Newspace parameters
Level: | \( N \) | \(=\) | \( 740 = 2^{2} \cdot 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 740.bp (of order \(18\), degree \(6\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.90892974957\) |
Analytic rank: | \(0\) |
Dimension: | \(120\) |
Relative dimension: | \(20\) over \(\Q(\zeta_{18})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
169.1 | 0 | −1.11522 | − | 3.06403i | 0 | 0.896315 | − | 2.04857i | 0 | −1.89421 | − | 0.334000i | 0 | −5.84644 | + | 4.90574i | 0 | ||||||||||
169.2 | 0 | −1.06939 | − | 2.93812i | 0 | −0.726059 | + | 2.11491i | 0 | 4.51652 | + | 0.796384i | 0 | −5.19083 | + | 4.35562i | 0 | ||||||||||
169.3 | 0 | −0.788794 | − | 2.16719i | 0 | 2.23599 | + | 0.0187872i | 0 | 2.25112 | + | 0.396932i | 0 | −1.77640 | + | 1.49058i | 0 | ||||||||||
169.4 | 0 | −0.780576 | − | 2.14461i | 0 | 0.743977 | + | 2.10867i | 0 | −3.87984 | − | 0.684120i | 0 | −1.69194 | + | 1.41970i | 0 | ||||||||||
169.5 | 0 | −0.671392 | − | 1.84463i | 0 | −1.87437 | + | 1.21932i | 0 | −0.102465 | − | 0.0180673i | 0 | −0.653777 | + | 0.548584i | 0 | ||||||||||
169.6 | 0 | −0.583105 | − | 1.60207i | 0 | −0.703709 | − | 2.12245i | 0 | −0.0792084 | − | 0.0139666i | 0 | 0.0715239 | − | 0.0600157i | 0 | ||||||||||
169.7 | 0 | −0.410260 | − | 1.12718i | 0 | −2.23575 | + | 0.0375558i | 0 | 0.632411 | + | 0.111511i | 0 | 1.19591 | − | 1.00349i | 0 | ||||||||||
169.8 | 0 | −0.324044 | − | 0.890304i | 0 | −0.350865 | − | 2.20837i | 0 | 4.31890 | + | 0.761538i | 0 | 1.61050 | − | 1.35137i | 0 | ||||||||||
169.9 | 0 | −0.0844428 | − | 0.232005i | 0 | 1.84708 | − | 1.26028i | 0 | −4.40804 | − | 0.777256i | 0 | 2.25144 | − | 1.88918i | 0 | ||||||||||
169.10 | 0 | −0.0565853 | − | 0.155467i | 0 | 1.96096 | − | 1.07454i | 0 | −0.407159 | − | 0.0717931i | 0 | 2.27717 | − | 1.91077i | 0 | ||||||||||
169.11 | 0 | 0.0565853 | + | 0.155467i | 0 | 1.47519 | + | 1.68042i | 0 | 0.407159 | + | 0.0717931i | 0 | 2.27717 | − | 1.91077i | 0 | ||||||||||
169.12 | 0 | 0.0844428 | + | 0.232005i | 0 | 1.30464 | + | 1.81601i | 0 | 4.40804 | + | 0.777256i | 0 | 2.25144 | − | 1.88918i | 0 | ||||||||||
169.13 | 0 | 0.324044 | + | 0.890304i | 0 | −1.08501 | + | 1.95518i | 0 | −4.31890 | − | 0.761538i | 0 | 1.61050 | − | 1.35137i | 0 | ||||||||||
169.14 | 0 | 0.410260 | + | 1.12718i | 0 | −2.08808 | − | 0.799963i | 0 | −0.632411 | − | 0.111511i | 0 | 1.19591 | − | 1.00349i | 0 | ||||||||||
169.15 | 0 | 0.583105 | + | 1.60207i | 0 | −1.38719 | + | 1.75377i | 0 | 0.0792084 | + | 0.0139666i | 0 | 0.0715239 | − | 0.0600157i | 0 | ||||||||||
169.16 | 0 | 0.671392 | + | 1.84463i | 0 | −1.34430 | − | 1.78686i | 0 | 0.102465 | + | 0.0180673i | 0 | −0.653777 | + | 0.548584i | 0 | ||||||||||
169.17 | 0 | 0.780576 | + | 2.14461i | 0 | 1.42032 | − | 1.72705i | 0 | 3.87984 | + | 0.684120i | 0 | −1.69194 | + | 1.41970i | 0 | ||||||||||
169.18 | 0 | 0.788794 | + | 2.16719i | 0 | 2.10757 | + | 0.747099i | 0 | −2.25112 | − | 0.396932i | 0 | −1.77640 | + | 1.49058i | 0 | ||||||||||
169.19 | 0 | 1.06939 | + | 2.93812i | 0 | 0.0410689 | − | 2.23569i | 0 | −4.51652 | − | 0.796384i | 0 | −5.19083 | + | 4.35562i | 0 | ||||||||||
169.20 | 0 | 1.11522 | + | 3.06403i | 0 | 0.141610 | + | 2.23158i | 0 | 1.89421 | + | 0.334000i | 0 | −5.84644 | + | 4.90574i | 0 | ||||||||||
See next 80 embeddings (of 120 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
37.h | even | 18 | 1 | inner |
185.v | even | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 740.2.bp.a | ✓ | 120 |
5.b | even | 2 | 1 | inner | 740.2.bp.a | ✓ | 120 |
37.h | even | 18 | 1 | inner | 740.2.bp.a | ✓ | 120 |
185.v | even | 18 | 1 | inner | 740.2.bp.a | ✓ | 120 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
740.2.bp.a | ✓ | 120 | 1.a | even | 1 | 1 | trivial |
740.2.bp.a | ✓ | 120 | 5.b | even | 2 | 1 | inner |
740.2.bp.a | ✓ | 120 | 37.h | even | 18 | 1 | inner |
740.2.bp.a | ✓ | 120 | 185.v | even | 18 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(740, [\chi])\).