Properties

Label 738.2.ba.c.719.1
Level $738$
Weight $2$
Character 738.719
Analytic conductor $5.893$
Analytic rank $0$
Dimension $64$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [738,2,Mod(17,738)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("738.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(738, base_ring=CyclotomicField(40)) chi = DirichletCharacter(H, H._module([20, 33])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 738 = 2 \cdot 3^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 738.ba (of order \(40\), degree \(16\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64,0,0,0,0,0,-4,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.89295966917\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(4\) over \(\Q(\zeta_{40})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{40}]$

Embedding invariants

Embedding label 719.1
Character \(\chi\) \(=\) 738.719
Dual form 738.2.ba.c.233.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.453990 + 0.891007i) q^{2} +(-0.587785 + 0.809017i) q^{4} +(-0.499283 - 3.15235i) q^{5} +(0.671416 + 0.786128i) q^{7} +(-0.987688 - 0.156434i) q^{8} +(2.58210 - 1.87600i) q^{10} +(-0.100924 + 0.164693i) q^{11} +(-0.239053 - 3.03746i) q^{13} +(-0.395628 + 0.955131i) q^{14} +(-0.309017 - 0.951057i) q^{16} +(-0.422714 - 1.76073i) q^{17} +(-0.00761038 + 0.0966990i) q^{19} +(2.84378 + 1.44898i) q^{20} +(-0.192561 - 0.0151549i) q^{22} +(2.70502 - 8.32519i) q^{23} +(-4.93275 + 1.60275i) q^{25} +(2.59787 - 1.59198i) q^{26} +(-1.03064 + 0.0811131i) q^{28} +(1.74742 - 7.27852i) q^{29} +(1.03824 + 1.42902i) q^{31} +(0.707107 - 0.707107i) q^{32} +(1.37691 - 1.17599i) q^{34} +(2.14292 - 2.50904i) q^{35} +(3.06143 + 2.22426i) q^{37} +(-0.0896145 + 0.0371195i) q^{38} +3.19165i q^{40} +(-0.788009 - 6.35445i) q^{41} +(-3.32951 + 1.69647i) q^{43} +(-0.0739177 - 0.178453i) q^{44} +(8.64585 - 1.36937i) q^{46} +(7.60363 + 6.49411i) q^{47} +(0.927845 - 5.85818i) q^{49} +(-3.66748 - 3.66748i) q^{50} +(2.59787 + 1.59198i) q^{52} +(-6.19350 - 1.48693i) q^{53} +(0.569559 + 0.235919i) q^{55} +(-0.540173 - 0.881482i) q^{56} +(7.27852 - 1.74742i) q^{58} +(-2.72819 - 0.886444i) q^{59} +(-3.34936 + 6.57349i) q^{61} +(-0.801911 + 1.57384i) q^{62} +(0.951057 + 0.309017i) q^{64} +(-9.45579 + 2.27013i) q^{65} +(1.53604 + 2.50659i) q^{67} +(1.67292 + 0.692948i) q^{68} +(3.20844 + 0.770278i) q^{70} +(7.19946 + 4.41183i) q^{71} +(4.69223 + 4.69223i) q^{73} +(-0.591970 + 3.73755i) q^{74} +(-0.0737579 - 0.0629952i) q^{76} +(-0.197231 + 0.0312384i) q^{77} +(-1.03431 - 2.49705i) q^{79} +(-2.84378 + 1.44898i) q^{80} +(5.30411 - 3.58698i) q^{82} +11.5641i q^{83} +(-5.33938 + 2.21164i) q^{85} +(-3.02313 - 2.19643i) q^{86} +(0.125445 - 0.146877i) q^{88} +(-11.9676 + 10.2213i) q^{89} +(2.22733 - 2.22733i) q^{91} +(5.14525 + 7.08183i) q^{92} +(-2.33432 + 9.72315i) q^{94} +(0.308629 - 0.0242896i) q^{95} +(0.141143 - 0.0864925i) q^{97} +(5.64091 - 1.83284i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 4 q^{7} - 8 q^{11} + 16 q^{13} + 4 q^{14} + 16 q^{16} - 16 q^{17} + 4 q^{19} - 4 q^{22} + 48 q^{23} + 40 q^{25} - 20 q^{26} + 4 q^{28} + 4 q^{29} + 40 q^{31} + 4 q^{34} - 52 q^{35} + 8 q^{37} + 16 q^{38}+ \cdots + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/738\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{29}{40}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.453990 + 0.891007i 0.321020 + 0.630037i
\(3\) 0 0
\(4\) −0.587785 + 0.809017i −0.293893 + 0.404508i
\(5\) −0.499283 3.15235i −0.223286 1.40977i −0.803497 0.595308i \(-0.797030\pi\)
0.580211 0.814466i \(-0.302970\pi\)
\(6\) 0 0
\(7\) 0.671416 + 0.786128i 0.253772 + 0.297128i 0.872638 0.488368i \(-0.162408\pi\)
−0.618866 + 0.785496i \(0.712408\pi\)
\(8\) −0.987688 0.156434i −0.349201 0.0553079i
\(9\) 0 0
\(10\) 2.58210 1.87600i 0.816530 0.593244i
\(11\) −0.100924 + 0.164693i −0.0304297 + 0.0496567i −0.867493 0.497449i \(-0.834270\pi\)
0.837064 + 0.547105i \(0.184270\pi\)
\(12\) 0 0
\(13\) −0.239053 3.03746i −0.0663015 0.842440i −0.936709 0.350108i \(-0.886145\pi\)
0.870408 0.492332i \(-0.163855\pi\)
\(14\) −0.395628 + 0.955131i −0.105736 + 0.255269i
\(15\) 0 0
\(16\) −0.309017 0.951057i −0.0772542 0.237764i
\(17\) −0.422714 1.76073i −0.102523 0.427039i 0.897376 0.441267i \(-0.145471\pi\)
−0.999899 + 0.0142280i \(0.995471\pi\)
\(18\) 0 0
\(19\) −0.00761038 + 0.0966990i −0.00174594 + 0.0221843i −0.997729 0.0673621i \(-0.978542\pi\)
0.995983 + 0.0895464i \(0.0285417\pi\)
\(20\) 2.84378 + 1.44898i 0.635888 + 0.324001i
\(21\) 0 0
\(22\) −0.192561 0.0151549i −0.0410541 0.00323103i
\(23\) 2.70502 8.32519i 0.564035 1.73592i −0.106764 0.994284i \(-0.534049\pi\)
0.670800 0.741638i \(-0.265951\pi\)
\(24\) 0 0
\(25\) −4.93275 + 1.60275i −0.986551 + 0.320550i
\(26\) 2.59787 1.59198i 0.509484 0.312212i
\(27\) 0 0
\(28\) −1.03064 + 0.0811131i −0.194773 + 0.0153289i
\(29\) 1.74742 7.27852i 0.324487 1.35159i −0.536903 0.843644i \(-0.680406\pi\)
0.861390 0.507943i \(-0.169594\pi\)
\(30\) 0 0
\(31\) 1.03824 + 1.42902i 0.186473 + 0.256659i 0.892011 0.452014i \(-0.149294\pi\)
−0.705537 + 0.708673i \(0.749294\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 0 0
\(34\) 1.37691 1.17599i 0.236139 0.201681i
\(35\) 2.14292 2.50904i 0.362220 0.424105i
\(36\) 0 0
\(37\) 3.06143 + 2.22426i 0.503296 + 0.365666i 0.810275 0.586050i \(-0.199318\pi\)
−0.306978 + 0.951717i \(0.599318\pi\)
\(38\) −0.0896145 + 0.0371195i −0.0145374 + 0.00602158i
\(39\) 0 0
\(40\) 3.19165i 0.504644i
\(41\) −0.788009 6.35445i −0.123066 0.992398i
\(42\) 0 0
\(43\) −3.32951 + 1.69647i −0.507745 + 0.258709i −0.689045 0.724719i \(-0.741970\pi\)
0.181300 + 0.983428i \(0.441970\pi\)
\(44\) −0.0739177 0.178453i −0.0111435 0.0269028i
\(45\) 0 0
\(46\) 8.64585 1.36937i 1.27476 0.201902i
\(47\) 7.60363 + 6.49411i 1.10910 + 0.947263i 0.998911 0.0466470i \(-0.0148536\pi\)
0.110192 + 0.993910i \(0.464854\pi\)
\(48\) 0 0
\(49\) 0.927845 5.85818i 0.132549 0.836883i
\(50\) −3.66748 3.66748i −0.518661 0.518661i
\(51\) 0 0
\(52\) 2.59787 + 1.59198i 0.360260 + 0.220767i
\(53\) −6.19350 1.48693i −0.850743 0.204245i −0.215448 0.976515i \(-0.569121\pi\)
−0.635294 + 0.772270i \(0.719121\pi\)
\(54\) 0 0
\(55\) 0.569559 + 0.235919i 0.0767993 + 0.0318113i
\(56\) −0.540173 0.881482i −0.0721836 0.117793i
\(57\) 0 0
\(58\) 7.27852 1.74742i 0.955717 0.229447i
\(59\) −2.72819 0.886444i −0.355180 0.115405i 0.125992 0.992031i \(-0.459789\pi\)
−0.481172 + 0.876626i \(0.659789\pi\)
\(60\) 0 0
\(61\) −3.34936 + 6.57349i −0.428842 + 0.841649i 0.570945 + 0.820988i \(0.306577\pi\)
−0.999787 + 0.0206606i \(0.993423\pi\)
\(62\) −0.801911 + 1.57384i −0.101843 + 0.199878i
\(63\) 0 0
\(64\) 0.951057 + 0.309017i 0.118882 + 0.0386271i
\(65\) −9.45579 + 2.27013i −1.17285 + 0.281575i
\(66\) 0 0
\(67\) 1.53604 + 2.50659i 0.187658 + 0.306229i 0.932608 0.360890i \(-0.117527\pi\)
−0.744951 + 0.667119i \(0.767527\pi\)
\(68\) 1.67292 + 0.692948i 0.202872 + 0.0840323i
\(69\) 0 0
\(70\) 3.20844 + 0.770278i 0.383482 + 0.0920658i
\(71\) 7.19946 + 4.41183i 0.854419 + 0.523588i 0.879391 0.476100i \(-0.157950\pi\)
−0.0249727 + 0.999688i \(0.507950\pi\)
\(72\) 0 0
\(73\) 4.69223 + 4.69223i 0.549184 + 0.549184i 0.926205 0.377021i \(-0.123051\pi\)
−0.377021 + 0.926205i \(0.623051\pi\)
\(74\) −0.591970 + 3.73755i −0.0688151 + 0.434481i
\(75\) 0 0
\(76\) −0.0737579 0.0629952i −0.00846061 0.00722604i
\(77\) −0.197231 + 0.0312384i −0.0224766 + 0.00355995i
\(78\) 0 0
\(79\) −1.03431 2.49705i −0.116369 0.280940i 0.854954 0.518704i \(-0.173585\pi\)
−0.971323 + 0.237764i \(0.923585\pi\)
\(80\) −2.84378 + 1.44898i −0.317944 + 0.162001i
\(81\) 0 0
\(82\) 5.30411 3.58698i 0.585741 0.396116i
\(83\) 11.5641i 1.26932i 0.772791 + 0.634661i \(0.218860\pi\)
−0.772791 + 0.634661i \(0.781140\pi\)
\(84\) 0 0
\(85\) −5.33938 + 2.21164i −0.579137 + 0.239887i
\(86\) −3.02313 2.19643i −0.325992 0.236847i
\(87\) 0 0
\(88\) 0.125445 0.146877i 0.0133725 0.0156572i
\(89\) −11.9676 + 10.2213i −1.26856 + 1.08346i −0.276074 + 0.961136i \(0.589034\pi\)
−0.992491 + 0.122321i \(0.960966\pi\)
\(90\) 0 0
\(91\) 2.22733 2.22733i 0.233487 0.233487i
\(92\) 5.14525 + 7.08183i 0.536430 + 0.738332i
\(93\) 0 0
\(94\) −2.33432 + 9.72315i −0.240767 + 1.00287i
\(95\) 0.308629 0.0242896i 0.0316647 0.00249206i
\(96\) 0 0
\(97\) 0.141143 0.0864925i 0.0143309 0.00878198i −0.515315 0.857001i \(-0.672325\pi\)
0.529646 + 0.848219i \(0.322325\pi\)
\(98\) 5.64091 1.83284i 0.569818 0.185145i
\(99\) 0 0
\(100\) 1.60275 4.93275i 0.160275 0.493275i
\(101\) 0.458326 + 0.0360710i 0.0456051 + 0.00358920i 0.101241 0.994862i \(-0.467719\pi\)
−0.0556360 + 0.998451i \(0.517719\pi\)
\(102\) 0 0
\(103\) 7.49182 + 3.81727i 0.738191 + 0.376127i 0.782302 0.622900i \(-0.214045\pi\)
−0.0441109 + 0.999027i \(0.514045\pi\)
\(104\) −0.239053 + 3.03746i −0.0234411 + 0.297848i
\(105\) 0 0
\(106\) −1.48693 6.19350i −0.144423 0.601566i
\(107\) −3.30336 10.1667i −0.319348 0.982852i −0.973928 0.226859i \(-0.927154\pi\)
0.654580 0.755993i \(-0.272846\pi\)
\(108\) 0 0
\(109\) −0.174439 + 0.421133i −0.0167082 + 0.0403372i −0.932013 0.362424i \(-0.881949\pi\)
0.915305 + 0.402761i \(0.131949\pi\)
\(110\) 0.0483690 + 0.614586i 0.00461180 + 0.0585985i
\(111\) 0 0
\(112\) 0.540173 0.881482i 0.0510415 0.0832922i
\(113\) 5.44642 3.95706i 0.512356 0.372249i −0.301360 0.953510i \(-0.597441\pi\)
0.813717 + 0.581262i \(0.197441\pi\)
\(114\) 0 0
\(115\) −27.5945 4.37054i −2.57320 0.407555i
\(116\) 4.86134 + 5.69190i 0.451364 + 0.528480i
\(117\) 0 0
\(118\) −0.448747 2.83327i −0.0413105 0.260824i
\(119\) 1.10034 1.51449i 0.100868 0.138833i
\(120\) 0 0
\(121\) 4.97696 + 9.76783i 0.452451 + 0.887984i
\(122\) −7.37760 −0.667936
\(123\) 0 0
\(124\) −1.76636 −0.158624
\(125\) 0.270387 + 0.530664i 0.0241842 + 0.0474641i
\(126\) 0 0
\(127\) −0.723642 + 0.996007i −0.0642128 + 0.0883813i −0.839916 0.542717i \(-0.817396\pi\)
0.775703 + 0.631098i \(0.217396\pi\)
\(128\) 0.156434 + 0.987688i 0.0138270 + 0.0873001i
\(129\) 0 0
\(130\) −6.31554 7.39455i −0.553910 0.648545i
\(131\) −8.08858 1.28111i −0.706703 0.111931i −0.207271 0.978284i \(-0.566458\pi\)
−0.499432 + 0.866353i \(0.666458\pi\)
\(132\) 0 0
\(133\) −0.0811275 + 0.0589426i −0.00703465 + 0.00511097i
\(134\) −1.53604 + 2.50659i −0.132694 + 0.216537i
\(135\) 0 0
\(136\) 0.142071 + 1.80518i 0.0121825 + 0.154793i
\(137\) −2.57178 + 6.20882i −0.219722 + 0.530456i −0.994851 0.101347i \(-0.967685\pi\)
0.775129 + 0.631803i \(0.217685\pi\)
\(138\) 0 0
\(139\) −5.73405 17.6476i −0.486356 1.49685i −0.830007 0.557753i \(-0.811664\pi\)
0.343651 0.939097i \(-0.388336\pi\)
\(140\) 0.770278 + 3.20844i 0.0651004 + 0.271163i
\(141\) 0 0
\(142\) −0.662487 + 8.41770i −0.0555947 + 0.706397i
\(143\) 0.524374 + 0.267182i 0.0438503 + 0.0223429i
\(144\) 0 0
\(145\) −23.8169 1.87443i −1.97789 0.155663i
\(146\) −2.05058 + 6.31104i −0.169707 + 0.522305i
\(147\) 0 0
\(148\) −3.59893 + 1.16936i −0.295830 + 0.0961211i
\(149\) −2.07087 + 1.26903i −0.169652 + 0.103963i −0.604733 0.796429i \(-0.706720\pi\)
0.435080 + 0.900392i \(0.356720\pi\)
\(150\) 0 0
\(151\) 12.2676 0.965483i 0.998325 0.0785699i 0.431247 0.902234i \(-0.358074\pi\)
0.567078 + 0.823664i \(0.308074\pi\)
\(152\) 0.0226437 0.0943179i 0.00183665 0.00765020i
\(153\) 0 0
\(154\) −0.117375 0.161553i −0.00945833 0.0130183i
\(155\) 3.98638 3.98638i 0.320194 0.320194i
\(156\) 0 0
\(157\) −14.4801 + 12.3672i −1.15564 + 0.987008i −1.00000 0.000805828i \(-0.999743\pi\)
−0.155639 + 0.987814i \(0.549743\pi\)
\(158\) 1.75532 2.05522i 0.139646 0.163504i
\(159\) 0 0
\(160\) −2.58210 1.87600i −0.204133 0.148311i
\(161\) 8.36086 3.46318i 0.658928 0.272937i
\(162\) 0 0
\(163\) 20.0952i 1.57398i −0.616969 0.786988i \(-0.711640\pi\)
0.616969 0.786988i \(-0.288360\pi\)
\(164\) 5.60404 + 3.09754i 0.437602 + 0.241877i
\(165\) 0 0
\(166\) −10.3037 + 5.24998i −0.799719 + 0.407477i
\(167\) 2.21195 + 5.34011i 0.171165 + 0.413230i 0.986062 0.166376i \(-0.0532065\pi\)
−0.814897 + 0.579606i \(0.803207\pi\)
\(168\) 0 0
\(169\) 3.67093 0.581418i 0.282379 0.0447245i
\(170\) −4.39462 3.75336i −0.337052 0.287869i
\(171\) 0 0
\(172\) 0.584563 3.69079i 0.0445725 0.281420i
\(173\) −1.54476 1.54476i −0.117446 0.117446i 0.645941 0.763387i \(-0.276465\pi\)
−0.763387 + 0.645941i \(0.776465\pi\)
\(174\) 0 0
\(175\) −4.57190 2.80166i −0.345603 0.211786i
\(176\) 0.187819 + 0.0450914i 0.0141574 + 0.00339889i
\(177\) 0 0
\(178\) −14.5404 6.02285i −1.08985 0.451431i
\(179\) 10.3492 + 16.8883i 0.773535 + 1.26229i 0.960046 + 0.279841i \(0.0902818\pi\)
−0.186512 + 0.982453i \(0.559718\pi\)
\(180\) 0 0
\(181\) 17.5803 4.22065i 1.30673 0.313718i 0.480473 0.877010i \(-0.340465\pi\)
0.826258 + 0.563291i \(0.190465\pi\)
\(182\) 2.99575 + 0.973378i 0.222060 + 0.0721516i
\(183\) 0 0
\(184\) −3.97406 + 7.79954i −0.292972 + 0.574990i
\(185\) 5.48313 10.7613i 0.403128 0.791183i
\(186\) 0 0
\(187\) 0.332641 + 0.108082i 0.0243251 + 0.00790371i
\(188\) −9.72315 + 2.33432i −0.709133 + 0.170248i
\(189\) 0 0
\(190\) 0.161757 + 0.263963i 0.0117351 + 0.0191499i
\(191\) −13.0736 5.41528i −0.945976 0.391836i −0.144259 0.989540i \(-0.546080\pi\)
−0.801717 + 0.597704i \(0.796080\pi\)
\(192\) 0 0
\(193\) −1.07863 0.258957i −0.0776416 0.0186401i 0.194438 0.980915i \(-0.437712\pi\)
−0.272080 + 0.962275i \(0.587712\pi\)
\(194\) 0.141143 + 0.0864925i 0.0101335 + 0.00620980i
\(195\) 0 0
\(196\) 4.19399 + 4.19399i 0.299571 + 0.299571i
\(197\) −2.47119 + 15.6025i −0.176065 + 1.11163i 0.728421 + 0.685130i \(0.240255\pi\)
−0.904486 + 0.426503i \(0.859745\pi\)
\(198\) 0 0
\(199\) 5.21104 + 4.45065i 0.369401 + 0.315498i 0.814699 0.579884i \(-0.196902\pi\)
−0.445298 + 0.895382i \(0.646902\pi\)
\(200\) 5.12275 0.811364i 0.362233 0.0573721i
\(201\) 0 0
\(202\) 0.175936 + 0.424747i 0.0123788 + 0.0298851i
\(203\) 6.89509 3.51322i 0.483941 0.246580i
\(204\) 0 0
\(205\) −19.6380 + 5.65675i −1.37158 + 0.395085i
\(206\) 8.40827i 0.585832i
\(207\) 0 0
\(208\) −2.81492 + 1.16598i −0.195180 + 0.0808462i
\(209\) −0.0151576 0.0110126i −0.00104847 0.000761758i
\(210\) 0 0
\(211\) 13.8241 16.1859i 0.951688 1.11428i −0.0416600 0.999132i \(-0.513265\pi\)
0.993348 0.115152i \(-0.0367354\pi\)
\(212\) 4.84340 4.13665i 0.332646 0.284106i
\(213\) 0 0
\(214\) 7.55890 7.55890i 0.516716 0.516716i
\(215\) 7.01023 + 9.64875i 0.478094 + 0.658040i
\(216\) 0 0
\(217\) −0.426297 + 1.77565i −0.0289389 + 0.120539i
\(218\) −0.454426 + 0.0357641i −0.0307776 + 0.00242225i
\(219\) 0 0
\(220\) −0.525641 + 0.322113i −0.0354387 + 0.0217169i
\(221\) −5.24709 + 1.70488i −0.352958 + 0.114683i
\(222\) 0 0
\(223\) −3.13806 + 9.65797i −0.210140 + 0.646745i 0.789323 + 0.613979i \(0.210432\pi\)
−0.999463 + 0.0327668i \(0.989568\pi\)
\(224\) 1.03064 + 0.0811131i 0.0688625 + 0.00541960i
\(225\) 0 0
\(226\) 5.99839 + 3.05633i 0.399007 + 0.203304i
\(227\) −0.684714 + 8.70012i −0.0454461 + 0.577447i 0.931469 + 0.363820i \(0.118528\pi\)
−0.976915 + 0.213627i \(0.931472\pi\)
\(228\) 0 0
\(229\) 0.697256 + 2.90428i 0.0460760 + 0.191920i 0.990661 0.136346i \(-0.0435358\pi\)
−0.944585 + 0.328266i \(0.893536\pi\)
\(230\) −8.63346 26.5711i −0.569274 1.75204i
\(231\) 0 0
\(232\) −2.86452 + 6.91555i −0.188065 + 0.454028i
\(233\) 0.306839 + 3.89876i 0.0201017 + 0.255417i 0.998754 + 0.0498956i \(0.0158889\pi\)
−0.978653 + 0.205521i \(0.934111\pi\)
\(234\) 0 0
\(235\) 16.6754 27.2117i 1.08778 1.77510i
\(236\) 2.32074 1.68612i 0.151067 0.109757i
\(237\) 0 0
\(238\) 1.84896 + 0.292847i 0.119851 + 0.0189825i
\(239\) 18.8816 + 22.1075i 1.22135 + 1.43002i 0.869482 + 0.493965i \(0.164453\pi\)
0.351867 + 0.936050i \(0.385547\pi\)
\(240\) 0 0
\(241\) 4.37057 + 27.5947i 0.281533 + 1.77753i 0.571608 + 0.820527i \(0.306320\pi\)
−0.290075 + 0.957004i \(0.593680\pi\)
\(242\) −6.44371 + 8.86900i −0.414217 + 0.570121i
\(243\) 0 0
\(244\) −3.34936 6.57349i −0.214421 0.420824i
\(245\) −18.9303 −1.20941
\(246\) 0 0
\(247\) 0.295539 0.0188047
\(248\) −0.801911 1.57384i −0.0509214 0.0999388i
\(249\) 0 0
\(250\) −0.350072 + 0.481833i −0.0221405 + 0.0304738i
\(251\) 0.0404107 + 0.255143i 0.00255070 + 0.0161045i 0.988931 0.148377i \(-0.0474049\pi\)
−0.986380 + 0.164482i \(0.947405\pi\)
\(252\) 0 0
\(253\) 1.09810 + 1.28571i 0.0690368 + 0.0808317i
\(254\) −1.21598 0.192592i −0.0762971 0.0120843i
\(255\) 0 0
\(256\) −0.809017 + 0.587785i −0.0505636 + 0.0367366i
\(257\) −12.6396 + 20.6259i −0.788434 + 1.28661i 0.165386 + 0.986229i \(0.447113\pi\)
−0.953820 + 0.300379i \(0.902887\pi\)
\(258\) 0 0
\(259\) 0.306943 + 3.90008i 0.0190725 + 0.242339i
\(260\) 3.72140 8.98424i 0.230791 0.557179i
\(261\) 0 0
\(262\) −2.53067 7.78859i −0.156345 0.481181i
\(263\) −4.47956 18.6587i −0.276222 1.15055i −0.922052 0.387065i \(-0.873489\pi\)
0.645831 0.763481i \(-0.276511\pi\)
\(264\) 0 0
\(265\) −1.59501 + 20.2665i −0.0979805 + 1.24496i
\(266\) −0.0893493 0.0455258i −0.00547836 0.00279136i
\(267\) 0 0
\(268\) −2.93074 0.230654i −0.179023 0.0140895i
\(269\) 0.197841 0.608893i 0.0120626 0.0371249i −0.944844 0.327521i \(-0.893787\pi\)
0.956907 + 0.290396i \(0.0937869\pi\)
\(270\) 0 0
\(271\) 17.8412 5.79696i 1.08378 0.352140i 0.287937 0.957649i \(-0.407031\pi\)
0.795838 + 0.605509i \(0.207031\pi\)
\(272\) −1.54393 + 0.946119i −0.0936143 + 0.0573669i
\(273\) 0 0
\(274\) −6.69966 + 0.527275i −0.404742 + 0.0318539i
\(275\) 0.233871 0.974145i 0.0141030 0.0587431i
\(276\) 0 0
\(277\) −18.4023 25.3286i −1.10569 1.52185i −0.827620 0.561289i \(-0.810305\pi\)
−0.278070 0.960561i \(-0.589695\pi\)
\(278\) 13.1209 13.1209i 0.786941 0.786941i
\(279\) 0 0
\(280\) −2.50904 + 2.14292i −0.149944 + 0.128064i
\(281\) 11.8516 13.8764i 0.707008 0.827800i −0.284387 0.958710i \(-0.591790\pi\)
0.991394 + 0.130910i \(0.0417899\pi\)
\(282\) 0 0
\(283\) −9.58565 6.96438i −0.569808 0.413990i 0.265228 0.964186i \(-0.414553\pi\)
−0.835035 + 0.550196i \(0.814553\pi\)
\(284\) −7.80099 + 3.23127i −0.462903 + 0.191741i
\(285\) 0 0
\(286\) 0.588519i 0.0347998i
\(287\) 4.46633 4.88596i 0.263639 0.288409i
\(288\) 0 0
\(289\) 12.2256 6.22927i 0.719155 0.366428i
\(290\) −9.14252 22.0720i −0.536867 1.29611i
\(291\) 0 0
\(292\) −6.55412 + 1.03807i −0.383551 + 0.0607485i
\(293\) 17.8872 + 15.2771i 1.04498 + 0.892500i 0.994343 0.106217i \(-0.0338739\pi\)
0.0506399 + 0.998717i \(0.483874\pi\)
\(294\) 0 0
\(295\) −1.43224 + 9.04281i −0.0833883 + 0.526493i
\(296\) −2.67579 2.67579i −0.155527 0.155527i
\(297\) 0 0
\(298\) −2.07087 1.26903i −0.119962 0.0735131i
\(299\) −25.9341 6.22622i −1.49981 0.360072i
\(300\) 0 0
\(301\) −3.56913 1.47838i −0.205721 0.0852124i
\(302\) 6.42964 + 10.4922i 0.369984 + 0.603759i
\(303\) 0 0
\(304\) 0.0943179 0.0226437i 0.00540951 0.00129871i
\(305\) 22.3942 + 7.27633i 1.28229 + 0.416641i
\(306\) 0 0
\(307\) −0.934393 + 1.83385i −0.0533286 + 0.104663i −0.916133 0.400875i \(-0.868706\pi\)
0.862804 + 0.505538i \(0.168706\pi\)
\(308\) 0.0906574 0.177925i 0.00516568 0.0101382i
\(309\) 0 0
\(310\) 5.36167 + 1.74211i 0.304523 + 0.0989454i
\(311\) −25.9835 + 6.23808i −1.47339 + 0.353729i −0.889061 0.457789i \(-0.848642\pi\)
−0.584327 + 0.811518i \(0.698642\pi\)
\(312\) 0 0
\(313\) 0.978527 + 1.59681i 0.0553096 + 0.0902571i 0.879100 0.476638i \(-0.158145\pi\)
−0.823790 + 0.566895i \(0.808145\pi\)
\(314\) −17.5931 7.28729i −0.992834 0.411245i
\(315\) 0 0
\(316\) 2.62811 + 0.630953i 0.147843 + 0.0354939i
\(317\) −18.6531 11.4307i −1.04766 0.642009i −0.111569 0.993757i \(-0.535588\pi\)
−0.936095 + 0.351747i \(0.885588\pi\)
\(318\) 0 0
\(319\) 1.02236 + 1.02236i 0.0572414 + 0.0572414i
\(320\) 0.499283 3.15235i 0.0279108 0.176222i
\(321\) 0 0
\(322\) 6.88147 + 5.87733i 0.383489 + 0.327531i
\(323\) 0.173478 0.0274762i 0.00965256 0.00152881i
\(324\) 0 0
\(325\) 6.04748 + 14.5999i 0.335454 + 0.809857i
\(326\) 17.9049 9.12302i 0.991662 0.505277i
\(327\) 0 0
\(328\) −0.215748 + 6.39949i −0.0119127 + 0.353353i
\(329\) 10.3377i 0.569934i
\(330\) 0 0
\(331\) 21.1875 8.77616i 1.16457 0.482381i 0.285177 0.958475i \(-0.407948\pi\)
0.879395 + 0.476094i \(0.157948\pi\)
\(332\) −9.35553 6.79719i −0.513451 0.373044i
\(333\) 0 0
\(334\) −3.75387 + 4.39522i −0.205403 + 0.240496i
\(335\) 7.13475 6.09365i 0.389813 0.332932i
\(336\) 0 0
\(337\) 6.65207 6.65207i 0.362362 0.362362i −0.502320 0.864682i \(-0.667520\pi\)
0.864682 + 0.502320i \(0.167520\pi\)
\(338\) 2.18461 + 3.00686i 0.118827 + 0.163552i
\(339\) 0 0
\(340\) 1.34915 5.61962i 0.0731680 0.304767i
\(341\) −0.340132 + 0.0267689i −0.0184192 + 0.00144962i
\(342\) 0 0
\(343\) 11.3986 6.98508i 0.615468 0.377159i
\(344\) 3.55390 1.15473i 0.191613 0.0622590i
\(345\) 0 0
\(346\) 0.675086 2.07770i 0.0362929 0.111698i
\(347\) 28.1721 + 2.21719i 1.51236 + 0.119025i 0.807307 0.590131i \(-0.200924\pi\)
0.705051 + 0.709157i \(0.250924\pi\)
\(348\) 0 0
\(349\) 11.4651 + 5.84174i 0.613711 + 0.312701i 0.733073 0.680150i \(-0.238085\pi\)
−0.119363 + 0.992851i \(0.538085\pi\)
\(350\) 0.420702 5.34552i 0.0224874 0.285730i
\(351\) 0 0
\(352\) 0.0450914 + 0.187819i 0.00240338 + 0.0100108i
\(353\) −10.7225 33.0003i −0.570699 1.75643i −0.650378 0.759611i \(-0.725390\pi\)
0.0796791 0.996821i \(-0.474610\pi\)
\(354\) 0 0
\(355\) 10.3131 24.8980i 0.547362 1.32145i
\(356\) −1.23483 15.6899i −0.0654456 0.831565i
\(357\) 0 0
\(358\) −10.3492 + 16.8883i −0.546972 + 0.892577i
\(359\) 17.1311 12.4465i 0.904144 0.656899i −0.0353827 0.999374i \(-0.511265\pi\)
0.939527 + 0.342474i \(0.111265\pi\)
\(360\) 0 0
\(361\) 18.7568 + 2.97078i 0.987199 + 0.156357i
\(362\) 11.7419 + 13.7480i 0.617141 + 0.722579i
\(363\) 0 0
\(364\) 0.492756 + 3.11114i 0.0258274 + 0.163068i
\(365\) 12.4488 17.1343i 0.651600 0.896851i
\(366\) 0 0
\(367\) 12.9653 + 25.4459i 0.676785 + 1.32826i 0.932380 + 0.361481i \(0.117729\pi\)
−0.255595 + 0.966784i \(0.582271\pi\)
\(368\) −8.75363 −0.456314
\(369\) 0 0
\(370\) 12.0776 0.627886
\(371\) −2.98950 5.86723i −0.155207 0.304611i
\(372\) 0 0
\(373\) −15.2908 + 21.0459i −0.791726 + 1.08972i 0.202165 + 0.979351i \(0.435202\pi\)
−0.993891 + 0.110366i \(0.964798\pi\)
\(374\) 0.0547144 + 0.345453i 0.00282922 + 0.0178630i
\(375\) 0 0
\(376\) −6.49411 7.60363i −0.334908 0.392127i
\(377\) −22.5259 3.56776i −1.16015 0.183749i
\(378\) 0 0
\(379\) −4.42268 + 3.21326i −0.227178 + 0.165054i −0.695552 0.718476i \(-0.744840\pi\)
0.468374 + 0.883530i \(0.344840\pi\)
\(380\) −0.161757 + 0.263963i −0.00829795 + 0.0135410i
\(381\) 0 0
\(382\) −1.11026 14.1072i −0.0568058 0.721787i
\(383\) 2.46936 5.96155i 0.126178 0.304621i −0.848149 0.529758i \(-0.822283\pi\)
0.974327 + 0.225137i \(0.0722828\pi\)
\(384\) 0 0
\(385\) 0.196949 + 0.606146i 0.0100374 + 0.0308921i
\(386\) −0.258957 1.07863i −0.0131805 0.0549009i
\(387\) 0 0
\(388\) −0.0129878 + 0.165026i −0.000659357 + 0.00837793i
\(389\) 33.4642 + 17.0509i 1.69670 + 0.864513i 0.987138 + 0.159873i \(0.0511085\pi\)
0.709565 + 0.704640i \(0.248892\pi\)
\(390\) 0 0
\(391\) −15.8019 1.24363i −0.799134 0.0628932i
\(392\) −1.83284 + 5.64091i −0.0925725 + 0.284909i
\(393\) 0 0
\(394\) −15.0238 + 4.88154i −0.756890 + 0.245928i
\(395\) −7.35516 + 4.50725i −0.370078 + 0.226784i
\(396\) 0 0
\(397\) 34.1208 2.68537i 1.71247 0.134775i 0.816053 0.577977i \(-0.196158\pi\)
0.896422 + 0.443203i \(0.146158\pi\)
\(398\) −1.59979 + 6.66362i −0.0801904 + 0.334017i
\(399\) 0 0
\(400\) 3.04861 + 4.19605i 0.152431 + 0.209803i
\(401\) 9.27216 9.27216i 0.463030 0.463030i −0.436618 0.899647i \(-0.643824\pi\)
0.899647 + 0.436618i \(0.143824\pi\)
\(402\) 0 0
\(403\) 4.09238 3.49523i 0.203856 0.174110i
\(404\) −0.298579 + 0.349591i −0.0148549 + 0.0173928i
\(405\) 0 0
\(406\) 6.26061 + 4.54860i 0.310709 + 0.225743i
\(407\) −0.675291 + 0.279715i −0.0334729 + 0.0138649i
\(408\) 0 0
\(409\) 15.8476i 0.783615i 0.920047 + 0.391808i \(0.128150\pi\)
−0.920047 + 0.391808i \(0.871850\pi\)
\(410\) −13.9557 14.9295i −0.689222 0.737315i
\(411\) 0 0
\(412\) −7.49182 + 3.81727i −0.369095 + 0.188064i
\(413\) −1.13490 2.73988i −0.0558446 0.134821i
\(414\) 0 0
\(415\) 36.4540 5.77375i 1.78946 0.283422i
\(416\) −2.31685 1.97877i −0.113593 0.0970173i
\(417\) 0 0
\(418\) 0.00293092 0.0185051i 0.000143356 0.000905114i
\(419\) −3.58472 3.58472i −0.175125 0.175125i 0.614102 0.789227i \(-0.289518\pi\)
−0.789227 + 0.614102i \(0.789518\pi\)
\(420\) 0 0
\(421\) 0.625389 + 0.383239i 0.0304796 + 0.0186779i 0.537655 0.843165i \(-0.319310\pi\)
−0.507175 + 0.861843i \(0.669310\pi\)
\(422\) 20.6977 + 4.96909i 1.00755 + 0.241891i
\(423\) 0 0
\(424\) 5.88464 + 2.43750i 0.285783 + 0.118375i
\(425\) 4.90715 + 8.00774i 0.238032 + 0.388432i
\(426\) 0 0
\(427\) −7.41642 + 1.78052i −0.358906 + 0.0861656i
\(428\) 10.1667 + 3.30336i 0.491426 + 0.159674i
\(429\) 0 0
\(430\) −5.41452 + 10.6266i −0.261112 + 0.512460i
\(431\) 2.44393 4.79648i 0.117720 0.231038i −0.824626 0.565678i \(-0.808615\pi\)
0.942346 + 0.334640i \(0.108615\pi\)
\(432\) 0 0
\(433\) −10.4805 3.40531i −0.503660 0.163649i 0.0461572 0.998934i \(-0.485302\pi\)
−0.549817 + 0.835285i \(0.685302\pi\)
\(434\) −1.77565 + 0.426297i −0.0852341 + 0.0204629i
\(435\) 0 0
\(436\) −0.238171 0.388660i −0.0114063 0.0186134i
\(437\) 0.784452 + 0.324930i 0.0375254 + 0.0155435i
\(438\) 0 0
\(439\) 24.4741 + 5.87572i 1.16809 + 0.280433i 0.770688 0.637213i \(-0.219913\pi\)
0.397399 + 0.917646i \(0.369913\pi\)
\(440\) −0.525641 0.322113i −0.0250590 0.0153561i
\(441\) 0 0
\(442\) −3.90119 3.90119i −0.185561 0.185561i
\(443\) −3.92228 + 24.7643i −0.186353 + 1.17659i 0.700195 + 0.713952i \(0.253097\pi\)
−0.886548 + 0.462637i \(0.846903\pi\)
\(444\) 0 0
\(445\) 38.1964 + 32.6228i 1.81068 + 1.54647i
\(446\) −10.0300 + 1.58859i −0.474933 + 0.0752219i
\(447\) 0 0
\(448\) 0.395628 + 0.955131i 0.0186917 + 0.0451257i
\(449\) −25.4948 + 12.9902i −1.20317 + 0.613047i −0.936475 0.350734i \(-0.885932\pi\)
−0.266697 + 0.963780i \(0.585932\pi\)
\(450\) 0 0
\(451\) 1.12606 + 0.511536i 0.0530241 + 0.0240873i
\(452\) 6.73215i 0.316654i
\(453\) 0 0
\(454\) −8.06271 + 3.33969i −0.378402 + 0.156739i
\(455\) −8.13339 5.90925i −0.381299 0.277030i
\(456\) 0 0
\(457\) 13.2037 15.4596i 0.617645 0.723169i −0.360112 0.932909i \(-0.617262\pi\)
0.977757 + 0.209740i \(0.0672617\pi\)
\(458\) −2.27118 + 1.93977i −0.106125 + 0.0906397i
\(459\) 0 0
\(460\) 19.7555 19.7555i 0.921104 0.921104i
\(461\) −15.3676 21.1517i −0.715739 0.985131i −0.999655 0.0262814i \(-0.991633\pi\)
0.283915 0.958849i \(-0.408367\pi\)
\(462\) 0 0
\(463\) 1.54080 6.41787i 0.0716068 0.298264i −0.925062 0.379815i \(-0.875988\pi\)
0.996669 + 0.0815515i \(0.0259875\pi\)
\(464\) −7.46227 + 0.587293i −0.346427 + 0.0272644i
\(465\) 0 0
\(466\) −3.33452 + 2.04340i −0.154469 + 0.0946586i
\(467\) 9.67732 3.14435i 0.447813 0.145503i −0.0764246 0.997075i \(-0.524350\pi\)
0.524237 + 0.851572i \(0.324350\pi\)
\(468\) 0 0
\(469\) −0.939179 + 2.89049i −0.0433672 + 0.133471i
\(470\) 31.8163 + 2.50399i 1.46757 + 0.115501i
\(471\) 0 0
\(472\) 2.55593 + 1.30231i 0.117646 + 0.0599438i
\(473\) 0.0566306 0.719559i 0.00260388 0.0330854i
\(474\) 0 0
\(475\) −0.117444 0.489190i −0.00538871 0.0224456i
\(476\) 0.578483 + 1.78039i 0.0265147 + 0.0816040i
\(477\) 0 0
\(478\) −11.1259 + 26.8602i −0.508885 + 1.22856i
\(479\) 0.762773 + 9.69194i 0.0348520 + 0.442836i 0.989444 + 0.144919i \(0.0462921\pi\)
−0.954592 + 0.297918i \(0.903708\pi\)
\(480\) 0 0
\(481\) 6.02426 9.83070i 0.274683 0.448241i
\(482\) −22.6029 + 16.4219i −1.02953 + 0.747999i
\(483\) 0 0
\(484\) −10.8277 1.71494i −0.492169 0.0779519i
\(485\) −0.343125 0.401748i −0.0155805 0.0182424i
\(486\) 0 0
\(487\) 0.129469 + 0.817433i 0.00586679 + 0.0370414i 0.990448 0.137886i \(-0.0440308\pi\)
−0.984581 + 0.174928i \(0.944031\pi\)
\(488\) 4.33644 5.96860i 0.196302 0.270186i
\(489\) 0 0
\(490\) −8.59418 16.8670i −0.388245 0.761974i
\(491\) −2.11859 −0.0956107 −0.0478053 0.998857i \(-0.515223\pi\)
−0.0478053 + 0.998857i \(0.515223\pi\)
\(492\) 0 0
\(493\) −13.5542 −0.610449
\(494\) 0.134172 + 0.263327i 0.00603667 + 0.0118476i
\(495\) 0 0
\(496\) 1.03824 1.42902i 0.0466184 0.0641647i
\(497\) 1.36557 + 8.62187i 0.0612542 + 0.386744i
\(498\) 0 0
\(499\) −17.7288 20.7577i −0.793649 0.929244i 0.205125 0.978736i \(-0.434240\pi\)
−0.998775 + 0.0494916i \(0.984240\pi\)
\(500\) −0.588246 0.0931690i −0.0263072 0.00416665i
\(501\) 0 0
\(502\) −0.208988 + 0.151839i −0.00932761 + 0.00677690i
\(503\) 19.2139 31.3543i 0.856706 1.39802i −0.0598908 0.998205i \(-0.519075\pi\)
0.916597 0.399812i \(-0.130925\pi\)
\(504\) 0 0
\(505\) −0.115126 1.46281i −0.00512304 0.0650944i
\(506\) −0.647048 + 1.56211i −0.0287648 + 0.0694443i
\(507\) 0 0
\(508\) −0.380441 1.17088i −0.0168793 0.0519493i
\(509\) −6.30348 26.2559i −0.279397 1.16377i −0.918744 0.394853i \(-0.870795\pi\)
0.639347 0.768918i \(-0.279205\pi\)
\(510\) 0 0
\(511\) −0.538251 + 6.83913i −0.0238108 + 0.302545i
\(512\) −0.891007 0.453990i −0.0393773 0.0200637i
\(513\) 0 0
\(514\) −24.1160 1.89797i −1.06371 0.0837161i
\(515\) 8.29285 25.5228i 0.365426 1.12467i
\(516\) 0 0
\(517\) −1.83692 + 0.596852i −0.0807877 + 0.0262495i
\(518\) −3.33565 + 2.04409i −0.146560 + 0.0898121i
\(519\) 0 0
\(520\) 9.69450 0.762974i 0.425132 0.0334586i
\(521\) 5.43119 22.6225i 0.237945 0.991111i −0.717645 0.696410i \(-0.754780\pi\)
0.955589 0.294702i \(-0.0952203\pi\)
\(522\) 0 0
\(523\) −17.3700 23.9078i −0.759539 1.04542i −0.997252 0.0740801i \(-0.976398\pi\)
0.237714 0.971335i \(-0.423602\pi\)
\(524\) 5.79079 5.79079i 0.252972 0.252972i
\(525\) 0 0
\(526\) 14.5914 12.4622i 0.636214 0.543378i
\(527\) 2.07723 2.43212i 0.0904856 0.105945i
\(528\) 0 0
\(529\) −43.3843 31.5205i −1.88627 1.37046i
\(530\) −18.7817 + 7.77963i −0.815825 + 0.337926i
\(531\) 0 0
\(532\) 0.100279i 0.00434765i
\(533\) −19.1130 + 3.91260i −0.827877 + 0.169473i
\(534\) 0 0
\(535\) −30.3997 + 15.4894i −1.31429 + 0.669666i
\(536\) −1.12501 2.71602i −0.0485932 0.117314i
\(537\) 0 0
\(538\) 0.632346 0.100154i 0.0272624 0.00431793i
\(539\) 0.871158 + 0.744039i 0.0375234 + 0.0320480i
\(540\) 0 0
\(541\) 3.64465 23.0114i 0.156696 0.989337i −0.776539 0.630069i \(-0.783026\pi\)
0.933234 0.359268i \(-0.116974\pi\)
\(542\) 13.2649 + 13.2649i 0.569775 + 0.569775i
\(543\) 0 0
\(544\) −1.54393 0.946119i −0.0661953 0.0405645i
\(545\) 1.41465 + 0.339628i 0.0605971 + 0.0145481i
\(546\) 0 0
\(547\) −18.1894 7.53430i −0.777723 0.322143i −0.0417266 0.999129i \(-0.513286\pi\)
−0.735996 + 0.676986i \(0.763286\pi\)
\(548\) −3.51139 5.73007i −0.149999 0.244776i
\(549\) 0 0
\(550\) 0.974145 0.233871i 0.0415377 0.00997231i
\(551\) 0.690527 + 0.224366i 0.0294174 + 0.00955831i
\(552\) 0 0
\(553\) 1.26855 2.48966i 0.0539441 0.105871i
\(554\) 14.2135 27.8956i 0.603874 1.18517i
\(555\) 0 0
\(556\) 17.6476 + 5.73405i 0.748425 + 0.243178i
\(557\) −2.71149 + 0.650970i −0.114889 + 0.0275825i −0.290482 0.956880i \(-0.593816\pi\)
0.175593 + 0.984463i \(0.443816\pi\)
\(558\) 0 0
\(559\) 5.94888 + 9.70769i 0.251611 + 0.410592i
\(560\) −3.04844 1.26271i −0.128820 0.0533590i
\(561\) 0 0
\(562\) 17.7445 + 4.26008i 0.748508 + 0.179701i
\(563\) 39.6018 + 24.2680i 1.66902 + 1.02277i 0.941690 + 0.336481i \(0.109237\pi\)
0.727325 + 0.686293i \(0.240763\pi\)
\(564\) 0 0
\(565\) −15.1933 15.1933i −0.639189 0.639189i
\(566\) 1.85352 11.7026i 0.0779091 0.491899i
\(567\) 0 0
\(568\) −6.42066 5.48376i −0.269405 0.230094i
\(569\) −31.3769 + 4.96961i −1.31539 + 0.208337i −0.774401 0.632695i \(-0.781949\pi\)
−0.540986 + 0.841032i \(0.681949\pi\)
\(570\) 0 0
\(571\) 14.2005 + 34.2831i 0.594274 + 1.43470i 0.879339 + 0.476196i \(0.157985\pi\)
−0.285066 + 0.958508i \(0.592015\pi\)
\(572\) −0.524374 + 0.267182i −0.0219252 + 0.0111714i
\(573\) 0 0
\(574\) 6.38109 + 1.76135i 0.266342 + 0.0735173i
\(575\) 45.4016i 1.89338i
\(576\) 0 0
\(577\) −37.8707 + 15.6866i −1.57658 + 0.653040i −0.987867 0.155303i \(-0.950364\pi\)
−0.588711 + 0.808343i \(0.700364\pi\)
\(578\) 11.1006 + 8.06509i 0.461726 + 0.335463i
\(579\) 0 0
\(580\) 15.5157 18.1665i 0.644254 0.754324i
\(581\) −9.09083 + 7.76430i −0.377151 + 0.322118i
\(582\) 0 0
\(583\) 0.869958 0.869958i 0.0360300 0.0360300i
\(584\) −3.90044 5.36849i −0.161401 0.222150i
\(585\) 0 0
\(586\) −5.49140 + 22.8733i −0.226847 + 0.944888i
\(587\) 15.3447 1.20765i 0.633342 0.0498451i 0.242276 0.970207i \(-0.422106\pi\)
0.391067 + 0.920362i \(0.372106\pi\)
\(588\) 0 0
\(589\) −0.146086 + 0.0895215i −0.00601936 + 0.00368867i
\(590\) −8.70743 + 2.82921i −0.358479 + 0.116477i
\(591\) 0 0
\(592\) 1.16936 3.59893i 0.0480605 0.147915i
\(593\) −4.43759 0.349246i −0.182230 0.0143418i −0.0129843 0.999916i \(-0.504133\pi\)
−0.169246 + 0.985574i \(0.554133\pi\)
\(594\) 0 0
\(595\) −5.32358 2.71250i −0.218246 0.111202i
\(596\) 0.190560 2.42129i 0.00780563 0.0991799i
\(597\) 0 0
\(598\) −6.22622 25.9341i −0.254609 1.06052i
\(599\) 12.7242 + 39.1611i 0.519898 + 1.60008i 0.774190 + 0.632954i \(0.218158\pi\)
−0.254292 + 0.967127i \(0.581842\pi\)
\(600\) 0 0
\(601\) 11.3018 27.2849i 0.461008 1.11297i −0.506976 0.861960i \(-0.669237\pi\)
0.967984 0.251012i \(-0.0807633\pi\)
\(602\) −0.303103 3.85128i −0.0123535 0.156967i
\(603\) 0 0
\(604\) −6.42964 + 10.4922i −0.261618 + 0.426922i
\(605\) 28.3067 20.5660i 1.15083 0.836128i
\(606\) 0 0
\(607\) −37.4339 5.92895i −1.51940 0.240649i −0.659729 0.751504i \(-0.729329\pi\)
−0.859667 + 0.510855i \(0.829329\pi\)
\(608\) 0.0629952 + 0.0737579i 0.00255479 + 0.00299128i
\(609\) 0 0
\(610\) 3.68351 + 23.2568i 0.149141 + 0.941640i
\(611\) 17.9079 24.6482i 0.724477 0.997158i
\(612\) 0 0
\(613\) −14.4487 28.3572i −0.583579 1.14534i −0.974390 0.224866i \(-0.927805\pi\)
0.390811 0.920471i \(-0.372195\pi\)
\(614\) −2.05818 −0.0830613
\(615\) 0 0
\(616\) 0.199690 0.00804574
\(617\) −2.10922 4.13959i −0.0849142 0.166653i 0.844645 0.535328i \(-0.179812\pi\)
−0.929559 + 0.368674i \(0.879812\pi\)
\(618\) 0 0
\(619\) −21.4091 + 29.4671i −0.860504 + 1.18438i 0.120946 + 0.992659i \(0.461407\pi\)
−0.981449 + 0.191723i \(0.938593\pi\)
\(620\) 0.881914 + 5.56819i 0.0354185 + 0.223624i
\(621\) 0 0
\(622\) −17.3544 20.3194i −0.695849 0.814735i
\(623\) −16.0705 2.54532i −0.643851 0.101976i
\(624\) 0 0
\(625\) −19.4424 + 14.1257i −0.777697 + 0.565030i
\(626\) −0.978527 + 1.59681i −0.0391098 + 0.0638214i
\(627\) 0 0
\(628\) −1.49406 18.9839i −0.0596197 0.757540i
\(629\) 2.62221 6.33058i 0.104554 0.252417i
\(630\) 0 0
\(631\) 1.90239 + 5.85496i 0.0757330 + 0.233082i 0.981756 0.190147i \(-0.0608965\pi\)
−0.906023 + 0.423229i \(0.860896\pi\)
\(632\) 0.630953 + 2.62811i 0.0250980 + 0.104541i
\(633\) 0 0
\(634\) 1.71644 21.8095i 0.0681686 0.866165i
\(635\) 3.50107 + 1.78388i 0.138936 + 0.0707912i
\(636\) 0 0
\(637\) −18.0158 1.41787i −0.713812 0.0561782i
\(638\) −0.446789 + 1.37508i −0.0176886 + 0.0544398i
\(639\) 0 0
\(640\) 3.03544 0.986273i 0.119986 0.0389859i
\(641\) −19.0098 + 11.6492i −0.750842 + 0.460117i −0.844546 0.535484i \(-0.820129\pi\)
0.0937037 + 0.995600i \(0.470129\pi\)
\(642\) 0 0
\(643\) 0.00489964 0.000385610i 0.000193223 1.52070e-5i −0.0783625 0.996925i \(-0.524969\pi\)
0.0785557 + 0.996910i \(0.474969\pi\)
\(644\) −2.11262 + 8.79968i −0.0832488 + 0.346756i
\(645\) 0 0
\(646\) 0.103239 + 0.142096i 0.00406187 + 0.00559069i
\(647\) −31.9459 + 31.9459i −1.25592 + 1.25592i −0.302898 + 0.953023i \(0.597954\pi\)
−0.953023 + 0.302898i \(0.902046\pi\)
\(648\) 0 0
\(649\) 0.421331 0.359850i 0.0165387 0.0141254i
\(650\) −10.2631 + 12.0166i −0.402552 + 0.471328i
\(651\) 0 0
\(652\) 16.2573 + 11.8116i 0.636686 + 0.462580i
\(653\) −12.4805 + 5.16959i −0.488400 + 0.202302i −0.613273 0.789871i \(-0.710147\pi\)
0.124874 + 0.992173i \(0.460147\pi\)
\(654\) 0 0
\(655\) 26.1377i 1.02128i
\(656\) −5.79993 + 2.71307i −0.226449 + 0.105928i
\(657\) 0 0
\(658\) −9.21094 + 4.69321i −0.359080 + 0.182960i
\(659\) 0.987660 + 2.38442i 0.0384738 + 0.0928839i 0.941948 0.335758i \(-0.108992\pi\)
−0.903475 + 0.428642i \(0.858992\pi\)
\(660\) 0 0
\(661\) 1.68479 0.266844i 0.0655307 0.0103790i −0.123583 0.992334i \(-0.539439\pi\)
0.189114 + 0.981955i \(0.439439\pi\)
\(662\) 17.4385 + 14.8939i 0.677768 + 0.578869i
\(663\) 0 0
\(664\) 1.80902 11.4217i 0.0702035 0.443248i
\(665\) 0.226313 + 0.226313i 0.00877605 + 0.00877605i
\(666\) 0 0
\(667\) −55.8683 34.2361i −2.16323 1.32563i
\(668\) −5.62039 1.34934i −0.217459 0.0522074i
\(669\) 0 0
\(670\) 8.66859 + 3.59065i 0.334897 + 0.138719i
\(671\) −0.744576 1.21504i −0.0287440 0.0469060i
\(672\) 0 0
\(673\) 4.09277 0.982588i 0.157765 0.0378760i −0.153794 0.988103i \(-0.549149\pi\)
0.311558 + 0.950227i \(0.399149\pi\)
\(674\) 8.94702 + 2.90706i 0.344626 + 0.111976i
\(675\) 0 0
\(676\) −1.68734 + 3.31159i −0.0648977 + 0.127369i
\(677\) −10.2797 + 20.1751i −0.395082 + 0.775392i −0.999778 0.0210644i \(-0.993295\pi\)
0.604696 + 0.796456i \(0.293295\pi\)
\(678\) 0 0
\(679\) 0.162760 + 0.0528839i 0.00624615 + 0.00202950i
\(680\) 5.61962 1.34915i 0.215503 0.0517376i
\(681\) 0 0
\(682\) −0.178268 0.290907i −0.00682623 0.0111394i
\(683\) 12.7371 + 5.27587i 0.487371 + 0.201876i 0.612817 0.790225i \(-0.290036\pi\)
−0.125446 + 0.992100i \(0.540036\pi\)
\(684\) 0 0
\(685\) 20.8564 + 5.00719i 0.796884 + 0.191315i
\(686\) 11.3986 + 6.98508i 0.435201 + 0.266692i
\(687\) 0 0
\(688\) 2.64231 + 2.64231i 0.100737 + 0.100737i
\(689\) −3.03591 + 19.1680i −0.115659 + 0.730241i
\(690\) 0 0
\(691\) 26.9222 + 22.9938i 1.02417 + 0.874724i 0.992186 0.124764i \(-0.0398174\pi\)
0.0319841 + 0.999488i \(0.489817\pi\)
\(692\) 2.15773 0.341751i 0.0820245 0.0129914i
\(693\) 0 0
\(694\) 10.8143 + 26.1081i 0.410507 + 0.991051i
\(695\) −52.7685 + 26.8869i −2.00162 + 1.01988i
\(696\) 0 0
\(697\) −10.8554 + 4.07358i −0.411176 + 0.154298i
\(698\) 12.8675i 0.487044i
\(699\) 0 0
\(700\) 4.95389 2.05197i 0.187239 0.0775571i
\(701\) −8.87847 6.45059i −0.335335 0.243635i 0.407356 0.913270i \(-0.366451\pi\)
−0.742691 + 0.669634i \(0.766451\pi\)
\(702\) 0 0
\(703\) −0.238382 + 0.279110i −0.00899077 + 0.0105268i
\(704\) −0.146877 + 0.125445i −0.00553564 + 0.00472788i
\(705\) 0 0
\(706\) 24.5356 24.5356i 0.923410 0.923410i
\(707\) 0.279371 + 0.384521i 0.0105068 + 0.0144614i
\(708\) 0 0
\(709\) 3.76643 15.6883i 0.141451 0.589187i −0.855945 0.517067i \(-0.827024\pi\)
0.997396 0.0721194i \(-0.0229763\pi\)
\(710\) 26.8663 2.11442i 1.00827 0.0793529i
\(711\) 0 0
\(712\) 13.4192 8.22332i 0.502907 0.308182i
\(713\) 14.7053 4.77804i 0.550717 0.178939i
\(714\) 0 0
\(715\) 0.580440 1.78641i 0.0217072 0.0668080i
\(716\) −19.7461 1.55405i −0.737945 0.0580775i
\(717\) 0 0
\(718\) 18.8672 + 9.61334i 0.704119 + 0.358767i
\(719\) 1.42125 18.0587i 0.0530038 0.673477i −0.911822 0.410586i \(-0.865324\pi\)
0.964826 0.262891i \(-0.0846758\pi\)
\(720\) 0 0
\(721\) 2.02927 + 8.45251i 0.0755739 + 0.314788i
\(722\) 5.86842 + 18.0611i 0.218400 + 0.672165i
\(723\) 0 0
\(724\) −6.91885 + 16.7036i −0.257137 + 0.620783i
\(725\) 3.04606 + 38.7038i 0.113128 + 1.43742i
\(726\) 0 0
\(727\) −19.7300 + 32.1964i −0.731745 + 1.19410i 0.242836 + 0.970067i \(0.421922\pi\)
−0.974582 + 0.224032i \(0.928078\pi\)
\(728\) −2.54834 + 1.85147i −0.0944476 + 0.0686202i
\(729\) 0 0
\(730\) 20.9184 + 3.31315i 0.774226 + 0.122625i
\(731\) 4.39445 + 5.14524i 0.162534 + 0.190303i
\(732\) 0 0
\(733\) 2.15648 + 13.6155i 0.0796513 + 0.502899i 0.994970 + 0.100169i \(0.0319385\pi\)
−0.915319 + 0.402729i \(0.868062\pi\)
\(734\) −16.7863 + 23.1044i −0.619594 + 0.852798i
\(735\) 0 0
\(736\) −3.97406 7.79954i −0.146486 0.287495i
\(737\) −0.567841 −0.0209167
\(738\) 0 0
\(739\) 32.9738 1.21296 0.606481 0.795098i \(-0.292581\pi\)
0.606481 + 0.795098i \(0.292581\pi\)
\(740\) 5.48313 + 10.7613i 0.201564 + 0.395591i
\(741\) 0 0
\(742\) 3.87053 5.32733i 0.142092 0.195573i
\(743\) 0.962172 + 6.07491i 0.0352987 + 0.222867i 0.999031 0.0440022i \(-0.0140109\pi\)
−0.963733 + 0.266869i \(0.914011\pi\)
\(744\) 0 0
\(745\) 5.03439 + 5.89451i 0.184446 + 0.215958i
\(746\) −25.6939 4.06952i −0.940722 0.148996i
\(747\) 0 0
\(748\) −0.282961 + 0.205583i −0.0103461 + 0.00751688i
\(749\) 5.77440 9.42296i 0.210992 0.344307i
\(750\) 0 0
\(751\) 0.0299838 + 0.380981i 0.00109413 + 0.0139022i 0.997440 0.0715061i \(-0.0227805\pi\)
−0.996346 + 0.0854083i \(0.972781\pi\)
\(752\) 3.82662 9.23827i 0.139542 0.336885i
\(753\) 0 0
\(754\) −7.04767 21.6905i −0.256661 0.789921i
\(755\) −9.16857 38.1898i −0.333678 1.38987i
\(756\) 0 0
\(757\) −3.79660 + 48.2403i −0.137990 + 1.75332i 0.405671 + 0.914019i \(0.367038\pi\)
−0.543660 + 0.839305i \(0.682962\pi\)
\(758\) −4.87089 2.48184i −0.176919 0.0901446i
\(759\) 0 0
\(760\) −0.308629 0.0242896i −0.0111952 0.000881077i
\(761\) 5.72042 17.6057i 0.207365 0.638205i −0.792243 0.610206i \(-0.791087\pi\)
0.999608 0.0279985i \(-0.00891336\pi\)
\(762\) 0 0
\(763\) −0.448185 + 0.145624i −0.0162254 + 0.00527195i
\(764\) 12.0656 7.39378i 0.436516 0.267498i
\(765\) 0 0
\(766\) 6.43285 0.506276i 0.232428 0.0182925i
\(767\) −2.04035 + 8.49869i −0.0736729 + 0.306870i
\(768\) 0 0
\(769\) 0.809111 + 1.11365i 0.0291773 + 0.0401591i 0.823356 0.567525i \(-0.192099\pi\)
−0.794179 + 0.607684i \(0.792099\pi\)
\(770\) −0.450667 + 0.450667i −0.0162409 + 0.0162409i
\(771\) 0 0
\(772\) 0.843504 0.720421i 0.0303584 0.0259285i
\(773\) −19.8106 + 23.1953i −0.712539 + 0.834276i −0.992047 0.125868i \(-0.959829\pi\)
0.279508 + 0.960143i \(0.409829\pi\)
\(774\) 0 0
\(775\) −7.41174 5.38494i −0.266238 0.193433i
\(776\) −0.152936 + 0.0633480i −0.00549007 + 0.00227406i
\(777\) 0 0
\(778\) 37.5578i 1.34651i
\(779\) 0.620466 0.0278399i 0.0222305 0.000997468i
\(780\) 0 0
\(781\) −1.45319 + 0.740439i −0.0519994 + 0.0264950i
\(782\) −6.06581 14.6442i −0.216913 0.523674i
\(783\) 0 0
\(784\) −5.85818 + 0.927845i −0.209221 + 0.0331373i
\(785\) 46.2154 + 39.4717i 1.64950 + 1.40880i
\(786\) 0 0
\(787\) −2.76527 + 17.4592i −0.0985712 + 0.622354i 0.888103 + 0.459645i \(0.152023\pi\)
−0.986674 + 0.162709i \(0.947977\pi\)
\(788\) −11.1702 11.1702i −0.397921 0.397921i
\(789\) 0 0
\(790\) −7.35516 4.50725i −0.261685 0.160361i
\(791\) 6.76757 + 1.62475i 0.240627 + 0.0577695i
\(792\) 0 0
\(793\) 20.7674 + 8.60213i 0.737472 + 0.305471i
\(794\) 17.8832 + 29.1827i 0.634651 + 1.03566i
\(795\) 0 0
\(796\) −6.66362 + 1.59979i −0.236186 + 0.0567032i
\(797\) 17.7740 + 5.77513i 0.629588 + 0.204566i 0.606393 0.795165i \(-0.292616\pi\)
0.0231956 + 0.999731i \(0.492616\pi\)
\(798\) 0 0
\(799\) 8.22021 16.1331i 0.290810 0.570747i
\(800\) −2.35467 + 4.62130i −0.0832501 + 0.163388i
\(801\) 0 0
\(802\) 12.4710 + 4.05208i 0.440367 + 0.143084i
\(803\) −1.24633 + 0.299218i −0.0439822 + 0.0105592i
\(804\) 0 0
\(805\) −15.0916 24.6273i −0.531909 0.867997i
\(806\) 4.97217 + 2.05954i 0.175137 + 0.0725442i
\(807\) 0 0
\(808\) −0.447040 0.107325i −0.0157268 0.00377568i
\(809\) 14.3790 + 8.81145i 0.505538 + 0.309794i 0.751780 0.659414i \(-0.229196\pi\)
−0.246242 + 0.969208i \(0.579196\pi\)
\(810\) 0 0
\(811\) −26.8765 26.8765i −0.943762 0.943762i 0.0547386 0.998501i \(-0.482567\pi\)
−0.998501 + 0.0547386i \(0.982567\pi\)
\(812\) −1.21057 + 7.64327i −0.0424828 + 0.268226i
\(813\) 0 0
\(814\) −0.555804 0.474701i −0.0194809 0.0166383i
\(815\) −63.3470 + 10.0332i −2.21895 + 0.351447i
\(816\) 0 0
\(817\) −0.138708 0.334871i −0.00485278 0.0117156i
\(818\) −14.1203 + 7.19468i −0.493706 + 0.251556i
\(819\) 0 0
\(820\) 6.96653 19.2125i 0.243282 0.670928i
\(821\) 5.77958i 0.201709i −0.994901 0.100854i \(-0.967842\pi\)
0.994901 0.100854i \(-0.0321576\pi\)
\(822\) 0 0
\(823\) 1.75197 0.725689i 0.0610697 0.0252959i −0.351939 0.936023i \(-0.614478\pi\)
0.413009 + 0.910727i \(0.364478\pi\)
\(824\) −6.80243 4.94225i −0.236974 0.172172i
\(825\) 0 0
\(826\) 1.92602 2.25508i 0.0670148 0.0784643i
\(827\) 32.5026 27.7598i 1.13023 0.965304i 0.130568 0.991439i \(-0.458320\pi\)
0.999658 + 0.0261352i \(0.00832004\pi\)
\(828\) 0 0
\(829\) 9.00340 9.00340i 0.312701 0.312701i −0.533254 0.845955i \(-0.679031\pi\)
0.845955 + 0.533254i \(0.179031\pi\)
\(830\) 21.6942 + 29.8595i 0.753017 + 1.03644i
\(831\) 0 0
\(832\) 0.711274 2.96267i 0.0246590 0.102712i
\(833\) −10.7069 + 0.842650i −0.370971 + 0.0291961i
\(834\) 0 0
\(835\) 15.7295 9.63906i 0.544342 0.333573i
\(836\) 0.0178188 0.00578967i 0.000616275 0.000200240i
\(837\) 0 0
\(838\) 1.56658 4.82144i 0.0541166 0.166554i
\(839\) −38.9567 3.06596i −1.34494 0.105849i −0.614547 0.788880i \(-0.710661\pi\)
−0.730389 + 0.683031i \(0.760661\pi\)
\(840\) 0 0
\(841\) −24.0842 12.2715i −0.830490 0.423156i
\(842\) −0.0575477 + 0.731212i −0.00198322 + 0.0251992i
\(843\) 0 0
\(844\) 4.96909 + 20.6977i 0.171043 + 0.712446i
\(845\) −3.66567 11.2818i −0.126103 0.388105i
\(846\) 0 0
\(847\) −4.33715 + 10.4708i −0.149026 + 0.359781i
\(848\) 0.499744 + 6.34985i 0.0171613 + 0.218055i
\(849\) 0 0
\(850\) −4.90715 + 8.00774i −0.168314 + 0.274663i
\(851\) 26.7986 19.4704i 0.918645 0.667435i
\(852\) 0 0
\(853\) 16.7011 + 2.64520i 0.571836 + 0.0905699i 0.435654 0.900114i \(-0.356517\pi\)
0.136181 + 0.990684i \(0.456517\pi\)
\(854\) −4.95344 5.79973i −0.169503 0.198463i
\(855\) 0 0
\(856\) 1.67227 + 10.5583i 0.0571570 + 0.360875i
\(857\) 23.7616 32.7050i 0.811681 1.11718i −0.179381 0.983780i \(-0.557410\pi\)
0.991062 0.133403i \(-0.0425904\pi\)
\(858\) 0 0
\(859\) 5.27974 + 10.3621i 0.180142 + 0.353549i 0.963366 0.268191i \(-0.0864259\pi\)
−0.783223 + 0.621740i \(0.786426\pi\)
\(860\) −11.9265 −0.406691
\(861\) 0 0
\(862\) 5.38321 0.183353
\(863\) 0.895650 + 1.75781i 0.0304883 + 0.0598366i 0.905748 0.423816i \(-0.139310\pi\)
−0.875260 + 0.483653i \(0.839310\pi\)
\(864\) 0 0
\(865\) −4.09836 + 5.64091i −0.139349 + 0.191797i
\(866\) −1.72388 10.8842i −0.0585799 0.369859i
\(867\) 0 0
\(868\) −1.18596 1.38858i −0.0402542 0.0471316i
\(869\) 0.515633 + 0.0816682i 0.0174916 + 0.00277040i
\(870\) 0 0
\(871\) 7.24648 5.26488i 0.245538 0.178394i
\(872\) 0.238171 0.388660i 0.00806549 0.0131617i
\(873\) 0 0
\(874\) 0.0666184 + 0.846467i 0.00225340 + 0.0286322i
\(875\) −0.235628 + 0.568856i −0.00796567 + 0.0192308i
\(876\) 0 0
\(877\) −2.63522 8.11039i −0.0889852 0.273868i 0.896654 0.442731i \(-0.145990\pi\)
−0.985640 + 0.168863i \(0.945990\pi\)
\(878\) 5.87572 + 24.4741i 0.198296 + 0.825963i
\(879\) 0 0
\(880\) 0.0483690 0.614586i 0.00163052 0.0207177i
\(881\) −15.0967 7.69216i −0.508622 0.259156i 0.180795 0.983521i \(-0.442133\pi\)
−0.689416 + 0.724365i \(0.742133\pi\)
\(882\) 0 0
\(883\) −51.1111 4.02253i −1.72003 0.135369i −0.820332 0.571888i \(-0.806211\pi\)
−0.899695 + 0.436519i \(0.856211\pi\)
\(884\) 1.70488 5.24709i 0.0573414 0.176479i
\(885\) 0 0
\(886\) −23.8459 + 7.74799i −0.801117 + 0.260299i
\(887\) −47.8878 + 29.3457i −1.60791 + 0.985331i −0.629931 + 0.776651i \(0.716917\pi\)
−0.977984 + 0.208680i \(0.933083\pi\)
\(888\) 0 0
\(889\) −1.26885 + 0.0998609i −0.0425560 + 0.00334923i
\(890\) −11.7263 + 48.8437i −0.393068 + 1.63724i
\(891\) 0 0
\(892\) −5.96895 8.21556i −0.199855 0.275077i
\(893\) −0.685840 + 0.685840i −0.0229508 + 0.0229508i
\(894\) 0 0
\(895\) 48.0708 41.0564i 1.60683 1.37236i
\(896\) −0.671416 + 0.786128i −0.0224304 + 0.0262627i
\(897\) 0 0
\(898\) −23.1488 16.8186i −0.772484 0.561243i
\(899\) 12.2154 5.05977i 0.407405 0.168753i
\(900\) 0 0
\(901\) 11.5336i 0.384240i
\(902\) 0.0554387 + 1.23556i 0.00184591 + 0.0411397i
\(903\) 0 0
\(904\) −5.99839 + 3.05633i −0.199503 + 0.101652i
\(905\) −22.0825 53.3119i −0.734047 1.77215i
\(906\) 0 0
\(907\) −22.3480 + 3.53958i −0.742053 + 0.117530i −0.516004 0.856586i \(-0.672581\pi\)
−0.226049 + 0.974116i \(0.572581\pi\)
\(908\) −6.63608 5.66774i −0.220226 0.188091i
\(909\) 0 0
\(910\) 1.57270 9.92965i 0.0521345 0.329165i
\(911\) −22.1906 22.1906i −0.735209 0.735209i 0.236438 0.971647i \(-0.424020\pi\)
−0.971647 + 0.236438i \(0.924020\pi\)
\(912\) 0 0
\(913\) −1.90452 1.16709i −0.0630303 0.0386250i
\(914\) 19.7690 + 4.74611i 0.653899 + 0.156987i
\(915\) 0 0
\(916\) −2.75945 1.14300i −0.0911747 0.0377658i
\(917\) −4.42370 7.21881i −0.146083 0.238386i
\(918\) 0 0
\(919\) 10.5216 2.52601i 0.347076 0.0833255i −0.0561596 0.998422i \(-0.517886\pi\)
0.403235 + 0.915096i \(0.367886\pi\)
\(920\) 26.5711 + 8.63346i 0.876022 + 0.284637i
\(921\) 0 0
\(922\) 11.8695 23.2953i 0.390902 0.767189i
\(923\) 11.6797 22.9227i 0.384443 0.754511i
\(924\) 0 0
\(925\) −18.6662 6.06503i −0.613742 0.199417i
\(926\) 6.41787 1.54080i 0.210904 0.0506337i
\(927\) 0 0
\(928\) −3.91108 6.38230i −0.128387 0.209509i
\(929\) −18.9417 7.84593i −0.621459 0.257417i 0.0496605 0.998766i \(-0.484186\pi\)
−0.671119 + 0.741350i \(0.734186\pi\)
\(930\) 0 0
\(931\) 0.559419 + 0.134305i 0.0183342 + 0.00440166i
\(932\) −3.33452 2.04340i −0.109226 0.0669337i
\(933\) 0 0
\(934\) 7.19505 + 7.19505i 0.235429 + 0.235429i
\(935\) 0.174629 1.10257i 0.00571098 0.0360577i
\(936\) 0 0
\(937\) 4.10837 + 3.50888i 0.134215 + 0.114630i 0.714021 0.700124i \(-0.246872\pi\)
−0.579807 + 0.814754i \(0.696872\pi\)
\(938\) −3.00183 + 0.475443i −0.0980132 + 0.0155238i
\(939\) 0 0
\(940\) 12.2132 + 29.4853i 0.398351 + 0.961704i
\(941\) 34.3641 17.5094i 1.12024 0.570789i 0.207050 0.978330i \(-0.433614\pi\)
0.913187 + 0.407541i \(0.133614\pi\)
\(942\) 0 0
\(943\) −55.0336 10.6286i −1.79214 0.346114i
\(944\) 2.86859i 0.0933647i
\(945\) 0 0
\(946\) 0.666842 0.276215i 0.0216809 0.00898052i
\(947\) −7.30635 5.30837i −0.237424 0.172499i 0.462711 0.886509i \(-0.346877\pi\)
−0.700135 + 0.714010i \(0.746877\pi\)
\(948\) 0 0
\(949\) 13.1308 15.3742i 0.426243 0.499066i
\(950\) 0.382553 0.326731i 0.0124117 0.0106006i
\(951\) 0 0
\(952\) −1.32371 + 1.32371i −0.0429017 + 0.0429017i
\(953\) −15.6246 21.5054i −0.506130 0.696628i 0.477131 0.878832i \(-0.341677\pi\)
−0.983261 + 0.182204i \(0.941677\pi\)
\(954\) 0 0
\(955\) −10.5434 + 43.9165i −0.341177 + 1.42110i
\(956\) −28.9837 + 2.28106i −0.937399 + 0.0737749i
\(957\) 0 0
\(958\) −8.28929 + 5.07969i −0.267815 + 0.164117i
\(959\) −6.60766 + 2.14696i −0.213373 + 0.0693289i
\(960\) 0 0
\(961\) 8.61539 26.5154i 0.277916 0.855336i
\(962\) 11.4942 + 0.904611i 0.370587 + 0.0291658i
\(963\) 0 0
\(964\) −24.8935 12.6839i −0.801767 0.408521i
\(965\) −0.277779 + 3.52952i −0.00894203 + 0.113619i
\(966\) 0 0
\(967\) 8.47280 + 35.2917i 0.272467 + 1.13491i 0.925854 + 0.377882i \(0.123347\pi\)
−0.653387 + 0.757024i \(0.726653\pi\)
\(968\) −3.38766 10.4261i −0.108883 0.335109i
\(969\) 0 0
\(970\) 0.202184 0.488116i 0.00649175 0.0156725i
\(971\) −2.88749 36.6890i −0.0926638 1.17741i −0.850865 0.525385i \(-0.823921\pi\)
0.758201 0.652021i \(-0.226079\pi\)
\(972\) 0 0
\(973\) 10.0233 16.3566i 0.321333 0.524368i
\(974\) −0.669561 + 0.486464i −0.0214541 + 0.0155873i
\(975\) 0 0
\(976\) 7.28677 + 1.15411i 0.233244 + 0.0369422i
\(977\) 17.5781 + 20.5813i 0.562374 + 0.658456i 0.966626 0.256192i \(-0.0824680\pi\)
−0.404252 + 0.914648i \(0.632468\pi\)
\(978\) 0 0
\(979\) −0.475558 3.00255i −0.0151989 0.0959620i
\(980\) 11.1270 15.3149i 0.355437 0.489218i
\(981\) 0 0
\(982\) −0.961820 1.88768i −0.0306929 0.0602382i
\(983\) 37.2360 1.18764 0.593822 0.804597i \(-0.297619\pi\)
0.593822 + 0.804597i \(0.297619\pi\)
\(984\) 0 0
\(985\) 50.4184 1.60646
\(986\) −6.15346 12.0768i −0.195966 0.384605i
\(987\) 0 0
\(988\) −0.173713 + 0.239096i −0.00552656 + 0.00760665i
\(989\) 5.11705 + 32.3078i 0.162713 + 1.02733i
\(990\) 0 0
\(991\) 33.1123 + 38.7696i 1.05185 + 1.23156i 0.972057 + 0.234744i \(0.0754252\pi\)
0.0797906 + 0.996812i \(0.474575\pi\)
\(992\) 1.74461 + 0.276320i 0.0553915 + 0.00877316i
\(993\) 0 0
\(994\) −7.06219 + 5.13098i −0.223999 + 0.162745i
\(995\) 11.4282 18.6492i 0.362299 0.591218i
\(996\) 0 0
\(997\) 0.479867 + 6.09729i 0.0151975 + 0.193103i 0.999830 + 0.0184613i \(0.00587674\pi\)
−0.984632 + 0.174642i \(0.944123\pi\)
\(998\) 10.4466 25.2203i 0.330681 0.798334i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 738.2.ba.c.719.1 yes 64
3.2 odd 2 738.2.ba.d.719.4 yes 64
41.28 odd 40 738.2.ba.d.233.4 yes 64
123.110 even 40 inner 738.2.ba.c.233.1 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
738.2.ba.c.233.1 64 123.110 even 40 inner
738.2.ba.c.719.1 yes 64 1.1 even 1 trivial
738.2.ba.d.233.4 yes 64 41.28 odd 40
738.2.ba.d.719.4 yes 64 3.2 odd 2