L(s) = 1 | + (−0.5 + 0.866i)2-s + (−1.35 − 1.08i)3-s + (−0.499 − 0.866i)4-s + (−1.58 − 2.74i)5-s + (1.61 − 0.626i)6-s + (1.86 + 1.07i)7-s + 0.999·8-s + (0.645 + 2.92i)9-s + 3.17·10-s + (−0.206 − 0.119i)11-s + (−0.264 + 1.71i)12-s + (6.02 − 3.47i)13-s + (−1.86 + 1.07i)14-s + (−0.838 + 5.42i)15-s + (−0.5 + 0.866i)16-s − 4.96i·17-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.779 − 0.626i)3-s + (−0.249 − 0.433i)4-s + (−0.709 − 1.22i)5-s + (0.659 − 0.255i)6-s + (0.704 + 0.406i)7-s + 0.353·8-s + (0.215 + 0.976i)9-s + 1.00·10-s + (−0.0623 − 0.0360i)11-s + (−0.0763 + 0.494i)12-s + (1.67 − 0.964i)13-s + (−0.497 + 0.287i)14-s + (−0.216 + 1.40i)15-s + (−0.125 + 0.216i)16-s − 1.20i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 738 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.304 + 0.952i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 738 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.304 + 0.952i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.421550 - 0.577175i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.421550 - 0.577175i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 + (1.35 + 1.08i)T \) |
| 41 | \( 1 + (4.10 + 4.91i)T \) |
good | 5 | \( 1 + (1.58 + 2.74i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-1.86 - 1.07i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (0.206 + 0.119i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-6.02 + 3.47i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 4.96iT - 17T^{2} \) |
| 19 | \( 1 - 6.10iT - 19T^{2} \) |
| 23 | \( 1 + (1.71 + 2.97i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.10 - 1.79i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (4.95 + 8.58i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 10.7T + 37T^{2} \) |
| 43 | \( 1 + (1.63 - 2.82i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (5.37 + 3.10i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 1.18iT - 53T^{2} \) |
| 59 | \( 1 + (-5.69 - 9.85i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.854 + 1.48i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.46 + 2.57i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 8.31iT - 71T^{2} \) |
| 73 | \( 1 - 12.0T + 73T^{2} \) |
| 79 | \( 1 + (-0.375 - 0.216i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (1.97 - 3.42i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 4.54iT - 89T^{2} \) |
| 97 | \( 1 + (-6.84 - 3.95i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.17665400734432016509235371001, −8.838612572433234886395446662604, −8.215870489733451199918843334161, −7.80366219588486292002068019495, −6.58315286032469532074120317360, −5.51665233462509990824397792621, −5.13369912260442462354682684762, −3.87918578145866826209006618580, −1.64779328139162205399674071724, −0.50779688207227551526191874552,
1.52358340394580771895169697094, 3.40434631885767960010577309784, 3.91228985778009887947139309040, 5.01092968686593346579737126883, 6.46358868649650532376506264685, 6.98637860741799803419069917902, 8.243555024443254882196904189960, 8.979344105317582148734262792213, 10.20658148739096418499117010388, 10.79378603111761337718362385129