Properties

Label 738.2.ba
Level $738$
Weight $2$
Character orbit 738.ba
Rep. character $\chi_{738}(17,\cdot)$
Character field $\Q(\zeta_{40})$
Dimension $224$
Newform subspaces $4$
Sturm bound $252$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 738 = 2 \cdot 3^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 738.ba (of order \(40\) and degree \(16\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 123 \)
Character field: \(\Q(\zeta_{40})\)
Newform subspaces: \( 4 \)
Sturm bound: \(252\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(738, [\chi])\).

Total New Old
Modular forms 2144 224 1920
Cusp forms 1888 224 1664
Eisenstein series 256 0 256

Trace form

\( 224 q + 24 q^{13} + 56 q^{16} + 32 q^{22} - 32 q^{37} + 64 q^{43} + 32 q^{46} - 64 q^{55} + 32 q^{58} - 72 q^{61} - 64 q^{67} + 160 q^{73} + 32 q^{76} + 160 q^{79} + 32 q^{85} + 256 q^{91} + 160 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(738, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
738.2.ba.a 738.ba 123.o $48$ $5.893$ None 738.2.ba.a \(0\) \(0\) \(-4\) \(4\) $\mathrm{SU}(2)[C_{40}]$
738.2.ba.b 738.ba 123.o $48$ $5.893$ None 738.2.ba.a \(0\) \(0\) \(4\) \(4\) $\mathrm{SU}(2)[C_{40}]$
738.2.ba.c 738.ba 123.o $64$ $5.893$ None 738.2.ba.c \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{40}]$
738.2.ba.d 738.ba 123.o $64$ $5.893$ None 738.2.ba.c \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{40}]$

Decomposition of \(S_{2}^{\mathrm{old}}(738, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(738, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(123, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(246, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(369, [\chi])\)\(^{\oplus 2}\)