gp: [N,k,chi] = [738,2,Mod(17,738)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(738, base_ring=CyclotomicField(40))
chi = DirichletCharacter(H, H._module([20, 33]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("738.17");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [64,0,0,0,0,0,-4,0,0,0,8]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{64} - 20 T_{5}^{62} + 22 T_{5}^{60} - 568 T_{5}^{59} + 5920 T_{5}^{58} + 8104 T_{5}^{57} + \cdots + 1943350309681 \)
T5^64 - 20*T5^62 + 22*T5^60 - 568*T5^59 + 5920*T5^58 + 8104*T5^57 - 48240*T5^56 - 33472*T5^55 - 637968*T5^54 - 489600*T5^53 + 7950376*T5^52 + 6154152*T5^51 + 69600640*T5^50 + 25035888*T5^49 - 1011831736*T5^48 - 125925872*T5^47 - 5998557564*T5^46 - 313097816*T5^45 + 93832961844*T5^44 + 37523575712*T5^43 + 752652670400*T5^42 + 104274549720*T5^41 - 6114241753728*T5^40 - 5589021637664*T5^39 - 56306362769932*T5^38 - 6162653399544*T5^37 + 165051216157758*T5^36 + 89649472976520*T5^35 + 2573467889237536*T5^34 + 1606690498887360*T5^33 + 3319749036624610*T5^32 + 9723800190157632*T5^31 - 53645672619439660*T5^30 - 3421660061940664*T5^29 - 71320965438562542*T5^28 - 182964623333582144*T5^27 + 606445379293032032*T5^26 - 528775050397191816*T5^25 + 834467091729756728*T5^24 + 2264729217414489688*T5^23 - 2893494180846107964*T5^22 + 114540565778076704*T5^21 - 6293785022436345800*T5^20 + 1183339496703296456*T5^19 + 9913707676895155088*T5^18 - 11946167935244198720*T5^17 + 19684737252870324983*T5^16 - 1105879917480655456*T5^15 - 27265701606734456948*T5^14 + 10738167940785443288*T5^13 + 20677804498918474860*T5^12 - 28789672281780086296*T5^11 + 30329803232961782976*T5^10 - 23219219119384329432*T5^9 + 11701355786295098568*T5^8 - 4048950161030651944*T5^7 + 1126870829408469696*T5^6 - 280528231818346256*T5^5 + 63344674310129136*T5^4 - 10914624761874064*T5^3 + 1074932513695568*T5^2 - 5225612873976*T5 + 1943350309681
acting on \(S_{2}^{\mathrm{new}}(738, [\chi])\).