L(s) = 1 | + (−0.5 − 0.866i)2-s + (1.57 − 0.727i)3-s + (−0.499 + 0.866i)4-s + (0.714 − 1.23i)5-s + (−1.41 − 0.997i)6-s + (2.06 − 1.19i)7-s + 0.999·8-s + (1.94 − 2.28i)9-s − 1.42·10-s + (3.59 − 2.07i)11-s + (−0.156 + 1.72i)12-s + (−3.86 − 2.23i)13-s + (−2.06 − 1.19i)14-s + (0.223 − 2.46i)15-s + (−0.5 − 0.866i)16-s + 8.04i·17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.907 − 0.419i)3-s + (−0.249 + 0.433i)4-s + (0.319 − 0.553i)5-s + (−0.577 − 0.407i)6-s + (0.779 − 0.450i)7-s + 0.353·8-s + (0.647 − 0.761i)9-s − 0.451·10-s + (1.08 − 0.625i)11-s + (−0.0451 + 0.497i)12-s + (−1.07 − 0.618i)13-s + (−0.551 − 0.318i)14-s + (0.0576 − 0.636i)15-s + (−0.125 − 0.216i)16-s + 1.95i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 738 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.190 + 0.981i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 738 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.190 + 0.981i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.24902 - 1.51548i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.24902 - 1.51548i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 + (-1.57 + 0.727i)T \) |
| 41 | \( 1 + (-4.17 + 4.85i)T \) |
good | 5 | \( 1 + (-0.714 + 1.23i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-2.06 + 1.19i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-3.59 + 2.07i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (3.86 + 2.23i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 8.04iT - 17T^{2} \) |
| 19 | \( 1 - 0.0146iT - 19T^{2} \) |
| 23 | \( 1 + (1.70 - 2.96i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3.69 - 2.13i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.83 + 6.63i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 1.09T + 37T^{2} \) |
| 43 | \( 1 + (4.92 + 8.52i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (11.3 - 6.54i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 2.16iT - 53T^{2} \) |
| 59 | \( 1 + (-6.49 + 11.2i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.312 + 0.541i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.40 - 3.69i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 11.1iT - 71T^{2} \) |
| 73 | \( 1 + 2.91T + 73T^{2} \) |
| 79 | \( 1 + (10.9 - 6.31i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-7.00 - 12.1i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 0.614iT - 89T^{2} \) |
| 97 | \( 1 + (-3.71 + 2.14i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.932478377105496712140524204075, −9.316823870501702770267842196440, −8.350047935758696123620226045339, −7.967759913968801920303767336570, −6.88285416646211338851548354826, −5.62624430912413316135415845917, −4.26647946907965637238415261650, −3.49666924411096740176583682474, −2.02648764533667797426560885087, −1.17765560737167739210918855959,
1.85739481931309652031659174791, 2.86557070631180910394114627543, 4.51377538703699813212622316962, 4.96938249543182284928608921788, 6.56426229633726818002093877544, 7.17130887014351943886336130712, 8.069295087739589671188559498526, 8.984536626172014483033229703528, 9.626573866183837581614391493787, 10.15058419099653445155601111176