Properties

Label 738.2.ba.d.233.4
Level $738$
Weight $2$
Character 738.233
Analytic conductor $5.893$
Analytic rank $0$
Dimension $64$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [738,2,Mod(17,738)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("738.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(738, base_ring=CyclotomicField(40)) chi = DirichletCharacter(H, H._module([20, 33])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 738 = 2 \cdot 3^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 738.ba (of order \(40\), degree \(16\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64,0,0,0,0,0,-4,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.89295966917\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(4\) over \(\Q(\zeta_{40})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{40}]$

Embedding invariants

Embedding label 233.4
Character \(\chi\) \(=\) 738.233
Dual form 738.2.ba.d.719.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.453990 + 0.891007i) q^{2} +(-0.587785 - 0.809017i) q^{4} +(0.499283 - 3.15235i) q^{5} +(0.671416 - 0.786128i) q^{7} +(0.987688 - 0.156434i) q^{8} +(2.58210 + 1.87600i) q^{10} +(0.100924 + 0.164693i) q^{11} +(-0.239053 + 3.03746i) q^{13} +(0.395628 + 0.955131i) q^{14} +(-0.309017 + 0.951057i) q^{16} +(0.422714 - 1.76073i) q^{17} +(-0.00761038 - 0.0966990i) q^{19} +(-2.84378 + 1.44898i) q^{20} +(-0.192561 + 0.0151549i) q^{22} +(-2.70502 - 8.32519i) q^{23} +(-4.93275 - 1.60275i) q^{25} +(-2.59787 - 1.59198i) q^{26} +(-1.03064 - 0.0811131i) q^{28} +(-1.74742 - 7.27852i) q^{29} +(1.03824 - 1.42902i) q^{31} +(-0.707107 - 0.707107i) q^{32} +(1.37691 + 1.17599i) q^{34} +(-2.14292 - 2.50904i) q^{35} +(3.06143 - 2.22426i) q^{37} +(0.0896145 + 0.0371195i) q^{38} -3.19165i q^{40} +(0.788009 - 6.35445i) q^{41} +(-3.32951 - 1.69647i) q^{43} +(0.0739177 - 0.178453i) q^{44} +(8.64585 + 1.36937i) q^{46} +(-7.60363 + 6.49411i) q^{47} +(0.927845 + 5.85818i) q^{49} +(3.66748 - 3.66748i) q^{50} +(2.59787 - 1.59198i) q^{52} +(6.19350 - 1.48693i) q^{53} +(0.569559 - 0.235919i) q^{55} +(0.540173 - 0.881482i) q^{56} +(7.27852 + 1.74742i) q^{58} +(2.72819 - 0.886444i) q^{59} +(-3.34936 - 6.57349i) q^{61} +(0.801911 + 1.57384i) q^{62} +(0.951057 - 0.309017i) q^{64} +(9.45579 + 2.27013i) q^{65} +(1.53604 - 2.50659i) q^{67} +(-1.67292 + 0.692948i) q^{68} +(3.20844 - 0.770278i) q^{70} +(-7.19946 + 4.41183i) q^{71} +(4.69223 - 4.69223i) q^{73} +(0.591970 + 3.73755i) q^{74} +(-0.0737579 + 0.0629952i) q^{76} +(0.197231 + 0.0312384i) q^{77} +(-1.03431 + 2.49705i) q^{79} +(2.84378 + 1.44898i) q^{80} +(5.30411 + 3.58698i) q^{82} +11.5641i q^{83} +(-5.33938 - 2.21164i) q^{85} +(3.02313 - 2.19643i) q^{86} +(0.125445 + 0.146877i) q^{88} +(11.9676 + 10.2213i) q^{89} +(2.22733 + 2.22733i) q^{91} +(-5.14525 + 7.08183i) q^{92} +(-2.33432 - 9.72315i) q^{94} +(-0.308629 - 0.0242896i) q^{95} +(0.141143 + 0.0864925i) q^{97} +(-5.64091 - 1.83284i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 4 q^{7} + 8 q^{11} + 16 q^{13} - 4 q^{14} + 16 q^{16} + 16 q^{17} + 4 q^{19} - 4 q^{22} - 48 q^{23} + 40 q^{25} + 20 q^{26} + 4 q^{28} - 4 q^{29} + 40 q^{31} + 4 q^{34} + 52 q^{35} + 8 q^{37} - 16 q^{38}+ \cdots + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/738\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{40}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.453990 + 0.891007i −0.321020 + 0.630037i
\(3\) 0 0
\(4\) −0.587785 0.809017i −0.293893 0.404508i
\(5\) 0.499283 3.15235i 0.223286 1.40977i −0.580211 0.814466i \(-0.697030\pi\)
0.803497 0.595308i \(-0.202970\pi\)
\(6\) 0 0
\(7\) 0.671416 0.786128i 0.253772 0.297128i −0.618866 0.785496i \(-0.712408\pi\)
0.872638 + 0.488368i \(0.162408\pi\)
\(8\) 0.987688 0.156434i 0.349201 0.0553079i
\(9\) 0 0
\(10\) 2.58210 + 1.87600i 0.816530 + 0.593244i
\(11\) 0.100924 + 0.164693i 0.0304297 + 0.0496567i 0.867493 0.497449i \(-0.165730\pi\)
−0.837064 + 0.547105i \(0.815730\pi\)
\(12\) 0 0
\(13\) −0.239053 + 3.03746i −0.0663015 + 0.842440i 0.870408 + 0.492332i \(0.163855\pi\)
−0.936709 + 0.350108i \(0.886145\pi\)
\(14\) 0.395628 + 0.955131i 0.105736 + 0.255269i
\(15\) 0 0
\(16\) −0.309017 + 0.951057i −0.0772542 + 0.237764i
\(17\) 0.422714 1.76073i 0.102523 0.427039i −0.897376 0.441267i \(-0.854529\pi\)
0.999899 + 0.0142280i \(0.00452905\pi\)
\(18\) 0 0
\(19\) −0.00761038 0.0966990i −0.00174594 0.0221843i 0.995983 0.0895464i \(-0.0285417\pi\)
−0.997729 + 0.0673621i \(0.978542\pi\)
\(20\) −2.84378 + 1.44898i −0.635888 + 0.324001i
\(21\) 0 0
\(22\) −0.192561 + 0.0151549i −0.0410541 + 0.00323103i
\(23\) −2.70502 8.32519i −0.564035 1.73592i −0.670800 0.741638i \(-0.734049\pi\)
0.106764 0.994284i \(-0.465951\pi\)
\(24\) 0 0
\(25\) −4.93275 1.60275i −0.986551 0.320550i
\(26\) −2.59787 1.59198i −0.509484 0.312212i
\(27\) 0 0
\(28\) −1.03064 0.0811131i −0.194773 0.0153289i
\(29\) −1.74742 7.27852i −0.324487 1.35159i −0.861390 0.507943i \(-0.830406\pi\)
0.536903 0.843644i \(-0.319594\pi\)
\(30\) 0 0
\(31\) 1.03824 1.42902i 0.186473 0.256659i −0.705537 0.708673i \(-0.749294\pi\)
0.892011 + 0.452014i \(0.149294\pi\)
\(32\) −0.707107 0.707107i −0.125000 0.125000i
\(33\) 0 0
\(34\) 1.37691 + 1.17599i 0.236139 + 0.201681i
\(35\) −2.14292 2.50904i −0.362220 0.424105i
\(36\) 0 0
\(37\) 3.06143 2.22426i 0.503296 0.365666i −0.306978 0.951717i \(-0.599318\pi\)
0.810275 + 0.586050i \(0.199318\pi\)
\(38\) 0.0896145 + 0.0371195i 0.0145374 + 0.00602158i
\(39\) 0 0
\(40\) 3.19165i 0.504644i
\(41\) 0.788009 6.35445i 0.123066 0.992398i
\(42\) 0 0
\(43\) −3.32951 1.69647i −0.507745 0.258709i 0.181300 0.983428i \(-0.441970\pi\)
−0.689045 + 0.724719i \(0.741970\pi\)
\(44\) 0.0739177 0.178453i 0.0111435 0.0269028i
\(45\) 0 0
\(46\) 8.64585 + 1.36937i 1.27476 + 0.201902i
\(47\) −7.60363 + 6.49411i −1.10910 + 0.947263i −0.998911 0.0466470i \(-0.985146\pi\)
−0.110192 + 0.993910i \(0.535146\pi\)
\(48\) 0 0
\(49\) 0.927845 + 5.85818i 0.132549 + 0.836883i
\(50\) 3.66748 3.66748i 0.518661 0.518661i
\(51\) 0 0
\(52\) 2.59787 1.59198i 0.360260 0.220767i
\(53\) 6.19350 1.48693i 0.850743 0.204245i 0.215448 0.976515i \(-0.430879\pi\)
0.635294 + 0.772270i \(0.280879\pi\)
\(54\) 0 0
\(55\) 0.569559 0.235919i 0.0767993 0.0318113i
\(56\) 0.540173 0.881482i 0.0721836 0.117793i
\(57\) 0 0
\(58\) 7.27852 + 1.74742i 0.955717 + 0.229447i
\(59\) 2.72819 0.886444i 0.355180 0.115405i −0.125992 0.992031i \(-0.540211\pi\)
0.481172 + 0.876626i \(0.340211\pi\)
\(60\) 0 0
\(61\) −3.34936 6.57349i −0.428842 0.841649i −0.999787 0.0206606i \(-0.993423\pi\)
0.570945 0.820988i \(-0.306577\pi\)
\(62\) 0.801911 + 1.57384i 0.101843 + 0.199878i
\(63\) 0 0
\(64\) 0.951057 0.309017i 0.118882 0.0386271i
\(65\) 9.45579 + 2.27013i 1.17285 + 0.281575i
\(66\) 0 0
\(67\) 1.53604 2.50659i 0.187658 0.306229i −0.744951 0.667119i \(-0.767527\pi\)
0.932608 + 0.360890i \(0.117527\pi\)
\(68\) −1.67292 + 0.692948i −0.202872 + 0.0840323i
\(69\) 0 0
\(70\) 3.20844 0.770278i 0.383482 0.0920658i
\(71\) −7.19946 + 4.41183i −0.854419 + 0.523588i −0.879391 0.476100i \(-0.842050\pi\)
0.0249727 + 0.999688i \(0.492050\pi\)
\(72\) 0 0
\(73\) 4.69223 4.69223i 0.549184 0.549184i −0.377021 0.926205i \(-0.623051\pi\)
0.926205 + 0.377021i \(0.123051\pi\)
\(74\) 0.591970 + 3.73755i 0.0688151 + 0.434481i
\(75\) 0 0
\(76\) −0.0737579 + 0.0629952i −0.00846061 + 0.00722604i
\(77\) 0.197231 + 0.0312384i 0.0224766 + 0.00355995i
\(78\) 0 0
\(79\) −1.03431 + 2.49705i −0.116369 + 0.280940i −0.971323 0.237764i \(-0.923585\pi\)
0.854954 + 0.518704i \(0.173585\pi\)
\(80\) 2.84378 + 1.44898i 0.317944 + 0.162001i
\(81\) 0 0
\(82\) 5.30411 + 3.58698i 0.585741 + 0.396116i
\(83\) 11.5641i 1.26932i 0.772791 + 0.634661i \(0.218860\pi\)
−0.772791 + 0.634661i \(0.781140\pi\)
\(84\) 0 0
\(85\) −5.33938 2.21164i −0.579137 0.239887i
\(86\) 3.02313 2.19643i 0.325992 0.236847i
\(87\) 0 0
\(88\) 0.125445 + 0.146877i 0.0133725 + 0.0156572i
\(89\) 11.9676 + 10.2213i 1.26856 + 1.08346i 0.992491 + 0.122321i \(0.0390336\pi\)
0.276074 + 0.961136i \(0.410966\pi\)
\(90\) 0 0
\(91\) 2.22733 + 2.22733i 0.233487 + 0.233487i
\(92\) −5.14525 + 7.08183i −0.536430 + 0.738332i
\(93\) 0 0
\(94\) −2.33432 9.72315i −0.240767 1.00287i
\(95\) −0.308629 0.0242896i −0.0316647 0.00249206i
\(96\) 0 0
\(97\) 0.141143 + 0.0864925i 0.0143309 + 0.00878198i 0.529646 0.848219i \(-0.322325\pi\)
−0.515315 + 0.857001i \(0.672325\pi\)
\(98\) −5.64091 1.83284i −0.569818 0.185145i
\(99\) 0 0
\(100\) 1.60275 + 4.93275i 0.160275 + 0.493275i
\(101\) −0.458326 + 0.0360710i −0.0456051 + 0.00358920i −0.101241 0.994862i \(-0.532281\pi\)
0.0556360 + 0.998451i \(0.482281\pi\)
\(102\) 0 0
\(103\) 7.49182 3.81727i 0.738191 0.376127i −0.0441109 0.999027i \(-0.514045\pi\)
0.782302 + 0.622900i \(0.214045\pi\)
\(104\) 0.239053 + 3.03746i 0.0234411 + 0.297848i
\(105\) 0 0
\(106\) −1.48693 + 6.19350i −0.144423 + 0.601566i
\(107\) 3.30336 10.1667i 0.319348 0.982852i −0.654580 0.755993i \(-0.727154\pi\)
0.973928 0.226859i \(-0.0728457\pi\)
\(108\) 0 0
\(109\) −0.174439 0.421133i −0.0167082 0.0403372i 0.915305 0.402761i \(-0.131949\pi\)
−0.932013 + 0.362424i \(0.881949\pi\)
\(110\) −0.0483690 + 0.614586i −0.00461180 + 0.0585985i
\(111\) 0 0
\(112\) 0.540173 + 0.881482i 0.0510415 + 0.0832922i
\(113\) −5.44642 3.95706i −0.512356 0.372249i 0.301360 0.953510i \(-0.402559\pi\)
−0.813717 + 0.581262i \(0.802559\pi\)
\(114\) 0 0
\(115\) −27.5945 + 4.37054i −2.57320 + 0.407555i
\(116\) −4.86134 + 5.69190i −0.451364 + 0.528480i
\(117\) 0 0
\(118\) −0.448747 + 2.83327i −0.0413105 + 0.260824i
\(119\) −1.10034 1.51449i −0.100868 0.138833i
\(120\) 0 0
\(121\) 4.97696 9.76783i 0.452451 0.887984i
\(122\) 7.37760 0.667936
\(123\) 0 0
\(124\) −1.76636 −0.158624
\(125\) −0.270387 + 0.530664i −0.0241842 + 0.0474641i
\(126\) 0 0
\(127\) −0.723642 0.996007i −0.0642128 0.0883813i 0.775703 0.631098i \(-0.217396\pi\)
−0.839916 + 0.542717i \(0.817396\pi\)
\(128\) −0.156434 + 0.987688i −0.0138270 + 0.0873001i
\(129\) 0 0
\(130\) −6.31554 + 7.39455i −0.553910 + 0.648545i
\(131\) 8.08858 1.28111i 0.706703 0.111931i 0.207271 0.978284i \(-0.433542\pi\)
0.499432 + 0.866353i \(0.333542\pi\)
\(132\) 0 0
\(133\) −0.0811275 0.0589426i −0.00703465 0.00511097i
\(134\) 1.53604 + 2.50659i 0.132694 + 0.216537i
\(135\) 0 0
\(136\) 0.142071 1.80518i 0.0121825 0.154793i
\(137\) 2.57178 + 6.20882i 0.219722 + 0.530456i 0.994851 0.101347i \(-0.0323153\pi\)
−0.775129 + 0.631803i \(0.782315\pi\)
\(138\) 0 0
\(139\) −5.73405 + 17.6476i −0.486356 + 1.49685i 0.343651 + 0.939097i \(0.388336\pi\)
−0.830007 + 0.557753i \(0.811664\pi\)
\(140\) −0.770278 + 3.20844i −0.0651004 + 0.271163i
\(141\) 0 0
\(142\) −0.662487 8.41770i −0.0555947 0.706397i
\(143\) −0.524374 + 0.267182i −0.0438503 + 0.0223429i
\(144\) 0 0
\(145\) −23.8169 + 1.87443i −1.97789 + 0.155663i
\(146\) 2.05058 + 6.31104i 0.169707 + 0.522305i
\(147\) 0 0
\(148\) −3.59893 1.16936i −0.295830 0.0961211i
\(149\) 2.07087 + 1.26903i 0.169652 + 0.103963i 0.604733 0.796429i \(-0.293280\pi\)
−0.435080 + 0.900392i \(0.643280\pi\)
\(150\) 0 0
\(151\) 12.2676 + 0.965483i 0.998325 + 0.0785699i 0.567078 0.823664i \(-0.308074\pi\)
0.431247 + 0.902234i \(0.358074\pi\)
\(152\) −0.0226437 0.0943179i −0.00183665 0.00765020i
\(153\) 0 0
\(154\) −0.117375 + 0.161553i −0.00945833 + 0.0130183i
\(155\) −3.98638 3.98638i −0.320194 0.320194i
\(156\) 0 0
\(157\) −14.4801 12.3672i −1.15564 0.987008i −0.155639 0.987814i \(-0.549743\pi\)
−1.00000 0.000805828i \(0.999743\pi\)
\(158\) −1.75532 2.05522i −0.139646 0.163504i
\(159\) 0 0
\(160\) −2.58210 + 1.87600i −0.204133 + 0.148311i
\(161\) −8.36086 3.46318i −0.658928 0.272937i
\(162\) 0 0
\(163\) 20.0952i 1.57398i 0.616969 + 0.786988i \(0.288360\pi\)
−0.616969 + 0.786988i \(0.711640\pi\)
\(164\) −5.60404 + 3.09754i −0.437602 + 0.241877i
\(165\) 0 0
\(166\) −10.3037 5.24998i −0.799719 0.407477i
\(167\) −2.21195 + 5.34011i −0.171165 + 0.413230i −0.986062 0.166376i \(-0.946793\pi\)
0.814897 + 0.579606i \(0.196793\pi\)
\(168\) 0 0
\(169\) 3.67093 + 0.581418i 0.282379 + 0.0447245i
\(170\) 4.39462 3.75336i 0.337052 0.287869i
\(171\) 0 0
\(172\) 0.584563 + 3.69079i 0.0445725 + 0.281420i
\(173\) 1.54476 1.54476i 0.117446 0.117446i −0.645941 0.763387i \(-0.723535\pi\)
0.763387 + 0.645941i \(0.223535\pi\)
\(174\) 0 0
\(175\) −4.57190 + 2.80166i −0.345603 + 0.211786i
\(176\) −0.187819 + 0.0450914i −0.0141574 + 0.00339889i
\(177\) 0 0
\(178\) −14.5404 + 6.02285i −1.08985 + 0.451431i
\(179\) −10.3492 + 16.8883i −0.773535 + 1.26229i 0.186512 + 0.982453i \(0.440282\pi\)
−0.960046 + 0.279841i \(0.909718\pi\)
\(180\) 0 0
\(181\) 17.5803 + 4.22065i 1.30673 + 0.313718i 0.826258 0.563291i \(-0.190465\pi\)
0.480473 + 0.877010i \(0.340465\pi\)
\(182\) −2.99575 + 0.973378i −0.222060 + 0.0721516i
\(183\) 0 0
\(184\) −3.97406 7.79954i −0.292972 0.574990i
\(185\) −5.48313 10.7613i −0.403128 0.791183i
\(186\) 0 0
\(187\) 0.332641 0.108082i 0.0243251 0.00790371i
\(188\) 9.72315 + 2.33432i 0.709133 + 0.170248i
\(189\) 0 0
\(190\) 0.161757 0.263963i 0.0117351 0.0191499i
\(191\) 13.0736 5.41528i 0.945976 0.391836i 0.144259 0.989540i \(-0.453920\pi\)
0.801717 + 0.597704i \(0.203920\pi\)
\(192\) 0 0
\(193\) −1.07863 + 0.258957i −0.0776416 + 0.0186401i −0.272080 0.962275i \(-0.587712\pi\)
0.194438 + 0.980915i \(0.437712\pi\)
\(194\) −0.141143 + 0.0864925i −0.0101335 + 0.00620980i
\(195\) 0 0
\(196\) 4.19399 4.19399i 0.299571 0.299571i
\(197\) 2.47119 + 15.6025i 0.176065 + 1.11163i 0.904486 + 0.426503i \(0.140255\pi\)
−0.728421 + 0.685130i \(0.759745\pi\)
\(198\) 0 0
\(199\) 5.21104 4.45065i 0.369401 0.315498i −0.445298 0.895382i \(-0.646902\pi\)
0.814699 + 0.579884i \(0.196902\pi\)
\(200\) −5.12275 0.811364i −0.362233 0.0573721i
\(201\) 0 0
\(202\) 0.175936 0.424747i 0.0123788 0.0298851i
\(203\) −6.89509 3.51322i −0.483941 0.246580i
\(204\) 0 0
\(205\) −19.6380 5.65675i −1.37158 0.395085i
\(206\) 8.40827i 0.585832i
\(207\) 0 0
\(208\) −2.81492 1.16598i −0.195180 0.0808462i
\(209\) 0.0151576 0.0110126i 0.00104847 0.000761758i
\(210\) 0 0
\(211\) 13.8241 + 16.1859i 0.951688 + 1.11428i 0.993348 + 0.115152i \(0.0367354\pi\)
−0.0416600 + 0.999132i \(0.513265\pi\)
\(212\) −4.84340 4.13665i −0.332646 0.284106i
\(213\) 0 0
\(214\) 7.55890 + 7.55890i 0.516716 + 0.516716i
\(215\) −7.01023 + 9.64875i −0.478094 + 0.658040i
\(216\) 0 0
\(217\) −0.426297 1.77565i −0.0289389 0.120539i
\(218\) 0.454426 + 0.0357641i 0.0307776 + 0.00242225i
\(219\) 0 0
\(220\) −0.525641 0.322113i −0.0354387 0.0217169i
\(221\) 5.24709 + 1.70488i 0.352958 + 0.114683i
\(222\) 0 0
\(223\) −3.13806 9.65797i −0.210140 0.646745i −0.999463 0.0327668i \(-0.989568\pi\)
0.789323 0.613979i \(-0.210432\pi\)
\(224\) −1.03064 + 0.0811131i −0.0688625 + 0.00541960i
\(225\) 0 0
\(226\) 5.99839 3.05633i 0.399007 0.203304i
\(227\) 0.684714 + 8.70012i 0.0454461 + 0.577447i 0.976915 + 0.213627i \(0.0685277\pi\)
−0.931469 + 0.363820i \(0.881472\pi\)
\(228\) 0 0
\(229\) 0.697256 2.90428i 0.0460760 0.191920i −0.944585 0.328266i \(-0.893536\pi\)
0.990661 + 0.136346i \(0.0435358\pi\)
\(230\) 8.63346 26.5711i 0.569274 1.75204i
\(231\) 0 0
\(232\) −2.86452 6.91555i −0.188065 0.454028i
\(233\) −0.306839 + 3.89876i −0.0201017 + 0.255417i 0.978653 + 0.205521i \(0.0658889\pi\)
−0.998754 + 0.0498956i \(0.984111\pi\)
\(234\) 0 0
\(235\) 16.6754 + 27.2117i 1.08778 + 1.77510i
\(236\) −2.32074 1.68612i −0.151067 0.109757i
\(237\) 0 0
\(238\) 1.84896 0.292847i 0.119851 0.0189825i
\(239\) −18.8816 + 22.1075i −1.22135 + 1.43002i −0.351867 + 0.936050i \(0.614453\pi\)
−0.869482 + 0.493965i \(0.835547\pi\)
\(240\) 0 0
\(241\) 4.37057 27.5947i 0.281533 1.77753i −0.290075 0.957004i \(-0.593680\pi\)
0.571608 0.820527i \(-0.306320\pi\)
\(242\) 6.44371 + 8.86900i 0.414217 + 0.570121i
\(243\) 0 0
\(244\) −3.34936 + 6.57349i −0.214421 + 0.420824i
\(245\) 18.9303 1.20941
\(246\) 0 0
\(247\) 0.295539 0.0188047
\(248\) 0.801911 1.57384i 0.0509214 0.0999388i
\(249\) 0 0
\(250\) −0.350072 0.481833i −0.0221405 0.0304738i
\(251\) −0.0404107 + 0.255143i −0.00255070 + 0.0161045i −0.988931 0.148377i \(-0.952595\pi\)
0.986380 + 0.164482i \(0.0525951\pi\)
\(252\) 0 0
\(253\) 1.09810 1.28571i 0.0690368 0.0808317i
\(254\) 1.21598 0.192592i 0.0762971 0.0120843i
\(255\) 0 0
\(256\) −0.809017 0.587785i −0.0505636 0.0367366i
\(257\) 12.6396 + 20.6259i 0.788434 + 1.28661i 0.953820 + 0.300379i \(0.0971132\pi\)
−0.165386 + 0.986229i \(0.552887\pi\)
\(258\) 0 0
\(259\) 0.306943 3.90008i 0.0190725 0.242339i
\(260\) −3.72140 8.98424i −0.230791 0.557179i
\(261\) 0 0
\(262\) −2.53067 + 7.78859i −0.156345 + 0.481181i
\(263\) 4.47956 18.6587i 0.276222 1.15055i −0.645831 0.763481i \(-0.723489\pi\)
0.922052 0.387065i \(-0.126511\pi\)
\(264\) 0 0
\(265\) −1.59501 20.2665i −0.0979805 1.24496i
\(266\) 0.0893493 0.0455258i 0.00547836 0.00279136i
\(267\) 0 0
\(268\) −2.93074 + 0.230654i −0.179023 + 0.0140895i
\(269\) −0.197841 0.608893i −0.0120626 0.0371249i 0.944844 0.327521i \(-0.106213\pi\)
−0.956907 + 0.290396i \(0.906213\pi\)
\(270\) 0 0
\(271\) 17.8412 + 5.79696i 1.08378 + 0.352140i 0.795838 0.605509i \(-0.207031\pi\)
0.287937 + 0.957649i \(0.407031\pi\)
\(272\) 1.54393 + 0.946119i 0.0936143 + 0.0573669i
\(273\) 0 0
\(274\) −6.69966 0.527275i −0.404742 0.0318539i
\(275\) −0.233871 0.974145i −0.0141030 0.0587431i
\(276\) 0 0
\(277\) −18.4023 + 25.3286i −1.10569 + 1.52185i −0.278070 + 0.960561i \(0.589695\pi\)
−0.827620 + 0.561289i \(0.810305\pi\)
\(278\) −13.1209 13.1209i −0.786941 0.786941i
\(279\) 0 0
\(280\) −2.50904 2.14292i −0.149944 0.128064i
\(281\) −11.8516 13.8764i −0.707008 0.827800i 0.284387 0.958710i \(-0.408210\pi\)
−0.991394 + 0.130910i \(0.958210\pi\)
\(282\) 0 0
\(283\) −9.58565 + 6.96438i −0.569808 + 0.413990i −0.835035 0.550196i \(-0.814553\pi\)
0.265228 + 0.964186i \(0.414553\pi\)
\(284\) 7.80099 + 3.23127i 0.462903 + 0.191741i
\(285\) 0 0
\(286\) 0.588519i 0.0347998i
\(287\) −4.46633 4.88596i −0.263639 0.288409i
\(288\) 0 0
\(289\) 12.2256 + 6.22927i 0.719155 + 0.366428i
\(290\) 9.14252 22.0720i 0.536867 1.29611i
\(291\) 0 0
\(292\) −6.55412 1.03807i −0.383551 0.0607485i
\(293\) −17.8872 + 15.2771i −1.04498 + 0.892500i −0.994343 0.106217i \(-0.966126\pi\)
−0.0506399 + 0.998717i \(0.516126\pi\)
\(294\) 0 0
\(295\) −1.43224 9.04281i −0.0833883 0.526493i
\(296\) 2.67579 2.67579i 0.155527 0.155527i
\(297\) 0 0
\(298\) −2.07087 + 1.26903i −0.119962 + 0.0735131i
\(299\) 25.9341 6.22622i 1.49981 0.360072i
\(300\) 0 0
\(301\) −3.56913 + 1.47838i −0.205721 + 0.0852124i
\(302\) −6.42964 + 10.4922i −0.369984 + 0.603759i
\(303\) 0 0
\(304\) 0.0943179 + 0.0226437i 0.00540951 + 0.00129871i
\(305\) −22.3942 + 7.27633i −1.28229 + 0.416641i
\(306\) 0 0
\(307\) −0.934393 1.83385i −0.0533286 0.104663i 0.862804 0.505538i \(-0.168706\pi\)
−0.916133 + 0.400875i \(0.868706\pi\)
\(308\) −0.0906574 0.177925i −0.00516568 0.0101382i
\(309\) 0 0
\(310\) 5.36167 1.74211i 0.304523 0.0989454i
\(311\) 25.9835 + 6.23808i 1.47339 + 0.353729i 0.889061 0.457789i \(-0.151358\pi\)
0.584327 + 0.811518i \(0.301358\pi\)
\(312\) 0 0
\(313\) 0.978527 1.59681i 0.0553096 0.0902571i −0.823790 0.566895i \(-0.808145\pi\)
0.879100 + 0.476638i \(0.158145\pi\)
\(314\) 17.5931 7.28729i 0.992834 0.411245i
\(315\) 0 0
\(316\) 2.62811 0.630953i 0.147843 0.0354939i
\(317\) 18.6531 11.4307i 1.04766 0.642009i 0.111569 0.993757i \(-0.464412\pi\)
0.936095 + 0.351747i \(0.114412\pi\)
\(318\) 0 0
\(319\) 1.02236 1.02236i 0.0572414 0.0572414i
\(320\) −0.499283 3.15235i −0.0279108 0.176222i
\(321\) 0 0
\(322\) 6.88147 5.87733i 0.383489 0.327531i
\(323\) −0.173478 0.0274762i −0.00965256 0.00152881i
\(324\) 0 0
\(325\) 6.04748 14.5999i 0.335454 0.809857i
\(326\) −17.9049 9.12302i −0.991662 0.505277i
\(327\) 0 0
\(328\) −0.215748 6.39949i −0.0119127 0.353353i
\(329\) 10.3377i 0.569934i
\(330\) 0 0
\(331\) 21.1875 + 8.77616i 1.16457 + 0.482381i 0.879395 0.476094i \(-0.157948\pi\)
0.285177 + 0.958475i \(0.407948\pi\)
\(332\) 9.35553 6.79719i 0.513451 0.373044i
\(333\) 0 0
\(334\) −3.75387 4.39522i −0.205403 0.240496i
\(335\) −7.13475 6.09365i −0.389813 0.332932i
\(336\) 0 0
\(337\) 6.65207 + 6.65207i 0.362362 + 0.362362i 0.864682 0.502320i \(-0.167520\pi\)
−0.502320 + 0.864682i \(0.667520\pi\)
\(338\) −2.18461 + 3.00686i −0.118827 + 0.163552i
\(339\) 0 0
\(340\) 1.34915 + 5.61962i 0.0731680 + 0.304767i
\(341\) 0.340132 + 0.0267689i 0.0184192 + 0.00144962i
\(342\) 0 0
\(343\) 11.3986 + 6.98508i 0.615468 + 0.377159i
\(344\) −3.55390 1.15473i −0.191613 0.0622590i
\(345\) 0 0
\(346\) 0.675086 + 2.07770i 0.0362929 + 0.111698i
\(347\) −28.1721 + 2.21719i −1.51236 + 0.119025i −0.807307 0.590131i \(-0.799076\pi\)
−0.705051 + 0.709157i \(0.749076\pi\)
\(348\) 0 0
\(349\) 11.4651 5.84174i 0.613711 0.312701i −0.119363 0.992851i \(-0.538085\pi\)
0.733073 + 0.680150i \(0.238085\pi\)
\(350\) −0.420702 5.34552i −0.0224874 0.285730i
\(351\) 0 0
\(352\) 0.0450914 0.187819i 0.00240338 0.0100108i
\(353\) 10.7225 33.0003i 0.570699 1.75643i −0.0796791 0.996821i \(-0.525390\pi\)
0.650378 0.759611i \(-0.274610\pi\)
\(354\) 0 0
\(355\) 10.3131 + 24.8980i 0.547362 + 1.32145i
\(356\) 1.23483 15.6899i 0.0654456 0.831565i
\(357\) 0 0
\(358\) −10.3492 16.8883i −0.546972 0.892577i
\(359\) −17.1311 12.4465i −0.904144 0.656899i 0.0353827 0.999374i \(-0.488735\pi\)
−0.939527 + 0.342474i \(0.888735\pi\)
\(360\) 0 0
\(361\) 18.7568 2.97078i 0.987199 0.156357i
\(362\) −11.7419 + 13.7480i −0.617141 + 0.722579i
\(363\) 0 0
\(364\) 0.492756 3.11114i 0.0258274 0.163068i
\(365\) −12.4488 17.1343i −0.651600 0.896851i
\(366\) 0 0
\(367\) 12.9653 25.4459i 0.676785 1.32826i −0.255595 0.966784i \(-0.582271\pi\)
0.932380 0.361481i \(-0.117729\pi\)
\(368\) 8.75363 0.456314
\(369\) 0 0
\(370\) 12.0776 0.627886
\(371\) 2.98950 5.86723i 0.155207 0.304611i
\(372\) 0 0
\(373\) −15.2908 21.0459i −0.791726 1.08972i −0.993891 0.110366i \(-0.964798\pi\)
0.202165 0.979351i \(-0.435202\pi\)
\(374\) −0.0547144 + 0.345453i −0.00282922 + 0.0178630i
\(375\) 0 0
\(376\) −6.49411 + 7.60363i −0.334908 + 0.392127i
\(377\) 22.5259 3.56776i 1.16015 0.183749i
\(378\) 0 0
\(379\) −4.42268 3.21326i −0.227178 0.165054i 0.468374 0.883530i \(-0.344840\pi\)
−0.695552 + 0.718476i \(0.744840\pi\)
\(380\) 0.161757 + 0.263963i 0.00829795 + 0.0135410i
\(381\) 0 0
\(382\) −1.11026 + 14.1072i −0.0568058 + 0.721787i
\(383\) −2.46936 5.96155i −0.126178 0.304621i 0.848149 0.529758i \(-0.177717\pi\)
−0.974327 + 0.225137i \(0.927717\pi\)
\(384\) 0 0
\(385\) 0.196949 0.606146i 0.0100374 0.0308921i
\(386\) 0.258957 1.07863i 0.0131805 0.0549009i
\(387\) 0 0
\(388\) −0.0129878 0.165026i −0.000659357 0.00837793i
\(389\) −33.4642 + 17.0509i −1.69670 + 0.864513i −0.709565 + 0.704640i \(0.751108\pi\)
−0.987138 + 0.159873i \(0.948892\pi\)
\(390\) 0 0
\(391\) −15.8019 + 1.24363i −0.799134 + 0.0628932i
\(392\) 1.83284 + 5.64091i 0.0925725 + 0.284909i
\(393\) 0 0
\(394\) −15.0238 4.88154i −0.756890 0.245928i
\(395\) 7.35516 + 4.50725i 0.370078 + 0.226784i
\(396\) 0 0
\(397\) 34.1208 + 2.68537i 1.71247 + 0.134775i 0.896422 0.443203i \(-0.146158\pi\)
0.816053 + 0.577977i \(0.196158\pi\)
\(398\) 1.59979 + 6.66362i 0.0801904 + 0.334017i
\(399\) 0 0
\(400\) 3.04861 4.19605i 0.152431 0.209803i
\(401\) −9.27216 9.27216i −0.463030 0.463030i 0.436618 0.899647i \(-0.356176\pi\)
−0.899647 + 0.436618i \(0.856176\pi\)
\(402\) 0 0
\(403\) 4.09238 + 3.49523i 0.203856 + 0.174110i
\(404\) 0.298579 + 0.349591i 0.0148549 + 0.0173928i
\(405\) 0 0
\(406\) 6.26061 4.54860i 0.310709 0.225743i
\(407\) 0.675291 + 0.279715i 0.0334729 + 0.0138649i
\(408\) 0 0
\(409\) 15.8476i 0.783615i −0.920047 0.391808i \(-0.871850\pi\)
0.920047 0.391808i \(-0.128150\pi\)
\(410\) 13.9557 14.9295i 0.689222 0.737315i
\(411\) 0 0
\(412\) −7.49182 3.81727i −0.369095 0.188064i
\(413\) 1.13490 2.73988i 0.0558446 0.134821i
\(414\) 0 0
\(415\) 36.4540 + 5.77375i 1.78946 + 0.283422i
\(416\) 2.31685 1.97877i 0.113593 0.0970173i
\(417\) 0 0
\(418\) 0.00293092 + 0.0185051i 0.000143356 + 0.000905114i
\(419\) 3.58472 3.58472i 0.175125 0.175125i −0.614102 0.789227i \(-0.710482\pi\)
0.789227 + 0.614102i \(0.210482\pi\)
\(420\) 0 0
\(421\) 0.625389 0.383239i 0.0304796 0.0186779i −0.507175 0.861843i \(-0.669310\pi\)
0.537655 + 0.843165i \(0.319310\pi\)
\(422\) −20.6977 + 4.96909i −1.00755 + 0.241891i
\(423\) 0 0
\(424\) 5.88464 2.43750i 0.285783 0.118375i
\(425\) −4.90715 + 8.00774i −0.238032 + 0.388432i
\(426\) 0 0
\(427\) −7.41642 1.78052i −0.358906 0.0861656i
\(428\) −10.1667 + 3.30336i −0.491426 + 0.159674i
\(429\) 0 0
\(430\) −5.41452 10.6266i −0.261112 0.512460i
\(431\) −2.44393 4.79648i −0.117720 0.231038i 0.824626 0.565678i \(-0.191385\pi\)
−0.942346 + 0.334640i \(0.891385\pi\)
\(432\) 0 0
\(433\) −10.4805 + 3.40531i −0.503660 + 0.163649i −0.549817 0.835285i \(-0.685302\pi\)
0.0461572 + 0.998934i \(0.485302\pi\)
\(434\) 1.77565 + 0.426297i 0.0852341 + 0.0204629i
\(435\) 0 0
\(436\) −0.238171 + 0.388660i −0.0114063 + 0.0186134i
\(437\) −0.784452 + 0.324930i −0.0375254 + 0.0155435i
\(438\) 0 0
\(439\) 24.4741 5.87572i 1.16809 0.280433i 0.397399 0.917646i \(-0.369913\pi\)
0.770688 + 0.637213i \(0.219913\pi\)
\(440\) 0.525641 0.322113i 0.0250590 0.0153561i
\(441\) 0 0
\(442\) −3.90119 + 3.90119i −0.185561 + 0.185561i
\(443\) 3.92228 + 24.7643i 0.186353 + 1.17659i 0.886548 + 0.462637i \(0.153097\pi\)
−0.700195 + 0.713952i \(0.746903\pi\)
\(444\) 0 0
\(445\) 38.1964 32.6228i 1.81068 1.54647i
\(446\) 10.0300 + 1.58859i 0.474933 + 0.0752219i
\(447\) 0 0
\(448\) 0.395628 0.955131i 0.0186917 0.0451257i
\(449\) 25.4948 + 12.9902i 1.20317 + 0.613047i 0.936475 0.350734i \(-0.114068\pi\)
0.266697 + 0.963780i \(0.414068\pi\)
\(450\) 0 0
\(451\) 1.12606 0.511536i 0.0530241 0.0240873i
\(452\) 6.73215i 0.316654i
\(453\) 0 0
\(454\) −8.06271 3.33969i −0.378402 0.156739i
\(455\) 8.13339 5.90925i 0.381299 0.277030i
\(456\) 0 0
\(457\) 13.2037 + 15.4596i 0.617645 + 0.723169i 0.977757 0.209740i \(-0.0672617\pi\)
−0.360112 + 0.932909i \(0.617262\pi\)
\(458\) 2.27118 + 1.93977i 0.106125 + 0.0906397i
\(459\) 0 0
\(460\) 19.7555 + 19.7555i 0.921104 + 0.921104i
\(461\) 15.3676 21.1517i 0.715739 0.985131i −0.283915 0.958849i \(-0.591633\pi\)
0.999655 0.0262814i \(-0.00836658\pi\)
\(462\) 0 0
\(463\) 1.54080 + 6.41787i 0.0716068 + 0.298264i 0.996669 0.0815515i \(-0.0259875\pi\)
−0.925062 + 0.379815i \(0.875988\pi\)
\(464\) 7.46227 + 0.587293i 0.346427 + 0.0272644i
\(465\) 0 0
\(466\) −3.33452 2.04340i −0.154469 0.0946586i
\(467\) −9.67732 3.14435i −0.447813 0.145503i 0.0764246 0.997075i \(-0.475650\pi\)
−0.524237 + 0.851572i \(0.675650\pi\)
\(468\) 0 0
\(469\) −0.939179 2.89049i −0.0433672 0.133471i
\(470\) −31.8163 + 2.50399i −1.46757 + 0.115501i
\(471\) 0 0
\(472\) 2.55593 1.30231i 0.117646 0.0599438i
\(473\) −0.0566306 0.719559i −0.00260388 0.0330854i
\(474\) 0 0
\(475\) −0.117444 + 0.489190i −0.00538871 + 0.0224456i
\(476\) −0.578483 + 1.78039i −0.0265147 + 0.0816040i
\(477\) 0 0
\(478\) −11.1259 26.8602i −0.508885 1.22856i
\(479\) −0.762773 + 9.69194i −0.0348520 + 0.442836i 0.954592 + 0.297918i \(0.0962921\pi\)
−0.989444 + 0.144919i \(0.953708\pi\)
\(480\) 0 0
\(481\) 6.02426 + 9.83070i 0.274683 + 0.448241i
\(482\) 22.6029 + 16.4219i 1.02953 + 0.747999i
\(483\) 0 0
\(484\) −10.8277 + 1.71494i −0.492169 + 0.0779519i
\(485\) 0.343125 0.401748i 0.0155805 0.0182424i
\(486\) 0 0
\(487\) 0.129469 0.817433i 0.00586679 0.0370414i −0.984581 0.174928i \(-0.944031\pi\)
0.990448 + 0.137886i \(0.0440308\pi\)
\(488\) −4.33644 5.96860i −0.196302 0.270186i
\(489\) 0 0
\(490\) −8.59418 + 16.8670i −0.388245 + 0.761974i
\(491\) 2.11859 0.0956107 0.0478053 0.998857i \(-0.484777\pi\)
0.0478053 + 0.998857i \(0.484777\pi\)
\(492\) 0 0
\(493\) −13.5542 −0.610449
\(494\) −0.134172 + 0.263327i −0.00603667 + 0.0118476i
\(495\) 0 0
\(496\) 1.03824 + 1.42902i 0.0466184 + 0.0641647i
\(497\) −1.36557 + 8.62187i −0.0612542 + 0.386744i
\(498\) 0 0
\(499\) −17.7288 + 20.7577i −0.793649 + 0.929244i −0.998775 0.0494916i \(-0.984240\pi\)
0.205125 + 0.978736i \(0.434240\pi\)
\(500\) 0.588246 0.0931690i 0.0263072 0.00416665i
\(501\) 0 0
\(502\) −0.208988 0.151839i −0.00932761 0.00677690i
\(503\) −19.2139 31.3543i −0.856706 1.39802i −0.916597 0.399812i \(-0.869075\pi\)
0.0598908 0.998205i \(-0.480925\pi\)
\(504\) 0 0
\(505\) −0.115126 + 1.46281i −0.00512304 + 0.0650944i
\(506\) 0.647048 + 1.56211i 0.0287648 + 0.0694443i
\(507\) 0 0
\(508\) −0.380441 + 1.17088i −0.0168793 + 0.0519493i
\(509\) 6.30348 26.2559i 0.279397 1.16377i −0.639347 0.768918i \(-0.720795\pi\)
0.918744 0.394853i \(-0.129205\pi\)
\(510\) 0 0
\(511\) −0.538251 6.83913i −0.0238108 0.302545i
\(512\) 0.891007 0.453990i 0.0393773 0.0200637i
\(513\) 0 0
\(514\) −24.1160 + 1.89797i −1.06371 + 0.0837161i
\(515\) −8.29285 25.5228i −0.365426 1.12467i
\(516\) 0 0
\(517\) −1.83692 0.596852i −0.0807877 0.0262495i
\(518\) 3.33565 + 2.04409i 0.146560 + 0.0898121i
\(519\) 0 0
\(520\) 9.69450 + 0.762974i 0.425132 + 0.0334586i
\(521\) −5.43119 22.6225i −0.237945 0.991111i −0.955589 0.294702i \(-0.904780\pi\)
0.717645 0.696410i \(-0.245220\pi\)
\(522\) 0 0
\(523\) −17.3700 + 23.9078i −0.759539 + 1.04542i 0.237714 + 0.971335i \(0.423602\pi\)
−0.997252 + 0.0740801i \(0.976398\pi\)
\(524\) −5.79079 5.79079i −0.252972 0.252972i
\(525\) 0 0
\(526\) 14.5914 + 12.4622i 0.636214 + 0.543378i
\(527\) −2.07723 2.43212i −0.0904856 0.105945i
\(528\) 0 0
\(529\) −43.3843 + 31.5205i −1.88627 + 1.37046i
\(530\) 18.7817 + 7.77963i 0.815825 + 0.337926i
\(531\) 0 0
\(532\) 0.100279i 0.00434765i
\(533\) 19.1130 + 3.91260i 0.827877 + 0.169473i
\(534\) 0 0
\(535\) −30.3997 15.4894i −1.31429 0.669666i
\(536\) 1.12501 2.71602i 0.0485932 0.117314i
\(537\) 0 0
\(538\) 0.632346 + 0.100154i 0.0272624 + 0.00431793i
\(539\) −0.871158 + 0.744039i −0.0375234 + 0.0320480i
\(540\) 0 0
\(541\) 3.64465 + 23.0114i 0.156696 + 0.989337i 0.933234 + 0.359268i \(0.116974\pi\)
−0.776539 + 0.630069i \(0.783026\pi\)
\(542\) −13.2649 + 13.2649i −0.569775 + 0.569775i
\(543\) 0 0
\(544\) −1.54393 + 0.946119i −0.0661953 + 0.0405645i
\(545\) −1.41465 + 0.339628i −0.0605971 + 0.0145481i
\(546\) 0 0
\(547\) −18.1894 + 7.53430i −0.777723 + 0.322143i −0.735996 0.676986i \(-0.763286\pi\)
−0.0417266 + 0.999129i \(0.513286\pi\)
\(548\) 3.51139 5.73007i 0.149999 0.244776i
\(549\) 0 0
\(550\) 0.974145 + 0.233871i 0.0415377 + 0.00997231i
\(551\) −0.690527 + 0.224366i −0.0294174 + 0.00955831i
\(552\) 0 0
\(553\) 1.26855 + 2.48966i 0.0539441 + 0.105871i
\(554\) −14.2135 27.8956i −0.603874 1.18517i
\(555\) 0 0
\(556\) 17.6476 5.73405i 0.748425 0.243178i
\(557\) 2.71149 + 0.650970i 0.114889 + 0.0275825i 0.290482 0.956880i \(-0.406184\pi\)
−0.175593 + 0.984463i \(0.556184\pi\)
\(558\) 0 0
\(559\) 5.94888 9.70769i 0.251611 0.410592i
\(560\) 3.04844 1.26271i 0.128820 0.0533590i
\(561\) 0 0
\(562\) 17.7445 4.26008i 0.748508 0.179701i
\(563\) −39.6018 + 24.2680i −1.66902 + 1.02277i −0.727325 + 0.686293i \(0.759237\pi\)
−0.941690 + 0.336481i \(0.890763\pi\)
\(564\) 0 0
\(565\) −15.1933 + 15.1933i −0.639189 + 0.639189i
\(566\) −1.85352 11.7026i −0.0779091 0.491899i
\(567\) 0 0
\(568\) −6.42066 + 5.48376i −0.269405 + 0.230094i
\(569\) 31.3769 + 4.96961i 1.31539 + 0.208337i 0.774401 0.632695i \(-0.218051\pi\)
0.540986 + 0.841032i \(0.318051\pi\)
\(570\) 0 0
\(571\) 14.2005 34.2831i 0.594274 1.43470i −0.285066 0.958508i \(-0.592015\pi\)
0.879339 0.476196i \(-0.157985\pi\)
\(572\) 0.524374 + 0.267182i 0.0219252 + 0.0111714i
\(573\) 0 0
\(574\) 6.38109 1.76135i 0.266342 0.0735173i
\(575\) 45.4016i 1.89338i
\(576\) 0 0
\(577\) −37.8707 15.6866i −1.57658 0.653040i −0.588711 0.808343i \(-0.700364\pi\)
−0.987867 + 0.155303i \(0.950364\pi\)
\(578\) −11.1006 + 8.06509i −0.461726 + 0.335463i
\(579\) 0 0
\(580\) 15.5157 + 18.1665i 0.644254 + 0.754324i
\(581\) 9.09083 + 7.76430i 0.377151 + 0.322118i
\(582\) 0 0
\(583\) 0.869958 + 0.869958i 0.0360300 + 0.0360300i
\(584\) 3.90044 5.36849i 0.161401 0.222150i
\(585\) 0 0
\(586\) −5.49140 22.8733i −0.226847 0.944888i
\(587\) −15.3447 1.20765i −0.633342 0.0498451i −0.242276 0.970207i \(-0.577894\pi\)
−0.391067 + 0.920362i \(0.627894\pi\)
\(588\) 0 0
\(589\) −0.146086 0.0895215i −0.00601936 0.00368867i
\(590\) 8.70743 + 2.82921i 0.358479 + 0.116477i
\(591\) 0 0
\(592\) 1.16936 + 3.59893i 0.0480605 + 0.147915i
\(593\) 4.43759 0.349246i 0.182230 0.0143418i 0.0129843 0.999916i \(-0.495867\pi\)
0.169246 + 0.985574i \(0.445867\pi\)
\(594\) 0 0
\(595\) −5.32358 + 2.71250i −0.218246 + 0.111202i
\(596\) −0.190560 2.42129i −0.00780563 0.0991799i
\(597\) 0 0
\(598\) −6.22622 + 25.9341i −0.254609 + 1.06052i
\(599\) −12.7242 + 39.1611i −0.519898 + 1.60008i 0.254292 + 0.967127i \(0.418158\pi\)
−0.774190 + 0.632954i \(0.781842\pi\)
\(600\) 0 0
\(601\) 11.3018 + 27.2849i 0.461008 + 1.11297i 0.967984 + 0.251012i \(0.0807633\pi\)
−0.506976 + 0.861960i \(0.669237\pi\)
\(602\) 0.303103 3.85128i 0.0123535 0.156967i
\(603\) 0 0
\(604\) −6.42964 10.4922i −0.261618 0.426922i
\(605\) −28.3067 20.5660i −1.15083 0.836128i
\(606\) 0 0
\(607\) −37.4339 + 5.92895i −1.51940 + 0.240649i −0.859667 0.510855i \(-0.829329\pi\)
−0.659729 + 0.751504i \(0.729329\pi\)
\(608\) −0.0629952 + 0.0737579i −0.00255479 + 0.00299128i
\(609\) 0 0
\(610\) 3.68351 23.2568i 0.149141 0.941640i
\(611\) −17.9079 24.6482i −0.724477 0.997158i
\(612\) 0 0
\(613\) −14.4487 + 28.3572i −0.583579 + 1.14534i 0.390811 + 0.920471i \(0.372195\pi\)
−0.974390 + 0.224866i \(0.927805\pi\)
\(614\) 2.05818 0.0830613
\(615\) 0 0
\(616\) 0.199690 0.00804574
\(617\) 2.10922 4.13959i 0.0849142 0.166653i −0.844645 0.535328i \(-0.820188\pi\)
0.929559 + 0.368674i \(0.120188\pi\)
\(618\) 0 0
\(619\) −21.4091 29.4671i −0.860504 1.18438i −0.981449 0.191723i \(-0.938593\pi\)
0.120946 0.992659i \(-0.461407\pi\)
\(620\) −0.881914 + 5.56819i −0.0354185 + 0.223624i
\(621\) 0 0
\(622\) −17.3544 + 20.3194i −0.695849 + 0.814735i
\(623\) 16.0705 2.54532i 0.643851 0.101976i
\(624\) 0 0
\(625\) −19.4424 14.1257i −0.777697 0.565030i
\(626\) 0.978527 + 1.59681i 0.0391098 + 0.0638214i
\(627\) 0 0
\(628\) −1.49406 + 18.9839i −0.0596197 + 0.757540i
\(629\) −2.62221 6.33058i −0.104554 0.252417i
\(630\) 0 0
\(631\) 1.90239 5.85496i 0.0757330 0.233082i −0.906023 0.423229i \(-0.860896\pi\)
0.981756 + 0.190147i \(0.0608965\pi\)
\(632\) −0.630953 + 2.62811i −0.0250980 + 0.104541i
\(633\) 0 0
\(634\) 1.71644 + 21.8095i 0.0681686 + 0.866165i
\(635\) −3.50107 + 1.78388i −0.138936 + 0.0707912i
\(636\) 0 0
\(637\) −18.0158 + 1.41787i −0.713812 + 0.0561782i
\(638\) 0.446789 + 1.37508i 0.0176886 + 0.0544398i
\(639\) 0 0
\(640\) 3.03544 + 0.986273i 0.119986 + 0.0389859i
\(641\) 19.0098 + 11.6492i 0.750842 + 0.460117i 0.844546 0.535484i \(-0.179871\pi\)
−0.0937037 + 0.995600i \(0.529871\pi\)
\(642\) 0 0
\(643\) 0.00489964 0.000385610i 0.000193223 1.52070e-5i 0.0785557 0.996910i \(-0.474969\pi\)
−0.0783625 + 0.996925i \(0.524969\pi\)
\(644\) 2.11262 + 8.79968i 0.0832488 + 0.346756i
\(645\) 0 0
\(646\) 0.103239 0.142096i 0.00406187 0.00559069i
\(647\) 31.9459 + 31.9459i 1.25592 + 1.25592i 0.953023 + 0.302898i \(0.0979542\pi\)
0.302898 + 0.953023i \(0.402046\pi\)
\(648\) 0 0
\(649\) 0.421331 + 0.359850i 0.0165387 + 0.0141254i
\(650\) 10.2631 + 12.0166i 0.402552 + 0.471328i
\(651\) 0 0
\(652\) 16.2573 11.8116i 0.636686 0.462580i
\(653\) 12.4805 + 5.16959i 0.488400 + 0.202302i 0.613273 0.789871i \(-0.289853\pi\)
−0.124874 + 0.992173i \(0.539853\pi\)
\(654\) 0 0
\(655\) 26.1377i 1.02128i
\(656\) 5.79993 + 2.71307i 0.226449 + 0.105928i
\(657\) 0 0
\(658\) −9.21094 4.69321i −0.359080 0.182960i
\(659\) −0.987660 + 2.38442i −0.0384738 + 0.0928839i −0.941948 0.335758i \(-0.891008\pi\)
0.903475 + 0.428642i \(0.141008\pi\)
\(660\) 0 0
\(661\) 1.68479 + 0.266844i 0.0655307 + 0.0103790i 0.189114 0.981955i \(-0.439439\pi\)
−0.123583 + 0.992334i \(0.539439\pi\)
\(662\) −17.4385 + 14.8939i −0.677768 + 0.578869i
\(663\) 0 0
\(664\) 1.80902 + 11.4217i 0.0702035 + 0.443248i
\(665\) −0.226313 + 0.226313i −0.00877605 + 0.00877605i
\(666\) 0 0
\(667\) −55.8683 + 34.2361i −2.16323 + 1.32563i
\(668\) 5.62039 1.34934i 0.217459 0.0522074i
\(669\) 0 0
\(670\) 8.66859 3.59065i 0.334897 0.138719i
\(671\) 0.744576 1.21504i 0.0287440 0.0469060i
\(672\) 0 0
\(673\) 4.09277 + 0.982588i 0.157765 + 0.0378760i 0.311558 0.950227i \(-0.399149\pi\)
−0.153794 + 0.988103i \(0.549149\pi\)
\(674\) −8.94702 + 2.90706i −0.344626 + 0.111976i
\(675\) 0 0
\(676\) −1.68734 3.31159i −0.0648977 0.127369i
\(677\) 10.2797 + 20.1751i 0.395082 + 0.775392i 0.999778 0.0210644i \(-0.00670549\pi\)
−0.604696 + 0.796456i \(0.706705\pi\)
\(678\) 0 0
\(679\) 0.162760 0.0528839i 0.00624615 0.00202950i
\(680\) −5.61962 1.34915i −0.215503 0.0517376i
\(681\) 0 0
\(682\) −0.178268 + 0.290907i −0.00682623 + 0.0111394i
\(683\) −12.7371 + 5.27587i −0.487371 + 0.201876i −0.612817 0.790225i \(-0.709964\pi\)
0.125446 + 0.992100i \(0.459964\pi\)
\(684\) 0 0
\(685\) 20.8564 5.00719i 0.796884 0.191315i
\(686\) −11.3986 + 6.98508i −0.435201 + 0.266692i
\(687\) 0 0
\(688\) 2.64231 2.64231i 0.100737 0.100737i
\(689\) 3.03591 + 19.1680i 0.115659 + 0.730241i
\(690\) 0 0
\(691\) 26.9222 22.9938i 1.02417 0.874724i 0.0319841 0.999488i \(-0.489817\pi\)
0.992186 + 0.124764i \(0.0398174\pi\)
\(692\) −2.15773 0.341751i −0.0820245 0.0129914i
\(693\) 0 0
\(694\) 10.8143 26.1081i 0.410507 0.991051i
\(695\) 52.7685 + 26.8869i 2.00162 + 1.01988i
\(696\) 0 0
\(697\) −10.8554 4.07358i −0.411176 0.154298i
\(698\) 12.8675i 0.487044i
\(699\) 0 0
\(700\) 4.95389 + 2.05197i 0.187239 + 0.0775571i
\(701\) 8.87847 6.45059i 0.335335 0.243635i −0.407356 0.913270i \(-0.633549\pi\)
0.742691 + 0.669634i \(0.233549\pi\)
\(702\) 0 0
\(703\) −0.238382 0.279110i −0.00899077 0.0105268i
\(704\) 0.146877 + 0.125445i 0.00553564 + 0.00472788i
\(705\) 0 0
\(706\) 24.5356 + 24.5356i 0.923410 + 0.923410i
\(707\) −0.279371 + 0.384521i −0.0105068 + 0.0144614i
\(708\) 0 0
\(709\) 3.76643 + 15.6883i 0.141451 + 0.589187i 0.997396 + 0.0721194i \(0.0229763\pi\)
−0.855945 + 0.517067i \(0.827024\pi\)
\(710\) −26.8663 2.11442i −1.00827 0.0793529i
\(711\) 0 0
\(712\) 13.4192 + 8.22332i 0.502907 + 0.308182i
\(713\) −14.7053 4.77804i −0.550717 0.178939i
\(714\) 0 0
\(715\) 0.580440 + 1.78641i 0.0217072 + 0.0668080i
\(716\) 19.7461 1.55405i 0.737945 0.0580775i
\(717\) 0 0
\(718\) 18.8672 9.61334i 0.704119 0.358767i
\(719\) −1.42125 18.0587i −0.0530038 0.673477i −0.964826 0.262891i \(-0.915324\pi\)
0.911822 0.410586i \(-0.134676\pi\)
\(720\) 0 0
\(721\) 2.02927 8.45251i 0.0755739 0.314788i
\(722\) −5.86842 + 18.0611i −0.218400 + 0.672165i
\(723\) 0 0
\(724\) −6.91885 16.7036i −0.257137 0.620783i
\(725\) −3.04606 + 38.7038i −0.113128 + 1.43742i
\(726\) 0 0
\(727\) −19.7300 32.1964i −0.731745 1.19410i −0.974582 0.224032i \(-0.928078\pi\)
0.242836 0.970067i \(-0.421922\pi\)
\(728\) 2.54834 + 1.85147i 0.0944476 + 0.0686202i
\(729\) 0 0
\(730\) 20.9184 3.31315i 0.774226 0.122625i
\(731\) −4.39445 + 5.14524i −0.162534 + 0.190303i
\(732\) 0 0
\(733\) 2.15648 13.6155i 0.0796513 0.502899i −0.915319 0.402729i \(-0.868062\pi\)
0.994970 0.100169i \(-0.0319385\pi\)
\(734\) 16.7863 + 23.1044i 0.619594 + 0.852798i
\(735\) 0 0
\(736\) −3.97406 + 7.79954i −0.146486 + 0.287495i
\(737\) 0.567841 0.0209167
\(738\) 0 0
\(739\) 32.9738 1.21296 0.606481 0.795098i \(-0.292581\pi\)
0.606481 + 0.795098i \(0.292581\pi\)
\(740\) −5.48313 + 10.7613i −0.201564 + 0.395591i
\(741\) 0 0
\(742\) 3.87053 + 5.32733i 0.142092 + 0.195573i
\(743\) −0.962172 + 6.07491i −0.0352987 + 0.222867i −0.999031 0.0440022i \(-0.985989\pi\)
0.963733 + 0.266869i \(0.0859891\pi\)
\(744\) 0 0
\(745\) 5.03439 5.89451i 0.184446 0.215958i
\(746\) 25.6939 4.06952i 0.940722 0.148996i
\(747\) 0 0
\(748\) −0.282961 0.205583i −0.0103461 0.00751688i
\(749\) −5.77440 9.42296i −0.210992 0.344307i
\(750\) 0 0
\(751\) 0.0299838 0.380981i 0.00109413 0.0139022i −0.996346 0.0854083i \(-0.972781\pi\)
0.997440 + 0.0715061i \(0.0227805\pi\)
\(752\) −3.82662 9.23827i −0.139542 0.336885i
\(753\) 0 0
\(754\) −7.04767 + 21.6905i −0.256661 + 0.789921i
\(755\) 9.16857 38.1898i 0.333678 1.38987i
\(756\) 0 0
\(757\) −3.79660 48.2403i −0.137990 1.75332i −0.543660 0.839305i \(-0.682962\pi\)
0.405671 0.914019i \(-0.367038\pi\)
\(758\) 4.87089 2.48184i 0.176919 0.0901446i
\(759\) 0 0
\(760\) −0.308629 + 0.0242896i −0.0111952 + 0.000881077i
\(761\) −5.72042 17.6057i −0.207365 0.638205i −0.999608 0.0279985i \(-0.991087\pi\)
0.792243 0.610206i \(-0.208913\pi\)
\(762\) 0 0
\(763\) −0.448185 0.145624i −0.0162254 0.00527195i
\(764\) −12.0656 7.39378i −0.436516 0.267498i
\(765\) 0 0
\(766\) 6.43285 + 0.506276i 0.232428 + 0.0182925i
\(767\) 2.04035 + 8.49869i 0.0736729 + 0.306870i
\(768\) 0 0
\(769\) 0.809111 1.11365i 0.0291773 0.0401591i −0.794179 0.607684i \(-0.792099\pi\)
0.823356 + 0.567525i \(0.192099\pi\)
\(770\) 0.450667 + 0.450667i 0.0162409 + 0.0162409i
\(771\) 0 0
\(772\) 0.843504 + 0.720421i 0.0303584 + 0.0259285i
\(773\) 19.8106 + 23.1953i 0.712539 + 0.834276i 0.992047 0.125868i \(-0.0401715\pi\)
−0.279508 + 0.960143i \(0.590171\pi\)
\(774\) 0 0
\(775\) −7.41174 + 5.38494i −0.266238 + 0.193433i
\(776\) 0.152936 + 0.0633480i 0.00549007 + 0.00227406i
\(777\) 0 0
\(778\) 37.5578i 1.34651i
\(779\) −0.620466 0.0278399i −0.0222305 0.000997468i
\(780\) 0 0
\(781\) −1.45319 0.740439i −0.0519994 0.0264950i
\(782\) 6.06581 14.6442i 0.216913 0.523674i
\(783\) 0 0
\(784\) −5.85818 0.927845i −0.209221 0.0331373i
\(785\) −46.2154 + 39.4717i −1.64950 + 1.40880i
\(786\) 0 0
\(787\) −2.76527 17.4592i −0.0985712 0.622354i −0.986674 0.162709i \(-0.947977\pi\)
0.888103 0.459645i \(-0.152023\pi\)
\(788\) 11.1702 11.1702i 0.397921 0.397921i
\(789\) 0 0
\(790\) −7.35516 + 4.50725i −0.261685 + 0.160361i
\(791\) −6.76757 + 1.62475i −0.240627 + 0.0577695i
\(792\) 0 0
\(793\) 20.7674 8.60213i 0.737472 0.305471i
\(794\) −17.8832 + 29.1827i −0.634651 + 1.03566i
\(795\) 0 0
\(796\) −6.66362 1.59979i −0.236186 0.0567032i
\(797\) −17.7740 + 5.77513i −0.629588 + 0.204566i −0.606393 0.795165i \(-0.707384\pi\)
−0.0231956 + 0.999731i \(0.507384\pi\)
\(798\) 0 0
\(799\) 8.22021 + 16.1331i 0.290810 + 0.570747i
\(800\) 2.35467 + 4.62130i 0.0832501 + 0.163388i
\(801\) 0 0
\(802\) 12.4710 4.05208i 0.440367 0.143084i
\(803\) 1.24633 + 0.299218i 0.0439822 + 0.0105592i
\(804\) 0 0
\(805\) −15.0916 + 24.6273i −0.531909 + 0.867997i
\(806\) −4.97217 + 2.05954i −0.175137 + 0.0725442i
\(807\) 0 0
\(808\) −0.447040 + 0.107325i −0.0157268 + 0.00377568i
\(809\) −14.3790 + 8.81145i −0.505538 + 0.309794i −0.751780 0.659414i \(-0.770804\pi\)
0.246242 + 0.969208i \(0.420804\pi\)
\(810\) 0 0
\(811\) −26.8765 + 26.8765i −0.943762 + 0.943762i −0.998501 0.0547386i \(-0.982567\pi\)
0.0547386 + 0.998501i \(0.482567\pi\)
\(812\) 1.21057 + 7.64327i 0.0424828 + 0.268226i
\(813\) 0 0
\(814\) −0.555804 + 0.474701i −0.0194809 + 0.0166383i
\(815\) 63.3470 + 10.0332i 2.21895 + 0.351447i
\(816\) 0 0
\(817\) −0.138708 + 0.334871i −0.00485278 + 0.0117156i
\(818\) 14.1203 + 7.19468i 0.493706 + 0.251556i
\(819\) 0 0
\(820\) 6.96653 + 19.2125i 0.243282 + 0.670928i
\(821\) 5.77958i 0.201709i −0.994901 0.100854i \(-0.967842\pi\)
0.994901 0.100854i \(-0.0321576\pi\)
\(822\) 0 0
\(823\) 1.75197 + 0.725689i 0.0610697 + 0.0252959i 0.413009 0.910727i \(-0.364478\pi\)
−0.351939 + 0.936023i \(0.614478\pi\)
\(824\) 6.80243 4.94225i 0.236974 0.172172i
\(825\) 0 0
\(826\) 1.92602 + 2.25508i 0.0670148 + 0.0784643i
\(827\) −32.5026 27.7598i −1.13023 0.965304i −0.130568 0.991439i \(-0.541680\pi\)
−0.999658 + 0.0261352i \(0.991680\pi\)
\(828\) 0 0
\(829\) 9.00340 + 9.00340i 0.312701 + 0.312701i 0.845955 0.533254i \(-0.179031\pi\)
−0.533254 + 0.845955i \(0.679031\pi\)
\(830\) −21.6942 + 29.8595i −0.753017 + 1.03644i
\(831\) 0 0
\(832\) 0.711274 + 2.96267i 0.0246590 + 0.102712i
\(833\) 10.7069 + 0.842650i 0.370971 + 0.0291961i
\(834\) 0 0
\(835\) 15.7295 + 9.63906i 0.544342 + 0.333573i
\(836\) −0.0178188 0.00578967i −0.000616275 0.000200240i
\(837\) 0 0
\(838\) 1.56658 + 4.82144i 0.0541166 + 0.166554i
\(839\) 38.9567 3.06596i 1.34494 0.105849i 0.614547 0.788880i \(-0.289339\pi\)
0.730389 + 0.683031i \(0.239339\pi\)
\(840\) 0 0
\(841\) −24.0842 + 12.2715i −0.830490 + 0.423156i
\(842\) 0.0575477 + 0.731212i 0.00198322 + 0.0251992i
\(843\) 0 0
\(844\) 4.96909 20.6977i 0.171043 0.712446i
\(845\) 3.66567 11.2818i 0.126103 0.388105i
\(846\) 0 0
\(847\) −4.33715 10.4708i −0.149026 0.359781i
\(848\) −0.499744 + 6.34985i −0.0171613 + 0.218055i
\(849\) 0 0
\(850\) −4.90715 8.00774i −0.168314 0.274663i
\(851\) −26.7986 19.4704i −0.918645 0.667435i
\(852\) 0 0
\(853\) 16.7011 2.64520i 0.571836 0.0905699i 0.136181 0.990684i \(-0.456517\pi\)
0.435654 + 0.900114i \(0.356517\pi\)
\(854\) 4.95344 5.79973i 0.169503 0.198463i
\(855\) 0 0
\(856\) 1.67227 10.5583i 0.0571570 0.360875i
\(857\) −23.7616 32.7050i −0.811681 1.11718i −0.991062 0.133403i \(-0.957410\pi\)
0.179381 0.983780i \(-0.442590\pi\)
\(858\) 0 0
\(859\) 5.27974 10.3621i 0.180142 0.353549i −0.783223 0.621740i \(-0.786426\pi\)
0.963366 + 0.268191i \(0.0864259\pi\)
\(860\) 11.9265 0.406691
\(861\) 0 0
\(862\) 5.38321 0.183353
\(863\) −0.895650 + 1.75781i −0.0304883 + 0.0598366i −0.905748 0.423816i \(-0.860690\pi\)
0.875260 + 0.483653i \(0.160690\pi\)
\(864\) 0 0
\(865\) −4.09836 5.64091i −0.139349 0.191797i
\(866\) 1.72388 10.8842i 0.0585799 0.369859i
\(867\) 0 0
\(868\) −1.18596 + 1.38858i −0.0402542 + 0.0471316i
\(869\) −0.515633 + 0.0816682i −0.0174916 + 0.00277040i
\(870\) 0 0
\(871\) 7.24648 + 5.26488i 0.245538 + 0.178394i
\(872\) −0.238171 0.388660i −0.00806549 0.0131617i
\(873\) 0 0
\(874\) 0.0666184 0.846467i 0.00225340 0.0286322i
\(875\) 0.235628 + 0.568856i 0.00796567 + 0.0192308i
\(876\) 0 0
\(877\) −2.63522 + 8.11039i −0.0889852 + 0.273868i −0.985640 0.168863i \(-0.945990\pi\)
0.896654 + 0.442731i \(0.145990\pi\)
\(878\) −5.87572 + 24.4741i −0.198296 + 0.825963i
\(879\) 0 0
\(880\) 0.0483690 + 0.614586i 0.00163052 + 0.0207177i
\(881\) 15.0967 7.69216i 0.508622 0.259156i −0.180795 0.983521i \(-0.557867\pi\)
0.689416 + 0.724365i \(0.257867\pi\)
\(882\) 0 0
\(883\) −51.1111 + 4.02253i −1.72003 + 0.135369i −0.899695 0.436519i \(-0.856211\pi\)
−0.820332 + 0.571888i \(0.806211\pi\)
\(884\) −1.70488 5.24709i −0.0573414 0.176479i
\(885\) 0 0
\(886\) −23.8459 7.74799i −0.801117 0.260299i
\(887\) 47.8878 + 29.3457i 1.60791 + 0.985331i 0.977984 + 0.208680i \(0.0669167\pi\)
0.629931 + 0.776651i \(0.283083\pi\)
\(888\) 0 0
\(889\) −1.26885 0.0998609i −0.0425560 0.00334923i
\(890\) 11.7263 + 48.8437i 0.393068 + 1.63724i
\(891\) 0 0
\(892\) −5.96895 + 8.21556i −0.199855 + 0.275077i
\(893\) 0.685840 + 0.685840i 0.0229508 + 0.0229508i
\(894\) 0 0
\(895\) 48.0708 + 41.0564i 1.60683 + 1.37236i
\(896\) 0.671416 + 0.786128i 0.0224304 + 0.0262627i
\(897\) 0 0
\(898\) −23.1488 + 16.8186i −0.772484 + 0.561243i
\(899\) −12.2154 5.05977i −0.407405 0.168753i
\(900\) 0 0
\(901\) 11.5336i 0.384240i
\(902\) −0.0554387 + 1.23556i −0.00184591 + 0.0411397i
\(903\) 0 0
\(904\) −5.99839 3.05633i −0.199503 0.101652i
\(905\) 22.0825 53.3119i 0.734047 1.77215i
\(906\) 0 0
\(907\) −22.3480 3.53958i −0.742053 0.117530i −0.226049 0.974116i \(-0.572581\pi\)
−0.516004 + 0.856586i \(0.672581\pi\)
\(908\) 6.63608 5.66774i 0.220226 0.188091i
\(909\) 0 0
\(910\) 1.57270 + 9.92965i 0.0521345 + 0.329165i
\(911\) 22.1906 22.1906i 0.735209 0.735209i −0.236438 0.971647i \(-0.575980\pi\)
0.971647 + 0.236438i \(0.0759800\pi\)
\(912\) 0 0
\(913\) −1.90452 + 1.16709i −0.0630303 + 0.0386250i
\(914\) −19.7690 + 4.74611i −0.653899 + 0.156987i
\(915\) 0 0
\(916\) −2.75945 + 1.14300i −0.0911747 + 0.0377658i
\(917\) 4.42370 7.21881i 0.146083 0.238386i
\(918\) 0 0
\(919\) 10.5216 + 2.52601i 0.347076 + 0.0833255i 0.403235 0.915096i \(-0.367886\pi\)
−0.0561596 + 0.998422i \(0.517886\pi\)
\(920\) −26.5711 + 8.63346i −0.876022 + 0.284637i
\(921\) 0 0
\(922\) 11.8695 + 23.2953i 0.390902 + 0.767189i
\(923\) −11.6797 22.9227i −0.384443 0.754511i
\(924\) 0 0
\(925\) −18.6662 + 6.06503i −0.613742 + 0.199417i
\(926\) −6.41787 1.54080i −0.210904 0.0506337i
\(927\) 0 0
\(928\) −3.91108 + 6.38230i −0.128387 + 0.209509i
\(929\) 18.9417 7.84593i 0.621459 0.257417i −0.0496605 0.998766i \(-0.515814\pi\)
0.671119 + 0.741350i \(0.265814\pi\)
\(930\) 0 0
\(931\) 0.559419 0.134305i 0.0183342 0.00440166i
\(932\) 3.33452 2.04340i 0.109226 0.0669337i
\(933\) 0 0
\(934\) 7.19505 7.19505i 0.235429 0.235429i
\(935\) −0.174629 1.10257i −0.00571098 0.0360577i
\(936\) 0 0
\(937\) 4.10837 3.50888i 0.134215 0.114630i −0.579807 0.814754i \(-0.696872\pi\)
0.714021 + 0.700124i \(0.246872\pi\)
\(938\) 3.00183 + 0.475443i 0.0980132 + 0.0155238i
\(939\) 0 0
\(940\) 12.2132 29.4853i 0.398351 0.961704i
\(941\) −34.3641 17.5094i −1.12024 0.570789i −0.207050 0.978330i \(-0.566386\pi\)
−0.913187 + 0.407541i \(0.866386\pi\)
\(942\) 0 0
\(943\) −55.0336 + 10.6286i −1.79214 + 0.346114i
\(944\) 2.86859i 0.0933647i
\(945\) 0 0
\(946\) 0.666842 + 0.276215i 0.0216809 + 0.00898052i
\(947\) 7.30635 5.30837i 0.237424 0.172499i −0.462711 0.886509i \(-0.653123\pi\)
0.700135 + 0.714010i \(0.253123\pi\)
\(948\) 0 0
\(949\) 13.1308 + 15.3742i 0.426243 + 0.499066i
\(950\) −0.382553 0.326731i −0.0124117 0.0106006i
\(951\) 0 0
\(952\) −1.32371 1.32371i −0.0429017 0.0429017i
\(953\) 15.6246 21.5054i 0.506130 0.696628i −0.477131 0.878832i \(-0.658323\pi\)
0.983261 + 0.182204i \(0.0583231\pi\)
\(954\) 0 0
\(955\) −10.5434 43.9165i −0.341177 1.42110i
\(956\) 28.9837 + 2.28106i 0.937399 + 0.0737749i
\(957\) 0 0
\(958\) −8.28929 5.07969i −0.267815 0.164117i
\(959\) 6.60766 + 2.14696i 0.213373 + 0.0693289i
\(960\) 0 0
\(961\) 8.61539 + 26.5154i 0.277916 + 0.855336i
\(962\) −11.4942 + 0.904611i −0.370587 + 0.0291658i
\(963\) 0 0
\(964\) −24.8935 + 12.6839i −0.801767 + 0.408521i
\(965\) 0.277779 + 3.52952i 0.00894203 + 0.113619i
\(966\) 0 0
\(967\) 8.47280 35.2917i 0.272467 1.13491i −0.653387 0.757024i \(-0.726653\pi\)
0.925854 0.377882i \(-0.123347\pi\)
\(968\) 3.38766 10.4261i 0.108883 0.335109i
\(969\) 0 0
\(970\) 0.202184 + 0.488116i 0.00649175 + 0.0156725i
\(971\) 2.88749 36.6890i 0.0926638 1.17741i −0.758201 0.652021i \(-0.773921\pi\)
0.850865 0.525385i \(-0.176079\pi\)
\(972\) 0 0
\(973\) 10.0233 + 16.3566i 0.321333 + 0.524368i
\(974\) 0.669561 + 0.486464i 0.0214541 + 0.0155873i
\(975\) 0 0
\(976\) 7.28677 1.15411i 0.233244 0.0369422i
\(977\) −17.5781 + 20.5813i −0.562374 + 0.658456i −0.966626 0.256192i \(-0.917532\pi\)
0.404252 + 0.914648i \(0.367532\pi\)
\(978\) 0 0
\(979\) −0.475558 + 3.00255i −0.0151989 + 0.0959620i
\(980\) −11.1270 15.3149i −0.355437 0.489218i
\(981\) 0 0
\(982\) −0.961820 + 1.88768i −0.0306929 + 0.0602382i
\(983\) −37.2360 −1.18764 −0.593822 0.804597i \(-0.702381\pi\)
−0.593822 + 0.804597i \(0.702381\pi\)
\(984\) 0 0
\(985\) 50.4184 1.60646
\(986\) 6.15346 12.0768i 0.195966 0.384605i
\(987\) 0 0
\(988\) −0.173713 0.239096i −0.00552656 0.00760665i
\(989\) −5.11705 + 32.3078i −0.162713 + 1.02733i
\(990\) 0 0
\(991\) 33.1123 38.7696i 1.05185 1.23156i 0.0797906 0.996812i \(-0.474575\pi\)
0.972057 0.234744i \(-0.0754252\pi\)
\(992\) −1.74461 + 0.276320i −0.0553915 + 0.00877316i
\(993\) 0 0
\(994\) −7.06219 5.13098i −0.223999 0.162745i
\(995\) −11.4282 18.6492i −0.362299 0.591218i
\(996\) 0 0
\(997\) 0.479867 6.09729i 0.0151975 0.193103i −0.984632 0.174642i \(-0.944123\pi\)
0.999830 0.0184613i \(-0.00587674\pi\)
\(998\) −10.4466 25.2203i −0.330681 0.798334i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 738.2.ba.d.233.4 yes 64
3.2 odd 2 738.2.ba.c.233.1 64
41.22 odd 40 738.2.ba.c.719.1 yes 64
123.104 even 40 inner 738.2.ba.d.719.4 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
738.2.ba.c.233.1 64 3.2 odd 2
738.2.ba.c.719.1 yes 64 41.22 odd 40
738.2.ba.d.233.4 yes 64 1.1 even 1 trivial
738.2.ba.d.719.4 yes 64 123.104 even 40 inner