Newspace parameters
Level: | \( N \) | \(=\) | \( 738 = 2 \cdot 3^{2} \cdot 41 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 738.i (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.89295966917\) |
Analytic rank: | \(0\) |
Dimension: | \(36\) |
Relative dimension: | \(18\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
409.1 | −0.500000 | − | 0.866025i | −1.68332 | + | 0.407978i | −0.500000 | + | 0.866025i | 1.84171 | − | 3.18994i | 1.19498 | + | 1.25381i | 3.70331 | − | 2.13810i | 1.00000 | 2.66711 | − | 1.37351i | −3.68343 | ||||
409.2 | −0.500000 | − | 0.866025i | −1.57206 | + | 0.727065i | −0.500000 | + | 0.866025i | 0.714167 | − | 1.23697i | 1.41569 | + | 0.997912i | −2.06322 | + | 1.19120i | 1.00000 | 1.94275 | − | 2.28598i | −1.42833 | ||||
409.3 | −0.500000 | − | 0.866025i | −1.42570 | − | 0.983551i | −0.500000 | + | 0.866025i | 1.13494 | − | 1.96578i | −0.138929 | + | 1.72647i | −4.05054 | + | 2.33858i | 1.00000 | 1.06526 | + | 2.80450i | −2.26989 | ||||
409.4 | −0.500000 | − | 0.866025i | −1.35012 | + | 1.08497i | −0.500000 | + | 0.866025i | −1.58544 | + | 2.74607i | 1.61468 | + | 0.626753i | 1.86289 | − | 1.07554i | 1.00000 | 0.645660 | − | 2.92970i | 3.17089 | ||||
409.5 | −0.500000 | − | 0.866025i | −1.23882 | − | 1.21051i | −0.500000 | + | 0.866025i | 0.290704 | − | 0.503513i | −0.428919 | + | 1.67810i | 1.28705 | − | 0.743077i | 1.00000 | 0.0693495 | + | 2.99920i | −0.581407 | ||||
409.6 | −0.500000 | − | 0.866025i | −0.793227 | − | 1.53974i | −0.500000 | + | 0.866025i | −1.18467 | + | 2.05191i | −0.936838 | + | 1.45682i | 4.22182 | − | 2.43747i | 1.00000 | −1.74158 | + | 2.44272i | 2.36934 | ||||
409.7 | −0.500000 | − | 0.866025i | −0.528977 | + | 1.64930i | −0.500000 | + | 0.866025i | 1.55925 | − | 2.70071i | 1.69282 | − | 0.366541i | −0.0882889 | + | 0.0509736i | 1.00000 | −2.44037 | − | 1.74488i | −3.11851 | ||||
409.8 | −0.500000 | − | 0.866025i | −0.359981 | + | 1.69423i | −0.500000 | + | 0.866025i | −0.0761831 | + | 0.131953i | 1.64724 | − | 0.535362i | 1.94692 | − | 1.12405i | 1.00000 | −2.74083 | − | 1.21978i | 0.152366 | ||||
409.9 | −0.500000 | − | 0.866025i | −0.127771 | − | 1.72733i | −0.500000 | + | 0.866025i | −1.69449 | + | 2.93494i | −1.43203 | + | 0.974319i | −0.610625 | + | 0.352544i | 1.00000 | −2.96735 | + | 0.441407i | 3.38898 | ||||
409.10 | −0.500000 | − | 0.866025i | 0.127771 | + | 1.72733i | −0.500000 | + | 0.866025i | −1.69449 | + | 2.93494i | 1.43203 | − | 0.974319i | 0.610625 | − | 0.352544i | 1.00000 | −2.96735 | + | 0.441407i | 3.38898 | ||||
409.11 | −0.500000 | − | 0.866025i | 0.359981 | − | 1.69423i | −0.500000 | + | 0.866025i | −0.0761831 | + | 0.131953i | −1.64724 | + | 0.535362i | −1.94692 | + | 1.12405i | 1.00000 | −2.74083 | − | 1.21978i | 0.152366 | ||||
409.12 | −0.500000 | − | 0.866025i | 0.528977 | − | 1.64930i | −0.500000 | + | 0.866025i | 1.55925 | − | 2.70071i | −1.69282 | + | 0.366541i | 0.0882889 | − | 0.0509736i | 1.00000 | −2.44037 | − | 1.74488i | −3.11851 | ||||
409.13 | −0.500000 | − | 0.866025i | 0.793227 | + | 1.53974i | −0.500000 | + | 0.866025i | −1.18467 | + | 2.05191i | 0.936838 | − | 1.45682i | −4.22182 | + | 2.43747i | 1.00000 | −1.74158 | + | 2.44272i | 2.36934 | ||||
409.14 | −0.500000 | − | 0.866025i | 1.23882 | + | 1.21051i | −0.500000 | + | 0.866025i | 0.290704 | − | 0.503513i | 0.428919 | − | 1.67810i | −1.28705 | + | 0.743077i | 1.00000 | 0.0693495 | + | 2.99920i | −0.581407 | ||||
409.15 | −0.500000 | − | 0.866025i | 1.35012 | − | 1.08497i | −0.500000 | + | 0.866025i | −1.58544 | + | 2.74607i | −1.61468 | − | 0.626753i | −1.86289 | + | 1.07554i | 1.00000 | 0.645660 | − | 2.92970i | 3.17089 | ||||
409.16 | −0.500000 | − | 0.866025i | 1.42570 | + | 0.983551i | −0.500000 | + | 0.866025i | 1.13494 | − | 1.96578i | 0.138929 | − | 1.72647i | 4.05054 | − | 2.33858i | 1.00000 | 1.06526 | + | 2.80450i | −2.26989 | ||||
409.17 | −0.500000 | − | 0.866025i | 1.57206 | − | 0.727065i | −0.500000 | + | 0.866025i | 0.714167 | − | 1.23697i | −1.41569 | − | 0.997912i | 2.06322 | − | 1.19120i | 1.00000 | 1.94275 | − | 2.28598i | −1.42833 | ||||
409.18 | −0.500000 | − | 0.866025i | 1.68332 | − | 0.407978i | −0.500000 | + | 0.866025i | 1.84171 | − | 3.18994i | −1.19498 | − | 1.25381i | −3.70331 | + | 2.13810i | 1.00000 | 2.66711 | − | 1.37351i | −3.68343 | ||||
655.1 | −0.500000 | + | 0.866025i | −1.68332 | − | 0.407978i | −0.500000 | − | 0.866025i | 1.84171 | + | 3.18994i | 1.19498 | − | 1.25381i | 3.70331 | + | 2.13810i | 1.00000 | 2.66711 | + | 1.37351i | −3.68343 | ||||
655.2 | −0.500000 | + | 0.866025i | −1.57206 | − | 0.727065i | −0.500000 | − | 0.866025i | 0.714167 | + | 1.23697i | 1.41569 | − | 0.997912i | −2.06322 | − | 1.19120i | 1.00000 | 1.94275 | + | 2.28598i | −1.42833 | ||||
See all 36 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
41.b | even | 2 | 1 | inner |
369.i | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 738.2.i.b | ✓ | 36 |
3.b | odd | 2 | 1 | 2214.2.i.b | 36 | ||
9.c | even | 3 | 1 | inner | 738.2.i.b | ✓ | 36 |
9.d | odd | 6 | 1 | 2214.2.i.b | 36 | ||
41.b | even | 2 | 1 | inner | 738.2.i.b | ✓ | 36 |
123.b | odd | 2 | 1 | 2214.2.i.b | 36 | ||
369.i | even | 6 | 1 | inner | 738.2.i.b | ✓ | 36 |
369.k | odd | 6 | 1 | 2214.2.i.b | 36 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
738.2.i.b | ✓ | 36 | 1.a | even | 1 | 1 | trivial |
738.2.i.b | ✓ | 36 | 9.c | even | 3 | 1 | inner |
738.2.i.b | ✓ | 36 | 41.b | even | 2 | 1 | inner |
738.2.i.b | ✓ | 36 | 369.i | even | 6 | 1 | inner |
2214.2.i.b | 36 | 3.b | odd | 2 | 1 | ||
2214.2.i.b | 36 | 9.d | odd | 6 | 1 | ||
2214.2.i.b | 36 | 123.b | odd | 2 | 1 | ||
2214.2.i.b | 36 | 369.k | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{18} - 2 T_{5}^{17} + 31 T_{5}^{16} - 52 T_{5}^{15} + 608 T_{5}^{14} - 979 T_{5}^{13} + \cdots + 7056 \)
acting on \(S_{2}^{\mathrm{new}}(738, [\chi])\).