L(s) = 1 | + (−0.5 + 0.866i)2-s + (0.528 + 1.64i)3-s + (−0.499 − 0.866i)4-s + (1.55 + 2.70i)5-s + (−1.69 − 0.366i)6-s + (0.0882 + 0.0509i)7-s + 0.999·8-s + (−2.44 + 1.74i)9-s − 3.11·10-s + (4.55 + 2.63i)11-s + (1.16 − 1.28i)12-s + (4.23 − 2.44i)13-s + (−0.0882 + 0.0509i)14-s + (−3.62 + 4.00i)15-s + (−0.5 + 0.866i)16-s + 5.23i·17-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (0.305 + 0.952i)3-s + (−0.249 − 0.433i)4-s + (0.697 + 1.20i)5-s + (−0.691 − 0.149i)6-s + (0.0333 + 0.0192i)7-s + 0.353·8-s + (−0.813 + 0.581i)9-s − 0.986·10-s + (1.37 + 0.793i)11-s + (0.335 − 0.370i)12-s + (1.17 − 0.677i)13-s + (−0.0235 + 0.0136i)14-s + (−0.937 + 1.03i)15-s + (−0.125 + 0.216i)16-s + 1.26i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 738 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.841 - 0.540i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 738 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.841 - 0.540i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.465610 + 1.58783i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.465610 + 1.58783i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 + (-0.528 - 1.64i)T \) |
| 41 | \( 1 + (0.195 + 6.40i)T \) |
good | 5 | \( 1 + (-1.55 - 2.70i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-0.0882 - 0.0509i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-4.55 - 2.63i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-4.23 + 2.44i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 5.23iT - 17T^{2} \) |
| 19 | \( 1 + 2.72iT - 19T^{2} \) |
| 23 | \( 1 + (2.45 + 4.24i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.03 - 0.599i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.11 - 3.66i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 8.60T + 37T^{2} \) |
| 43 | \( 1 + (-4.14 + 7.18i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.09 - 2.36i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 9.74iT - 53T^{2} \) |
| 59 | \( 1 + (3.11 + 5.39i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (7.38 - 12.7i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.33 + 1.92i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 2.40iT - 71T^{2} \) |
| 73 | \( 1 + 5.13T + 73T^{2} \) |
| 79 | \( 1 + (7.18 + 4.14i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (4.63 - 8.02i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 5.05iT - 89T^{2} \) |
| 97 | \( 1 + (1.48 + 0.854i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.42769981836541424381348877318, −10.02111545505352947796837837476, −8.902507022023301324710991424032, −8.459490731517305540336554961913, −7.07410741669836229859939593666, −6.37514984826964069590276524871, −5.60360907679127923119153768003, −4.25810801271378821898568839158, −3.37063166778766558816367176890, −1.93669776598178735003752296083,
1.07045361298736172612454424393, 1.65335740776798232801225951302, 3.20274303536663703014831156091, 4.32757302804385600570271901826, 5.75416281992783201962015756146, 6.41950623302664697525728246567, 7.66682911159248398686698871983, 8.602951078270096407955005787965, 9.116217564691248919402646554547, 9.634898194720738957767706292235