420 0.371028i −0.100658 0.0177487i
\(438\) 0 0
\(439\) −23.9885 4.22981i −1.14491 0.201878i −0.431156 0.902278i \(-0.641894\pi\)
−0.713751 + 0.700400i \(0.753005\pi\)
\(440\) 0 0
\(441\) 24.1667 8.79596i 1.15080 0.418855i
\(442\) 0 0
\(443\) 29.9783i 1.42431i 0.702022 + 0.712155i \(0.252281\pi\)
−0.702022 + 0.712155i \(0.747719\pi\)
\(444\) 0 0
\(445\) 4.75181 + 13.7786i 0.225257 + 0.653170i
\(446\) 0 0
\(447\) −3.85169 10.5824i −0.182179 0.500532i
\(448\) 0 0
\(449\) 33.4009 + 5.88948i 1.57629 + 0.277942i 0.892263 0.451517i \(-0.149117\pi\)
0.684025 + 0.729459i \(0.260228\pi\)
\(450\) 0 0
\(451\) −1.57842 + 8.95164i −0.0743247 + 0.421516i
\(452\) 0 0
\(453\) −0.372773 0.444254i −0.0175144 0.0208729i
\(454\) 0 0
\(455\) 38.1794 43.9632i 1.78988 2.06103i
\(456\) 0 0
\(457\) −9.91966 8.32358i −0.464022 0.389361i 0.380586 0.924745i \(-0.375722\pi\)
−0.844608 + 0.535385i \(0.820167\pi\)
\(458\) 0 0
\(459\) 21.8649 3.85537i 1.02057 0.179953i
\(460\) 0 0
\(461\) −10.5826 12.6119i −0.492882 0.587394i 0.461066 0.887366i \(-0.347467\pi\)
−0.953948 + 0.299972i \(0.903023\pi\)
\(462\) 0 0
\(463\) −26.7562 + 9.73847i −1.24347 + 0.452585i −0.878189 0.478313i \(-0.841248\pi\)
−0.365278 + 0.930898i \(0.619026\pi\)
\(464\) 0 0
\(465\) −2.17102 3.91217i −0.100679 0.181422i
\(466\) 0 0
\(467\) −1.24778 + 2.16122i −0.0577404 + 0.100009i −0.893451 0.449161i \(-0.851723\pi\)
0.835710 + 0.549170i \(0.185056\pi\)
\(468\) 0 0
\(469\) −21.0782 7.67184i −0.973301 0.354253i
\(470\) 0 0
\(471\) −5.51915 + 9.55945i −0.254309 + 0.440476i
\(472\) 0 0
\(473\) −0.711111 1.23168i −0.0326969 0.0566327i
\(474\) 0 0
\(475\) 5.09315 + 6.50596i 0.233690 + 0.298514i
\(476\) 0 0
\(477\) 5.39268 6.42674i 0.246914 0.294260i
\(478\) 0 0
\(479\) −4.57919 + 12.5812i −0.209228 + 0.574850i −0.999270 0.0382029i \(-0.987837\pi\)
0.790042 + 0.613053i \(0.210059\pi\)
\(480\) 0 0
\(481\) 33.3335 + 13.9060i 1.51988 + 0.634060i
\(482\) 0 0
\(483\) −5.04845 1.83749i −0.229712 0.0836085i
\(484\) 0 0
\(485\) −0.775523 0.297265i −0.0352147 0.0134981i
\(486\) 0 0
\(487\) 42.0899 1.90727 0.953637 0.300958i \(-0.0973064\pi\)
0.953637 + 0.300958i \(0.0973064\pi\)
\(488\) 0 0
\(489\) −19.0552 + 11.0015i −0.861706 + 0.497506i
\(490\) 0 0
\(491\) −9.47119 + 16.4046i −0.427429 + 0.740328i −0.996644 0.0818603i \(-0.973914\pi\)
0.569215 + 0.822189i \(0.307247\pi\)
\(492\) 0 0
\(493\) −12.6441 + 34.7394i −0.569461 + 1.56458i
\(494\) 0 0
\(495\) −0.713897 + 3.68218i −0.0320873 + 0.165502i
\(496\) 0 0
\(497\) −67.7161 + 11.9402i −3.03748 + 0.535590i
\(498\) 0 0
\(499\) 2.33240 + 6.40822i 0.104413 + 0.286871i 0.980887 0.194576i \(-0.0623332\pi\)
−0.876475 + 0.481448i \(0.840111\pi\)
\(500\) 0 0
\(501\) −2.36824 2.82235i −0.105805 0.126093i
\(502\) 0 0
\(503\) −6.11462 34.6778i −0.272638 1.54620i −0.746367 0.665534i \(-0.768204\pi\)
0.473730 0.880670i \(-0.342907\pi\)
\(504\) 0 0
\(505\) 3.62767 + 1.39052i 0.161429 + 0.0618774i
\(506\) 0 0
\(507\) 18.2619 10.5435i 0.811038 0.468253i
\(508\) 0 0
\(509\) 16.7180 14.0281i 0.741013 0.621784i −0.192096 0.981376i \(-0.561529\pi\)
0.933110 + 0.359592i \(0.117084\pi\)
\(510\) 0 0
\(511\) 0.238741 1.35397i 0.0105613 0.0598961i
\(512\) 0 0
\(513\) −1.38717 + 7.86706i −0.0612453 + 0.347339i
\(514\) 0 0
\(515\) 27.8424 22.5686i 1.22688 0.994492i
\(516\) 0 0
\(517\) 0.338839i 0.0149021i
\(518\) 0 0
\(519\) −11.0305 −0.484186
\(520\) 0 0
\(521\) −32.1815 + 11.7131i −1.40990 + 0.513161i −0.931100 0.364763i \(-0.881150\pi\)
−0.478799 + 0.877925i \(0.658928\pi\)
\(522\) 0 0
\(523\) −2.49122 + 14.1284i −0.108933 + 0.617791i 0.880643 + 0.473781i \(0.157111\pi\)
−0.989576 + 0.144011i \(0.954000\pi\)
\(524\) 0 0
\(525\) 9.77106 + 18.3339i 0.426444 + 0.800158i
\(526\) 0 0
\(527\) −6.23472 7.43024i −0.271588 0.323667i
\(528\) 0 0
\(529\) 10.6641 + 18.4707i 0.463655 + 0.803075i
\(530\) 0 0
\(531\) −6.07762 + 7.24303i −0.263746 + 0.314321i
\(532\) 0 0
\(533\) −11.7467 66.6188i −0.508806 2.88558i
\(534\) 0 0
\(535\) 6.82233 + 4.09478i 0.294955 + 0.177033i
\(536\) 0 0
\(537\) 11.9406 4.34603i 0.515276 0.187545i
\(538\) 0 0
\(539\) −1.69482 9.61179i −0.0730010 0.414009i
\(540\) 0 0
\(541\) −4.47951 2.58624i −0.192589 0.111191i 0.400605 0.916251i \(-0.368800\pi\)
−0.593194 + 0.805060i \(0.702133\pi\)
\(542\) 0 0
\(543\) 6.62253 18.1952i 0.284200 0.780833i
\(544\) 0 0
\(545\) −21.6544 4.19832i −0.927571 0.179836i
\(546\) 0 0
\(547\) −15.4266 26.7197i −0.659596 1.14245i −0.980720 0.195416i \(-0.937394\pi\)
0.321125 0.947037i \(-0.395939\pi\)
\(548\) 0 0
\(549\) 0.426797i 0.0182152i
\(550\) 0 0
\(551\) −10.1896 8.55006i −0.434090 0.364245i
\(552\) 0 0
\(553\) −55.1127 20.0594i −2.34363 0.853012i
\(554\) 0 0
\(555\) −8.88965 + 9.32945i −0.377345 + 0.396013i
\(556\) 0 0
\(557\) 19.0747 + 6.94261i 0.808219 + 0.294168i 0.712888 0.701278i \(-0.247387\pi\)
0.0953312 + 0.995446i \(0.469609\pi\)
\(558\) 0 0
\(559\) 8.10803 + 6.80345i 0.342933 + 0.287755i
\(560\) 0 0
\(561\) 3.47178i 0.146579i
\(562\) 0 0
\(563\) 16.9432 + 29.3465i 0.714071 + 1.23681i 0.963317 + 0.268367i \(0.0864838\pi\)
−0.249246 + 0.968440i \(0.580183\pi\)
\(564\) 0 0
\(565\) 6.01386 31.0187i 0.253005 1.30497i
\(566\) 0 0
\(567\) 2.59032 7.11684i 0.108783 0.298879i
\(568\) 0 0
\(569\) −12.1617 7.02157i −0.509846 0.294359i 0.222925 0.974836i \(-0.428440\pi\)
−0.732770 + 0.680476i \(0.761773\pi\)
\(570\) 0 0
\(571\) −3.86828 21.9381i −0.161882 0.918081i −0.952221 0.305410i \(-0.901206\pi\)
0.790338 0.612671i \(-0.209905\pi\)
\(572\) 0 0
\(573\) −0.917686 + 0.334010i −0.0383369 + 0.0139535i
\(574\) 0 0
\(575\) −1.33804 + 6.32502i −0.0557999 + 0.263772i
\(576\) 0 0
\(577\) 3.10096 + 17.5864i 0.129095 + 0.732133i 0.978791 + 0.204861i \(0.0656742\pi\)
−0.849696 + 0.527272i \(0.823215\pi\)
\(578\) 0 0
\(579\) 9.53478 11.3631i 0.396252 0.472235i
\(580\) 0 0
\(581\) 22.1633 + 38.3879i 0.919488 + 1.59260i
\(582\) 0 0
\(583\) −2.04657 2.43900i −0.0847601 0.101013i
\(584\) 0 0
\(585\) −4.37993 27.5676i −0.181088 1.13978i
\(586\) 0 0
\(587\) −6.16682 + 34.9738i −0.254532 + 1.44352i 0.542740 + 0.839901i \(0.317387\pi\)
−0.797271 + 0.603621i \(0.793724\pi\)
\(588\) 0 0
\(589\) 3.27944 1.19362i 0.135127 0.0491823i
\(590\) 0 0
\(591\) 15.5484 0.639575
\(592\) 0 0
\(593\) 12.4419i 0.510929i −0.966818 0.255464i \(-0.917772\pi\)
0.966818 0.255464i \(-0.0822283\pi\)
\(594\) 0 0
\(595\) 28.3602 + 34.9874i 1.16266 + 1.43434i
\(596\) 0 0
\(597\) 2.98555 16.9319i 0.122190 0.692976i
\(598\) 0 0
\(599\) 8.18282 46.4071i 0.334341 1.89614i −0.0993017 0.995057i \(-0.531661\pi\)
0.433643 0.901085i \(-0.357228\pi\)
\(600\) 0 0
\(601\) −37.1341 + 31.1592i −1.51473 + 1.27101i −0.660889 + 0.750484i \(0.729820\pi\)
−0.853845 + 0.520528i \(0.825735\pi\)
\(602\) 0 0
\(603\) −9.31243 + 5.37653i −0.379231 + 0.218949i
\(604\) 0 0
\(605\) −21.6382 8.29411i −0.879716 0.337204i
\(606\) 0 0
\(607\) 0.0401154 + 0.227506i 0.00162823 + 0.00923417i 0.985611 0.169029i \(-0.0540632\pi\)
−0.983983 + 0.178263i \(0.942952\pi\)
\(608\) 0 0
\(609\) −21.4983 25.6207i −0.871157 1.03820i
\(610\) 0 0
\(611\) −0.862461 2.36959i −0.0348914 0.0958634i
\(612\) 0 0
\(613\) −46.9139 + 8.27219i −1.89484 + 0.334111i −0.994812 0.101731i \(-0.967562\pi\)
−0.900023 + 0.435842i \(0.856451\pi\)
\(614\) 0 0
\(615\) 23.6946 + 4.59388i 0.955459 + 0.185243i
\(616\) 0 0
\(617\) −3.58282 + 9.84371i −0.144239 + 0.396293i −0.990684 0.136184i \(-0.956516\pi\)
0.846445 + 0.532476i \(0.178738\pi\)
\(618\) 0 0
\(619\) −6.17060 + 10.6878i −0.248017 + 0.429579i −0.962976 0.269589i \(-0.913112\pi\)
0.714958 + 0.699167i \(0.246446\pi\)
\(620\) 0 0
\(621\) −5.41318 + 3.12530i −0.217223 + 0.125414i
\(622\) 0 0
\(623\) −28.5854 −1.14525
\(624\) 0 0
\(625\) 20.1970 14.7337i 0.807879 0.589348i
\(626\) 0 0
\(627\) 1.17382 + 0.427237i 0.0468780 + 0.0170622i
\(628\) 0 0
\(629\) −15.0698 + 23.5235i −0.600874 + 0.937941i
\(630\) 0 0
\(631\) −13.4759 + 37.0246i −0.536466 + 1.47393i 0.314782 + 0.949164i \(0.398069\pi\)
−0.851248 + 0.524764i \(0.824154\pi\)
\(632\) 0 0
\(633\) −6.22168 + 7.41471i −0.247290 + 0.294708i
\(634\) 0 0
\(635\) 13.3426 + 38.6890i 0.529486 + 1.53533i
\(636\) 0 0
\(637\) 36.3176 + 62.9039i 1.43896 + 2.49234i
\(638\) 0 0
\(639\) −16.4814 + 28.5467i −0.651995 + 1.12929i
\(640\) 0 0
\(641\) 4.65455 + 1.69412i 0.183844 + 0.0669136i 0.432302 0.901729i \(-0.357702\pi\)
−0.248458 + 0.968643i \(0.579924\pi\)
\(642\) 0 0
\(643\) 10.6324 18.4158i 0.419300 0.726249i −0.576569 0.817049i \(-0.695609\pi\)
0.995869 + 0.0907990i \(0.0289421\pi\)
\(644\) 0 0
\(645\) −3.30203 + 1.83243i −0.130017 + 0.0721519i
\(646\) 0 0
\(647\) −34.6354 + 12.6063i −1.36166 + 0.495603i −0.916566 0.399882i \(-0.869051\pi\)
−0.445091 + 0.895485i \(0.646829\pi\)
\(648\) 0 0
\(649\) 2.30651 + 2.74879i 0.0905383 + 0.107899i
\(650\) 0 0
\(651\) 8.64176 1.52378i 0.338697 0.0597215i
\(652\) 0 0
\(653\) 8.24845 + 6.92127i 0.322787 + 0.270850i 0.789753 0.613425i \(-0.210209\pi\)
−0.466966 + 0.884275i \(0.654653\pi\)
\(654\) 0 0
\(655\) 19.1200 22.0165i 0.747080 0.860256i
\(656\) 0 0
\(657\) −0.423652 0.504889i −0.0165283 0.0196976i
\(658\) 0 0
\(659\) −2.70254 + 15.3269i −0.105276 + 0.597051i 0.885833 + 0.464003i \(0.153587\pi\)
−0.991110 + 0.133048i \(0.957524\pi\)
\(660\) 0 0
\(661\) −40.1443 7.07852i −1.56143 0.275322i −0.674871 0.737936i \(-0.735801\pi\)
−0.886560 + 0.462613i \(0.846912\pi\)
\(662\) 0 0
\(663\) 8.83686 + 24.2791i 0.343195 + 0.942921i
\(664\) 0 0
\(665\) −15.3194 + 5.28318i −0.594061 + 0.204873i
\(666\) 0 0
\(667\) 10.4079i 0.402995i
\(668\) 0 0
\(669\) 18.4458 6.71371i 0.713155 0.259567i
\(670\) 0 0
\(671\) 0.159512 + 0.0281263i 0.00615790 + 0.00108580i
\(672\) 0 0
\(673\) −31.9457 5.63289i −1.23142 0.217132i −0.480182 0.877169i \(-0.659429\pi\)
−0.751233 + 0.660037i \(0.770541\pi\)
\(674\) 0 0
\(675\) 23.6476 + 5.00256i 0.910196 + 0.192549i
\(676\) 0 0
\(677\) −13.5828 + 7.84204i −0.522030 + 0.301394i −0.737765 0.675058i \(-0.764119\pi\)
0.215735 + 0.976452i \(0.430785\pi\)
\(678\) 0 0
\(679\) 1.04705 1.24782i 0.0401820 0.0478870i
\(680\) 0 0
\(681\) −10.8311 + 1.90981i −0.415048 + 0.0731842i
\(682\) 0 0
\(683\) 7.90817 6.63574i 0.302598 0.253909i −0.478827 0.877909i \(-0.658938\pi\)
0.781424 + 0.624000i \(0.214493\pi\)
\(684\) 0 0
\(685\) 13.6426 + 16.8305i 0.521255 + 0.643061i
\(686\) 0 0
\(687\) 15.1483 2.67106i 0.577945 0.101907i
\(688\) 0 0
\(689\) 20.5203 + 11.8474i 0.781760 + 0.451349i
\(690\) 0 0
\(691\) 9.87074 + 3.59266i 0.375501 + 0.136671i 0.522874 0.852410i \(-0.324860\pi\)
−0.147374 + 0.989081i \(0.547082\pi\)
\(692\) 0 0
\(693\) −6.37066 3.67810i −0.242001 0.139720i
\(694\) 0 0
\(695\) 23.4998 + 20.4081i 0.891397 + 0.774124i
\(696\) 0 0
\(697\) 52.3235 1.98189
\(698\) 0 0
\(699\) 16.3925 + 13.7549i 0.620021 + 0.520260i
\(700\) 0 0
\(701\) −14.5985 + 40.1090i −0.551378 + 1.51490i 0.280453 + 0.959868i \(0.409515\pi\)
−0.831830 + 0.555030i \(0.812707\pi\)
\(702\) 0 0
\(703\) −6.09889 7.98998i −0.230024 0.301348i
\(704\) 0 0
\(705\) 0.899584 + 0.0152674i 0.0338803 + 0.000575004i
\(706\) 0 0
\(707\) −4.89778 + 5.83695i −0.184200 + 0.219521i
\(708\) 0 0
\(709\) 36.5430i 1.37240i 0.727412 + 0.686201i \(0.240723\pi\)
−0.727412 + 0.686201i \(0.759277\pi\)
\(710\) 0 0
\(711\) −24.3490 + 14.0579i −0.913158 + 0.527212i
\(712\) 0 0
\(713\) 2.36486 + 1.36535i 0.0885648 + 0.0511329i
\(714\) 0 0
\(715\) −10.5918 0.179760i −0.396112 0.00672266i
\(716\) 0 0
\(717\) 5.63605 9.76193i 0.210482 0.364566i
\(718\) 0 0
\(719\) −1.76717 10.0221i −0.0659042 0.373761i −0.999866 0.0163876i \(-0.994783\pi\)
0.933962 0.357374i \(-0.116328\pi\)
\(720\) 0 0
\(721\) 24.0415 + 66.0536i 0.895354 + 2.45996i
\(722\) 0 0
\(723\) 8.70944 7.30809i 0.323908 0.271791i
\(724\) 0 0
\(725\) −26.9016 + 29.9354i −0.999100 + 1.11177i
\(726\) 0 0
\(727\) 0.212334 + 0.178169i 0.00787503 + 0.00660794i 0.646717 0.762730i \(-0.276142\pi\)
−0.638842 + 0.769338i \(0.720586\pi\)
\(728\) 0 0
\(729\) 5.05483 + 8.75522i 0.187216 + 0.324268i
\(730\) 0 0
\(731\) −6.27143 + 5.26236i −0.231957 + 0.194635i
\(732\) 0 0
\(733\) −11.0400 1.94665i −0.407772 0.0719013i −0.0340003 0.999422i \(-0.510825\pi\)
−0.373772 + 0.927521i \(0.621936\pi\)
\(734\) 0 0
\(735\) −25.5947 + 4.06648i −0.944075 + 0.149995i
\(736\) 0 0
\(737\) 1.39574 + 3.83477i 0.0514128 + 0.141256i
\(738\) 0 0
\(739\) 43.9151 1.61544 0.807722 0.589564i \(-0.200701\pi\)
0.807722 + 0.589564i \(0.200701\pi\)
\(740\) 0 0
\(741\) −9.29633 −0.341509
\(742\) 0 0
\(743\) −6.23262 17.1240i −0.228653 0.628218i 0.771313 0.636455i \(-0.219600\pi\)
−0.999966 + 0.00823752i \(0.997378\pi\)
\(744\) 0 0
\(745\) −4.17050 26.2494i −0.152795 0.961703i
\(746\) 0 0
\(747\) 20.9267 + 3.68993i 0.765666 + 0.135008i
\(748\) 0 0
\(749\) −11.9545 + 10.0310i −0.436808 + 0.366525i
\(750\) 0 0
\(751\) −14.4686 25.0604i −0.527967 0.914465i −0.999468 0.0326002i \(-0.989621\pi\)
0.471502 0.881865i \(-0.343712\pi\)
\(752\) 0 0
\(753\) −6.17919 5.18496i −0.225182 0.188950i
\(754\) 0 0
\(755\) −0.664139 1.19677i −0.0241705 0.0435551i
\(756\) 0 0
\(757\) 4.57235 3.83665i 0.166185 0.139446i −0.555903 0.831247i \(-0.687627\pi\)
0.722087 + 0.691802i \(0.243183\pi\)
\(758\) 0 0
\(759\) 0.334295 + 0.918467i 0.0121341 + 0.0333383i
\(760\) 0 0
\(761\) −7.05714 40.0230i −0.255821 1.45083i −0.793956 0.607975i \(-0.791982\pi\)
0.538135 0.842858i \(-0.319129\pi\)
\(762\) 0 0
\(763\) 21.6304 37.4650i 0.783073 1.35632i
\(764\) 0 0
\(765\) 21.5874 + 0.366374i 0.780495 + 0.0132463i
\(766\) 0 0
\(767\) −23.1266 13.3522i −0.835054 0.482119i
\(768\) 0 0
\(769\) −16.1199 + 9.30685i −0.581300 + 0.335614i −0.761650 0.647989i \(-0.775610\pi\)
0.180350 + 0.983603i \(0.442277\pi\)
\(770\) 0 0
\(771\) 12.1016i 0.435829i
\(772\) 0 0
\(773\) 8.34439 9.94446i 0.300127 0.357677i −0.594813 0.803864i \(-0.702774\pi\)
0.894940 + 0.446187i \(0.147218\pi\)
\(774\) 0 0
\(775\) −3.27280 10.0396i −0.117562 0.360633i
\(776\) 0 0
\(777\) −11.6135 22.4478i −0.416633 0.805310i
\(778\) 0 0
\(779\) −6.43893 + 17.6908i −0.230699 + 0.633840i
\(780\) 0 0
\(781\) 9.58296 + 8.04106i 0.342905 + 0.287732i
\(782\) 0 0
\(783\) −38.9123 −1.39061
\(784\) 0 0
\(785\) −17.0819 + 19.6697i −0.609679 + 0.702040i
\(786\) 0 0
\(787\) 0.705191 + 0.407142i 0.0251374 + 0.0145131i 0.512516 0.858678i \(-0.328714\pi\)
−0.487379 + 0.873191i \(0.662047\pi\)
\(788\) 0 0
\(789\) −2.35172 0.855958i −0.0837236 0.0304729i
\(790\) 0 0
\(791\) 53.6664 + 30.9843i 1.90816 + 1.10168i
\(792\) 0 0
\(793\) −1.18710 + 0.209318i −0.0421552 + 0.00743310i
\(794\) 0 0
\(795\) −6.56752 + 5.32353i −0.232926 + 0.188806i
\(796\) 0 0
\(797\) 30.5017 25.5940i 1.08043 0.906586i 0.0844706 0.996426i \(-0.473080\pi\)
0.995956 + 0.0898403i \(0.0286357\pi\)
\(798\) 0 0
\(799\) 1.92084 0.338695i 0.0679543 0.0119822i
\(800\) 0 0
\(801\) −8.80839 + 10.4974i −0.311229 + 0.370908i
\(802\) 0 0
\(803\) −0.216618 + 0.125064i −0.00764427 + 0.00441342i
\(804\) 0 0
\(805\) −10.8717 6.52521i −0.383176 0.229983i
\(806\) 0 0
\(807\) −24.1937 4.26600i −0.851659 0.150170i
\(808\) 0 0
\(809\) 35.2228 + 6.21073i 1.23837 + 0.218357i 0.754216 0.656627i \(-0.228017\pi\)
0.484151 + 0.874984i \(0.339128\pi\)
\(810\) 0 0
\(811\) 8.27790 3.01291i 0.290676 0.105798i −0.192566 0.981284i \(-0.561681\pi\)
0.483243 + 0.875486i \(0.339459\pi\)
\(812\) 0 0
\(813\) 19.4969i 0.683788i
\(814\) 0 0
\(815\) −49.0923 + 16.9304i −1.71963 + 0.593045i
\(816\) 0 0
\(817\) −1.00746 2.76799i −0.0352467 0.0968396i
\(818\) 0 0
\(819\) 53.9138 + 9.50645i 1.88390 + 0.332182i
\(820\) 0 0
\(821\) 7.83242 44.4198i 0.273353 1.55026i −0.470791 0.882245i \(-0.656031\pi\)
0.744144 0.668019i \(-0.232857\pi\)
\(822\) 0 0
\(823\) −11.8439 14.1150i −0.412851 0.492016i 0.519043 0.854748i \(-0.326289\pi\)
−0.931894 + 0.362732i \(0.881844\pi\)
\(824\) 0 0
\(825\) 1.41249 3.50578i 0.0491765 0.122056i
\(826\) 0 0
\(827\) −20.8396 17.4865i −0.724664 0.608065i 0.204007 0.978969i \(-0.434603\pi\)
−0.928671 + 0.370904i \(0.879048\pi\)
\(828\) 0 0
\(829\) 9.32783 1.64475i 0.323969 0.0571245i −0.00929858 0.999957i \(-0.502960\pi\)
0.333268 + 0.942832i \(0.391849\pi\)
\(830\) 0 0
\(831\) 5.37962 + 6.41118i 0.186617 + 0.222401i
\(832\) 0 0
\(833\) −52.7939 + 19.2154i −1.82920 + 0.665775i
\(834\) 0 0
\(835\) −4.21929 7.60314i −0.146015 0.263117i
\(836\) 0 0
\(837\) 5.10470 8.84159i 0.176444 0.305610i
\(838\) 0 0
\(839\) −3.75024 1.36497i −0.129473 0.0471242i 0.276471 0.961022i \(-0.410835\pi\)
−0.405944 + 0.913898i \(0.633057\pi\)
\(840\) 0 0
\(841\) 17.8964 30.9976i 0.617119 1.06888i
\(842\) 0 0
\(843\) 3.78943 + 6.56349i 0.130515 + 0.226059i
\(844\) 0 0
\(845\) 47.0484 16.2255i 1.61851 0.558174i
\(846\) 0 0
\(847\) 29.2141 34.8160i 1.00381 1.19629i
\(848\) 0 0
\(849\) −1.02313 + 2.81102i −0.0351137 + 0.0964740i
\(850\) 0 0
\(851\) 1.72171 7.67425i 0.0590193 0.263070i
\(852\) 0 0
\(853\) 27.3895 + 9.96896i 0.937798 + 0.341331i 0.765296 0.643679i \(-0.222593\pi\)
0.172502 + 0.985009i \(0.444815\pi\)
\(854\) 0 0
\(855\) −2.78042 + 7.25372i −0.0950884 + 0.248072i
\(856\) 0 0
\(857\) −11.3940 −0.389213 −0.194606 0.980881i \(-0.562343\pi\)
−0.194606 + 0.980881i \(0.562343\pi\)
\(858\) 0 0
\(859\) 39.9762 23.0803i 1.36397 0.787489i 0.373822 0.927501i \(-0.378047\pi\)
0.990150 + 0.140011i \(0.0447138\pi\)
\(860\) 0 0
\(861\) −23.6684 + 40.9948i −0.806616 + 1.39710i
\(862\) 0 0
\(863\) −18.2906 + 50.2531i −0.622620 + 1.71064i 0.0778601 + 0.996964i \(0.475191\pi\)
−0.700481 + 0.713671i \(0.747031\pi\)
\(864\) 0 0
\(865\) −25.5573 4.95503i −0.868975 0.168476i
\(866\) 0 0
\(867\) −3.81926 + 0.673438i −0.129709 + 0.0228712i
\(868\) 0 0
\(869\) 3.64941 + 10.0267i 0.123798 + 0.340132i
\(870\) 0 0
\(871\) −19.5216 23.2649i −0.661464 0.788302i
\(872\) 0 0
\(873\) −0.135598 0.769015i −0.00458930 0.0260272i
\(874\) 0 0
\(875\) 14.4034 + 46.8683i 0.486925 + 1.58444i
\(876\) 0 0
\(877\) −21.1439 + 12.2074i −0.713979 + 0.412216i −0.812533 0.582916i \(-0.801912\pi\)
0.0985535 + 0.995132i \(0.468578\pi\)
\(878\) 0 0
\(879\) 8.43701 7.07949i 0.284573 0.238785i
\(880\) 0 0
\(881\) 4.29172 24.3396i 0.144592 0.820020i −0.823102 0.567893i \(-0.807759\pi\)
0.967694 0.252127i \(-0.0811302\pi\)
\(882\) 0 0
\(883\) 5.73595 32.5302i 0.193030 1.09473i −0.722166 0.691719i \(-0.756854\pi\)
0.915196 0.403008i \(-0.132035\pi\)
\(884\) 0 0
\(885\) 7.40169 5.99969i 0.248805 0.201677i
\(886\) 0 0
\(887\) 17.4414i 0.585623i 0.956170 + 0.292812i \(0.0945909\pi\)
−0.956170 + 0.292812i \(0.905409\pi\)
\(888\) 0 0
\(889\) −80.2650 −2.69200
\(890\) 0 0
\(891\) −1.29477 + 0.471258i −0.0433765 + 0.0157877i
\(892\) 0 0
\(893\) −0.121864 + 0.691123i −0.00407801 + 0.0231276i
\(894\) 0 0
\(895\) 29.6183 4.70575i 0.990030 0.157296i
\(896\) 0 0
\(897\) −4.67562 5.57219i −0.156115 0.186050i
\(898\) 0 0
\(899\) 8.49983 + 14.7221i 0.283485 + 0.491011i
\(900\) 0 0
\(901\) −11.7807 + 14.0397i −0.392472 + 0.467730i
\(902\) 0 0
\(903\) −1.28613 7.29400i −0.0427997 0.242729i
\(904\) 0 0
\(905\) 23.5177 39.1829i 0.781754 1.30248i
\(906\) 0 0
\(907\) −30.7961 + 11.2089i −1.02257 + 0.372184i −0.798246 0.602331i \(-0.794239\pi\)
−0.224321 + 0.974515i \(0.572016\pi\)
\(908\) 0 0
\(909\) 0.634289 + 3.59723i 0.0210380 + 0.119313i
\(910\) 0 0
\(911\) 4.69453 + 2.71039i 0.155537 + 0.0897992i 0.575748 0.817627i \(-0.304711\pi\)
−0.420212 + 0.907426i \(0.638044\pi\)
\(912\) 0 0
\(913\) 2.75817 7.57801i 0.0912821 0.250796i
\(914\) 0 0
\(915\) 0.0818598 0.422221i 0.00270620 0.0139582i
\(916\) 0 0
\(917\) 28.5952 + 49.5283i 0.944295 + 1.63557i
\(918\) 0 0
\(919\) 50.5550i 1.66766i −0.552023 0.833829i \(-0.686144\pi\)
0.552023 0.833829i \(-0.313856\pi\)
\(920\) 0 0
\(921\) 0.815125 + 0.683971i 0.0268593 + 0.0225376i
\(922\) 0 0
\(923\) −87.4834 31.8414i −2.87955 1.04807i
\(924\) 0 0
\(925\) −24.7879 + 17.6227i −0.815021 + 0.579431i
\(926\) 0 0
\(927\) 31.6651 + 11.5252i 1.04002 + 0.378536i
\(928\) 0 0
\(929\) 4.57589 + 3.83963i 0.150130 + 0.125974i 0.714759 0.699371i \(-0.246536\pi\)
−0.564629 + 0.825345i \(0.690981\pi\)
\(930\) 0 0
\(931\) 20.2145i 0.662505i
\(932\) 0 0
\(933\) 7.75596 + 13.4337i 0.253919 + 0.439800i
\(934\) 0 0
\(935\) 1.55956 8.04399i 0.0510031 0.263067i
\(936\) 0 0
\(937\) −11.2214 + 30.8307i −0.366589 + 1.00719i 0.610061 + 0.792355i \(0.291145\pi\)
−0.976649 + 0.214839i \(0.931077\pi\)
\(938\) 0 0
\(939\) −8.15085 4.70589i −0.265993 0.153571i
\(940\) 0 0
\(941\) −4.09873 23.2451i −0.133615 0.757768i −0.975814 0.218601i \(-0.929851\pi\)
0.842199 0.539166i \(-0.181261\pi\)
\(942\) 0 0
\(943\) −13.8423 + 5.03819i −0.450768 + 0.164066i
\(944\) 0 0
\(945\) −24.3960 + 40.6463i −0.793603 + 1.32222i
\(946\) 0 0
\(947\) 4.82434 + 27.3602i 0.156770 + 0.889086i 0.957150 + 0.289593i \(0.0935199\pi\)
−0.800380 + 0.599493i \(0.795369\pi\)
\(948\) 0 0
\(949\) 1.19653 1.42597i 0.0388411 0.0462891i
\(950\) 0 0
\(951\) 6.98759 + 12.1029i 0.226588 + 0.392462i
\(952\) 0 0
\(953\) 16.8182 + 20.0432i 0.544795 + 0.649261i 0.966256 0.257585i \(-0.0829268\pi\)
−0.421461 + 0.906847i \(0.638482\pi\)
\(954\) 0 0
\(955\) −2.27629 + 0.361657i −0.0736590 + 0.0117029i
\(956\) 0 0
\(957\) −1.05661 + 5.99232i −0.0341552 + 0.193704i
\(958\) 0 0
\(959\) −39.9289 + 14.5329i −1.28937 + 0.469292i
\(960\) 0 0
\(961\) 26.5398 0.856123
\(962\) 0 0
\(963\) 7.48104i 0.241073i
\(964\) 0 0
\(965\) 27.1962 22.0448i 0.875476 0.709648i
\(966\) 0 0
\(967\) 5.80155 32.9022i 0.186565 1.05806i −0.737362 0.675497i \(-0.763929\pi\)
0.923928 0.382567i \(-0.124960\pi\)
\(968\) 0 0
\(969\) 1.24863 7.08132i 0.0401117 0.227485i
\(970\) 0 0
\(971\) 42.4349 35.6071i 1.36180 1.14269i 0.386381 0.922339i \(-0.373725\pi\)
0.975421 0.220348i \(-0.0707194\pi\)
\(972\) 0 0
\(973\) −52.8650 + 30.5216i −1.69477 + 0.978479i
\(974\) 0 0
\(975\) −0.954492 + 28.1121i −0.0305682 + 0.900308i
\(976\) 0 0
\(977\) 1.07411 + 6.09157i 0.0343638 + 0.194887i 0.997157 0.0753527i \(-0.0240083\pi\)
−0.962793 + 0.270239i \(0.912897\pi\)
\(978\) 0 0
\(979\) 3.34286 + 3.98386i 0.106838 + 0.127325i
\(980\) 0 0
\(981\) −7.09301 19.4879i −0.226462 0.622201i
\(982\) 0 0
\(983\) −38.1665 + 6.72979i −1.21732 + 0.214647i −0.745173 0.666871i \(-0.767633\pi\)
−0.472150 + 0.881518i \(0.656522\pi\)
\(984\) 0 0
\(985\) 36.0251 + 6.98450i 1.14786 + 0.222545i
\(986\) 0 0
\(987\) −0.603520 + 1.65816i −0.0192103 + 0.0527798i
\(988\) 0 0
\(989\) 1.15241 1.99604i 0.0366447 0.0634704i
\(990\) 0 0
\(991\) 18.0120 10.3992i 0.572170 0.330342i −0.185846 0.982579i \(-0.559502\pi\)
0.758015 + 0.652237i \(0.226169\pi\)
\(992\) 0 0
\(993\) −27.1114 −0.860353
\(994\) 0 0
\(995\) 14.5234 37.8895i 0.460423 1.20118i
\(996\) 0 0
\(997\) 23.6864 + 8.62113i 0.750155 + 0.273034i 0.688671 0.725074i \(-0.258195\pi\)
0.0614837 + 0.998108i \(0.480417\pi\)
\(998\) 0 0
\(999\) −28.6920 6.43701i −0.907774 0.203658i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 740.2.bp.a.169.8 120
5.4 even 2 inner 740.2.bp.a.169.13 yes 120
37.30 even 18 inner 740.2.bp.a.289.13 yes 120
185.104 even 18 inner 740.2.bp.a.289.8 yes 120
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.bp.a.169.8 120 1.1 even 1 trivial
740.2.bp.a.169.13 yes 120 5.4 even 2 inner
740.2.bp.a.289.8 yes 120 185.104 even 18 inner
740.2.bp.a.289.13 yes 120 37.30 even 18 inner